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Abstract: This study aims to investigate trends in streamflow and precipitation in the period
1954–2010 in a semiarid region of the Yellow River watershed, Huangfuchuan basin, China. The
combination of the wavelet transform and different Mann-Kendall (MK) tests were employed to figure
out the basic trends structure in streamflow and precipitation and what time scales are affecting the
observed trends. The comparative analysis with five MK test methods showed that the modified MK
tests with full serial correlation structure performed better when significant autocorrelations exhibited
for more than one lag. Three criteria were used to determine the optimal smooth mother wavelet,
the decomposition level and the extension mode used in the discrete wavelet transform (DWT)
procedure. The first criteria referred to the relative error of the wavelet approximated component
and the original series. The second one was the relative error of MK Z-values of approximation
component and the original series. Additionally, a new criterion (Er), based on the relative error of
energy between the approximate component and the original series, was proposed in this study, with
better performance than the previous two criteria. Further, a new powerful index, the energy of the
hydrological time series, was proposed to verify the dominant periodic components for the observed
trends. The analysis indicated that all monthly, seasonal and annual streamflow showed significant
decreasing trends, while no significant trends were found in precipitation. Results from the DWT
and MK tests revealed that the main factors influencing the trends in the monthly and seasonal series
in Huangfuchuan watershed are intra-annual cycles, while the leading factors affecting the trends in
the annual series are decadal events. Different driving factors (e.g., seasonal cycles, solar activities,
etc.) related to the periodicities identified in these data types resulted in this discrepancy.

Keywords: trend analysis; wavelet transform; Huangfuchuan basin; Mann-Kendall test; streamflow;
precipitation

1. Introduction

The processes that occur in the atmosphere and the earth’s surface, such as precipitation
and streamflow, are mainly driven by the energy exchange between the sun, the earth and the
atmosphere [1]. The fifth IPCC assessment report [2] indicated the mean annual global air temperature
exhibited a significant upward trend during the period from the 1880–2012, and the greatest increase
was noted from 1979 to 2012 with a 0.25–0.27 ˝C increment per decade [3,4]. One of the most obvious
effects aroused by climate warming and change is to intensify the hydrological cycle [5,6]. Changes
in hydrological cycle may in turn affect the availability and quality of water resources, and the
sustainability of water management, particularly in dry regions [7–10].
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The Yellow River is considered to be China’s mother river and the cradle of Chinese civilization,
and it is a vital water source for hundreds of millions of people in the northern and north-western
parts of China [11]. The Yellow River is 5464 km long with a basin area of 0.8 million km2, which is
mainly comprised of arid and semi-arid environments [12]. The Huangfuchuan basin, an important
semiarid watershed in the middle reaches of the Yellow River, was selected as a meso-scale catchment
representative of the semiarid climates that predominate across the Yellow River watershed, in order to
detect the effects of climate variability and change. A better understanding of climate variability
and change on both a basin and regional scale is obviously critical to water management and
sustainable ecological conservation of arid and semiarid regions. Many studies which consider both
climate variability and change have centered on the assessments in hydro-climate parameters such
as temperature, precipitation and streamflow [13–18]. Hydrological variables have been considered
as useful indicators of how the climate has changed and varied over time, therefore, it is needful to
research trends associated with hydrological events [19,20].

The Mann-Kendall (MK) trend test has been widely used to trend detection in hydrology and
climatology [15], due to its rank-based procedure with resistance to the influence of extreme values
that facilitate the skewness variables [21–23]. But an obvious weakness of the MK test is that it is not
accounting for the serial correlation which is very often seen in the hydro-climate data [24–26]. Studies
have demonstrated that the presence of positive autocorrelation overestimated the significance of
(both positive and negative) trends, while negative autocorrelation underestimated the significance
of (both positive and negative) trends, if the autocorrelation is not considered [24,25]. In an effort
to remove the influence of serial correlation on the MK test, the modified MK test with lag one and
trend-free pre-whitening [25] and the modified MK test with variance correction were proposed and
applied [24,26,27]. Gautam and Acharya (2012) [28] used trend-free pre-whitening to deal with serial
and cross-correlation in detecting trends of streamflow in Nepal. However, Kumar et al. (2009) [29]
found that consideration of only lag-1 autocorrelation is not sufficient to remove all significant serial
correlation in the hydrological time series. Khaliq et al. (2009) [30] recommended the variance correction
approach, because not only lag-1 but also higher lags are considered for serial correlation. However,
Yue and Wang (2004) pointed out that the modified MK test with full autocorrelation structure is not
powerful in the case that trend cannot be approximated by a linear trend [26].

Wavelet analysis is another effective way to analyze the time series owing to its capability
of illustrating the localized characteristics of a series both in temporal and frequency domains [31–33].
Wavelet analysis has been extensively employed to determine the non-stationary trends and
periodicities in the analysis of various hydrological and meteorological variables [34–37]. In order
to better analyze the trends and the fluctuating patterns of the hydrological variables, the wavelet
transform has been recently used in conjunction with the MK test [20,38–40]. Partal and Küçük
(2006) [22] firstly co-utilized the wavelet transform and the original MK test to find which periodicities
are mainly responsible for the trends of the annual total precipitation series and found that the trend
analysis on detailed components of the precipitation time series resulting from the discrete wavelet
transform (DWT) can clearly explain the trend structure of data. Nalley et al. (2012) [20] used DWT
to analyze trends in streamflow and precipitation in Quebec and Ontario with the modified MK test
proposed by Hirsch and Slack (1984), which accounts for seasonality and serial dependence. However,
this modified MK test is not powerful when there is long-term persistence (with autoregressive
parameter >0.6) or when there are less than 5 years’ worth of monthly data [41].

When applying DWT to the decomposition of hydrologic time series, two critical issues, wavelet
choice and decomposition level, should be confirmed firstly. When choosing wavelet, both the
wavelet’s properties and the hydrologic series’ composition should be considered [42]. It is suggested
that two conditions be followed, one is that the chosen wavelet must meet the regularity condition
which is required for DWT [43]; another is that the appropriate wavelet should satisfy the need of
accurately separating deterministic series from original series [42]. The Daubechies (db) wavelets not
only meet these two conditions, but also are commonly used in hydro-meteorological wavelet-based
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studies [44–46]. The number of decomposition levels needs to be confirmed in order to avoid
unnecessary levels of data decomposition. This number is affected by the number of data points
and the mother wavelet used. The highest decomposition level should be in agreement with the
data point where the last subsampling becomes smaller than the filter length [45]. The reason is
that for signals with a finite length, convolution processes cannot perform at both ends of the signal
since there is no information available outside these boundaries [47]. As a consequence, we need
to make an extension at both edges. Border extensions that are frequently used are symmetrization,
periodic extension and zero-padding—each of them has its defect, because of the discontinuities
introduced at both ends of the signals [45,47]. In order to determine the appropriate mother wavelet,
the decomposition levels and extension mode, two criteria have been proposed by de Artigas et al.
(2006) and Nalley et al. (2012) [20,45], and which will be discussed in detail in Section 3.1.4.

The main purpose of this study is to investigate the possible trends and the basic structure of the
trends in the mean streamflow and the total precipitation in Huangfuchuan watershed by analyzing
its monthly, seasonal and annual time series through the wavelet transform and different MK tests.
The trend analysis through different MK tests was examined at first for the selection of appropriate
trend tests. Then the powerful trend tests were applied to determine the trends in the original data and
the ones resulting from DWT. In the process of applying DWT, three criteria were used to determine
the smooth mother wavelet, the decomposition levels, and the extension mode. In addition, a new
criterion based on the relative error of energy between the original data and the approximation
component decomposed from DWT was proposed and successfully employed in this study, and the
usage of it was discussed in detail in Section 3.1.4. Finally, the trend structure in precipitation and
streamflow in Huangfuchuan watershed was identified by the wavelet transform and powerful MK
tests. Additionally, a new powerful index, the energy of the hydrological time series, was proposed
in this study and used to confirm the dominant periodic components for the observed trends, and is
discussed in detail in Sections 4.3–5.

2. Study Area and Data

The Yellow River consists of three major reaches, the upper, the middle and the lower reaches [48],
and the middle reach of the Yellow River watershed contributes significantly to the total streamflow
and sediment discharge of the Yellow River [49] The Huangfuchuan is a primary tributary of the right
middle reach of the Yellow River with the length of the main channel 137 km and an average channel
slope of 2.7% [50]. The Huangfuchuan watershed (as shown in Figure 1) is located at 110.3˝~111.2˝E
and 39.2˝~39.9˝N, with a catchment area of 3246 km2 that is characterized by a semi-arid continental
climate. The basin’s average precipitation and mean temperature from 1961 to 2000 were 388 mm and
7.5 ˝C, respectively [12]. The Huangfu gauging station started in 1954 with 3175 km2 of control area,
which accounts for 98% of the area of the whole watershed. This area has complex geomorphological
types including a feldspathic sandstone hilly-gully region, the loess hilly-gully region and the sanded
loess hilly-gully region [51]. The Huangfuchuan basin is considered to be fairly vulnerable to climate
change due to vegetation deterioration, soil erosion and land desertification [12,52].

Daily streamflow and precipitation observations from 1954 to 2010 for the Huangfu gauging
station of the Huangfuchuan basin were provided by the Yellow River Conservancy Commission
(YRCC). A large amount of work has been conducted by the YRCC to make sure of the quality of the
data before they were released [49,53]. Stations with missing data of less than 3% can be considered as
acceptable for hydrological research [8]. However, the Huangfu gauging station has fully complete
observations over the chosen period. Therefore, the data used in this study is considered to be good
quality. Monthly, seasonal and annual mean streamflow and total precipitation data (see Figure 2) were
then collected and investigated in order to research short-term monthly variations (e.g., intra-annual
and inter-annual cycles), seasonal cycles and long-term fluctuations such as multi-year, decadal and
multi-decadal events [20].
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Figure 1. The location of the Huangfuchuan watershed. 
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Figure 2. Monthly, seasonal and annual streamflow and precipitation plots of the study used. (a) 
annual streamflow; (b) annual precipitation; (c) seasonal streamflow; (d) seasonal precipitation; (e) 
monthly streamflow; (f) monthly precipitation. 
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Figure 1. The location of the Huangfuchuan watershed.
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Figure 2. Monthly, seasonal and annual streamflow and precipitation plots of the study used. (a) 
annual streamflow; (b) annual precipitation; (c) seasonal streamflow; (d) seasonal precipitation; (e) 
monthly streamflow; (f) monthly precipitation. 
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Figure 2. Monthly, seasonal and annual streamflow and precipitation plots of the study used. (a) annual
streamflow; (b) annual precipitation; (c) seasonal streamflow; (d) seasonal precipitation; (e) monthly
streamflow; (f) monthly precipitation.
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Burn and Elnur (2002) [19] considered that the length of the time series of at least 25 years was
required in order to obtain an average statistic in assessing the trends of the streamflow. In addition,
Partal (2010) [39] thought the length of the time series of 40 years was adequate for trend analysis
studies. Kumar et al. (2009) [29] suggested that the same length of records should be used when
analyzing trends of different variables to avoid misleading conclusions. Therefore, both the streamflow
and precipitation of the same record length of 57 years for the period 1954–2010 would be adequate for
the trend analysis in this study.

3. Methodology

3.1. Wavelet Transforms (WTs)

3.1.1. Continuous Wavelet Transform (CWT)

A discrete recording sequence existed in a continuous time series x(t), and the wavelet function
Ψ(η) with a time variable (η) is defined according to the reference [20,22]:

Ψ pηq “ Ψps,γq “
1
?

s
Ψp

t´ γ
s
q (1)

where η is the non-dimensional parameter, t stands time, γ is the translation factor (time shift) of the
wavelet over the time series, and s represents the wavelet scale which ranges from 0 to +8. When
γ = 0 and s = 1, Ψ(t) represents the mother wavelet—all wavelets following this computation are the
rescaled versions of the mother wavelet. In order to be acceptable as a wavelet, the function Ψ(η) has
to meet the condition of having a zero mean and be localized in time-frequency space [32]. As can be
seen in Equation (1), when s is less than 1, Ψ(η) corresponds to a high-frequency function; when s is
greater than 1, Ψ(η) corresponds to a low-frequency function.

The wavelet coefficients WΨ of CWT for the time series x(t) are computed by using the convolution
of x(t) with the scaled and translated versions of the wavelet, Ψ(η) [20,22]:

WΨps,γq “
1
?

s

ż 8

´8

xptqΨ˚p
t´ γ

s
qdt (2)

where the asterisk symbol stands for the complex conjugate function. If the scale (s) and translation (γ)
functions are smoothly changed along with extended time t, a scalogram can be produced from the
calculation that indicates the amplitude of a specific scale and how it fluctuates over time [32].

The Morlet wavelet is widely used in natural time series applications as the basis wavelet function,
which is defined as

Ψ0pηq “ π
´0.25eiω0ηe´0.5η2

(3)

whereω0 is non-dimensional frequency andω0 = 6 is used here to satisfy the admissibility condition.
The advantage of the Morlet wavelet function provides a conductive definition of the signal in the
spectral-space [54].

3.1.2. Global Wavelet Spectrum

Local spectrum can be measured by a vertical slice through a wavelet plot, the time-averaged
wavelet spectrum, also called the global wavelet spectrum (GWS) [32], which is the average of this
slice along the time-axis and can be expressed as

W2
psq “

1
T

T´1
ÿ

t“0

|Wpt, sq|2 (4)
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where T is the number of points in the time series. The smoothed Fourier spectrum approaches
the GWS when the amount of necessary smoothing decreases with the increasing scale. Therefore,
an unbiased and consistent estimation of the true power spectrum are provided by the GWS.

3.1.3. Discrete Wavelet Transform (DWT)

The DWT is normally based on the dyadic calculation of position and scale of a signal [55] and
the form of DWT can be written as

Ψpa,bqp
t´ γ

s
q “ s0

´a{2Ψp
t´ bγ0sa

0
2a q (5)

where Ψ represents the mother wavelet; a and b are integers that control the wavelet dilation (scale) and
translation (time), respectively; s0 is a fixed dilation step whose value is greater than 1; and γ0 is the
location parameter whose value is greater than zero. In general, for practical reasons, the parameters s0

and γ0 are 2 and 1, respectively [56]. This is the DWT dyadic grid arrangement. Supposing a discrete
time series xt, where xt occurs at a discrete time t, the wavelet coefficient for the DWT becomes

WΨpa, bq “ 2´a{2
N´1
ÿ

t“0

xtΨp
t

2a ´ bq (6)

where the wavelet coefficients WΨ(a, b) are computed at scale s = 2a and location γ = 2ab which reveal
the variation of signals at different scales and locations.

3.1.4. Time Series Decomposition via DWT

The multilevel 1-D wavelet decomposition function in MATLAB was used to accomplish the
conventional discrete wavelet analysis of signals on each streamflow and precipitation time series.
Since the trends of hydrologic time series are supposed to be gradual and represent slowly-changing
processes, smoother wavelets should be better at detecting long-term time-varying behavior [23].
Therefore, smoother db wavelets (db5–db10) were then tried for each monthly, seasonal and
annual dataset.

Based on de Artigas et al. (2006) [45], who analyzed monthly geomagnetic activity indices, the
maximum decomposition level L is computed as

L “
Logp

n
2ν´ 1

q

Logp2q
(7)

where υ represents the number of vanishing moments of a db wavelet and n denotes the number of
data points in a monthly time series. In MATLAB, the number of vanishing moments for a db wavelet
equals half of its starting filter length. For instance, db6 in MATLAB represents the Daubechies6
wavelet, which has a 12-point filter length. If someone uses db6 to analyze the signals, the value of υ
is 6.

For annual datasets with the length of 57 years, there were 684 data points for the monthly
datasets and 228 for the seasonal datasets. Symmetrization, periodic extension and zero-padding
were performed with signal extension in MATLAB, extending the monthly, seasonal and annual
data points to 1024, 256, and 256, separately. A calculation based on Equation (7) indicates that the
maximum monthly decomposition level values range from 5.8–6.8, 3.8–6.8 for seasonal level, and
3.8–4.8 for annual level. Since the decomposition levels should be a positive integer, the 6th and 7th
decomposition levels were used for each smooth db wavelet, 4th and 5th decomposition levels for
seasonal data and 4th and 5th levels for annual data.
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Three criteria were applied to determine the smooth mother wavelet, decomposition levels and
the extension mode in the data analysis of each data type and dataset. The first one is the mean relative
error (MRE) that was proposed by de Artigas et al. (2006) [45], which was written as

MRE “
1
n

n
ÿ

i“1

|ai ´ xi|

|xi|
(8)

where xi represents the original data value of an signal with a record length of n, and ai is the
approximation value of xi. However, this criteria cannot be used in the series that contains zero value,
and there are zero values in the datasets that are used in this study. Therefore, the smallest mean
absolute error (MAE) was applied in this study as the first criteria to give a similar evaluation, which
was computed as

MAE “
1
n

n
ÿ

j“1

ˇ

ˇaj ´ xj
ˇ

ˇ (9)

The second one is the lowest approximation MK Z-value relative error (er) suggested by
Nalley et al. (2012) [20], which was given as

er “
|Za ´ Zo|

|Zo|
(10)

where Za and Zo represent the MK Z-value of the last approximation for the decomposition level used
and the original data, respectively.

The third criterion is the one proposed in this paper which is based on the energy of the series.
Supposing a time series xi, n is the length of data record, the total energy of xi can be computed as
below [42]

E “
n
ÿ

i“1

pxiq
2 (11)

Different combinations (of decomposition level, extension mode and mother wavelet) were
examined that would generate the lowest approximation energy relative error (Er). The computation
of the relative error was done using the following equation:

Er “
|Ea ´ Eo|

Eo
(12)

where Eo is the total energy of the original series and Ea is the total energy of the last approximation
for the decomposition level used.

3.2. Trend Analysis

3.2.1. The Mann-Kendall (MK) Trend Test

In the test, the null hypothesis H0 assumes that the deseasonalized data (x1,..., xn) denotes a sample
of n independent and randomly ordered variables. The alternative hypothesis H1 of a two-sided test
states that the distribution of xi and xj is not identical for all i, jďn with I “ j [20].

The Mann-Kendall test statistic S is calculated as:

S “
n´1
ÿ

i“1

n
ÿ

j“i`1

sgn
`

xj ´ xi
˘

(13)

sgnpθq “

$

’

&

’

%

1 i f θ ą 0
0 i f θ “ 0
´1 i f θ ă 0

(14)
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For an independent data sample without tied values, the mean and variance of S are given by:

ErSs “ 0

VarpSq “
npn´ 1qp2n` 5q

18
(15)

If tied values are present in the sample, Var(S) is computed by:

VarpSq “ rnpn´ 1qp2n` 5q ´
n
ÿ

i“1

tipi´ 1qp2i` 5qs{18 (16)

Then, the MK test statistic Z for all those cases where n is larger than 10 is given by [57]:

Z “

$

’

’

’

’

&

’

’

’

’

%

S´ 1
a

VarpSq
S ą 0

0 S “ 0
S` 1

a

VarpSq
S ă 0

(17)

Therefore, the H0 should be accepted if |Z| ď Zα{2 at the α level of significance in a two-sided test
for trend. If Z > 0, the time series has an upward trend and if Z < 0, then there is a downward trend.
Critical value Zα{2 at α = 5% significance level of trend test equals ˘1.96.

3.2.2. Mann-Kendall Test with Trend-free Pre-whitening (TFPW)

The TFPW procedure is proposed by Yue et al. (2002) [58] to detect a significant trend in a time
series with significant serial correlation, including the following steps:

1. Calculate the lag-1 (k = 1) autocorrelation coefficient (r1) by:

rk “

n´k
ř

t“1
pxt ´ xqpxt`k ´ xq

n
ř

t“1
pxt ´ xq2

(18)

If

 

´1´ 1.96
?

n´ 2
(

n´ 1
ď r1 ď

 

´1` 1.96
?

n´ 2
(

n´ 1
, then the data are considered to be

serial-independent at the 5% significant level and it is not necessary to conduct TFPW. Elsewhere
data are assumed to be serial-correlated and TFPW is required.

2. The magnitude of trend in sample data is estimated by the Theil-Sen approach (TSA) [59,60], the
TSA slope β is computed as:

β “ median
„

xj ´ xi

j´ i



for all i ă j (19)

Then the series are detrened by using the following equation:

xd
i “ xi ´ βˆ i (20)

3. Calculate the r1 of the detrended series by using the Equation (18) and the AR(1) is removed from
the detrended series to get a residual series by:

xr
i “ xd

i ´ r1 ˆ xd
i (21)
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4. The identified trend (β ˆ i) is added back to the residual series to get a blended series by using
the following

xb
i “ xr

i ` βˆ i (22)

Finally, the original MK test is applied to the blended series to assess the significance of the trend.

3.2.3. Modified Mann-Kendall Test by Variance Correction

The variance correction approach supposes that a correlated series is composed of n data in which
n* of them are uncorrelated. Hamed and Rao (1998) [24] and Yue and Wang (2004) [26] proposed
modified variance V(S)* for computing the MK statistic Z:

VpSq˚ “ VpSq ¨
n

n˚
“ c f ¨VpSq (23)

c f1 “ 1`
2

npn´ 1qpn´ 2q

n´1
ÿ

i“1

pn´ iqpn´ i´ 1qpn´ i´ 2qρspiq (24)

c f2 “ 1` 2
n´i
ÿ

i“1

p1´
i
n
qρpiq (25)

where cf 1 is variance correction factor according to Hamed and Rao (1998) [24], cf 2 according to Yue
and Wang (2004) [26], ρs(i) is the lag-i significant autocorrelation coefficient of time series ranks; ρ(i)
is the lag-i significant autocorrelation coefficient of time series. The values of ρs(i) and ρ(i) must be
estimated from the detrended sample data and only significant values are used in Equations (24) and
(25) since the insignificant values will have an adverse effect on the accuracy of the estimated variance
of S [24,26]. The modified MK test calculated by using the cf 1 and cf 2 are referred as to MK1998 and
MKDD, respectively.

The expression given by Kendall (1955) [24] in Equation (26) was used to transform rank
autocorrelation to normalized data autocorrelation:

ρpiq “ 2sinp
π

6
ρspiqq (26)

Matalas and Langbein (1962) [61] provided a formula for calculating n* for the lag-1
autoregressive process:

n˚ “
n

1` 2
ρ1

n`1 ´ nρ1
2 ` pn´ 1qρ1

npρ1 ´ 1q2

(27)

When there is no trend exists, r1 = ρ1 (Yue and Wang, 2004).

c f3 “ 1` 2
ρ1

n`1 ´ nρ1
2 ` pn´ 1qρ1

npρ1 ´ 1q2
(28)

The value of ρ1 that is estimated form the detrended sample data and the modified MK test
calculated by using the cf 3 is referred as to MKDD1.

3.2.4. Sequential Mann-Kendall Test

The progressive values u(t) of the Mann-Kendall test were determined in order to see the change
of trend with time. Similar to Z value, u(t) is a standardized variable with zero mean, unit standard
deviation, and sequentially fluctuating behavior around the zero level [22].
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3.2.5. Determining the Dominant Periodic Components for the Observed Trends

Two indexes, the closeness of the MK Z values and the sequential MK graphs (between the
individual periodic component and original time series), were employed to determine the most
influential periodic component(s) for trends observed in a hydrological time series [20,22,39]. Since the
results of the MK trend analysis on periodic (or detailed) component(s) can be better interpreted with
their respective approximation added [20], therefore, in this study: (1) the MK value for each of the
detailed components with respective approximation was compared to the MK Z value of the original
time series to see if they are close (even if the values were not significant); (2) the sequential MK graphs
of each detailed component with the respective approximation were examined in comparison with the
original time series to see their proximity. If a detailed component (with the approximation added)
meets the two requests, this detailed component could be considered as the most dominant periodic
component for the observed trends. In addition to the MK Z value and the sequential MK graphs,
a new index based on the energy of the hydrological time series was proposed in this study and also
used to verify the dominant periodic components for the observed trends.

4. Results and Discussion

4.1. Mann-Kendall Analysis

Streamflow and precipitation time series (from the beginning of 1954 to the end of 2010) in
Huangfuchuan hydrologic station were collected for the analysis of trends. Table 1 summarized the
lag-1 autocorrelation coefficients or the autocorrelation functions (ACFs) and MK Z values (using the
five methods mentioned earlier) of the flow and precipitation with regards to the monthly, seasonal
and annual series. All those three series showed significant downward trends using different MK
trend test methods. Monthly and seasonal total precipitation series exhibited weak upward trends;
while annual total precipitation series showed poor downward trends.

Table 1. Lag-1 autocorrelation functions (ACFs) and MK values (using different MK methods) of the
original monthly, seasonal, and annual streamflow and precipitation series (MS: monthly streamflow;
SS: seasonal streamflow; AS: annual streamflow; MP: monthly precipitation; SP: seasonal precipitation;
AP: annual precipitation).

Type ACF MK TFPW MK1998 MKDD MKDD1

MS 0.399 * ´13.179 ´12.410 ´5.503 ´4.025 ´8.779
SS 0.065 ´7.624 ´7.764 ´4.055 ´3.188 ´7.578
AS 0.166 ´5.239 ´5.376 ´5.239 ´5.239 ´6.312
MP 0.482 * 0.202 0.380 0.228 0.193 0.120
SP ´0.051 0.168 0.107 0.086 0.067 0.176
AP ´0.266 * ´0.902 ´0.984 ´1.286 ´1.344 ´1.196

Notes: * indicates significant lag-1 serial correlation at α = 5%.; significant trend (95% confidence level) results
are shown in bold letters.

It is documented that the presence of positive autocorrelation overestimated the significance of
(both positive and negative) trends, while negative autocorrelation underestimated the significance
of (both positive and negative) trends, if the autocorrelation is not considered [24,58]. As can be
seen, all monthly series for both streamflow and precipitation exhibited significant lag-1 positive
autocorrelation. The absolute MK Z values of monthly mean streamflow based on the modified MK
test methods decreased to some degree (6% or more) compared to the original MK, in which TFPW
and MKDD1 exhibited less decrease than MK1988 and MKDD. For monthly total precipitation, there
is a decrease in the MK Z values of MKDD and MKDD1 compared to the original MK, while there
is an increase in TFPW and MK1998 compared to the original MK. The differences are considered as
very small since there are no significant trends found in all these methods. Annual total precipitation



Water 2016, 8, 77 11 of 32

showed lag-1 negative autocorrelation. Comparing to the original MK, the absolute MK Z values based
on the modified MK test methods increased to some degree, where TFPW and MKDD1 had a relatively
smaller increase compared to MK1988 and MKDD. Seasonal and annual mean streamflow series and
seasonal total precipitation series exhibited no significant autocorrelation. The results of different types
of data from TFPW and MKDD1 were very similar to the original MK. The results of annual mean
streamflow from MK1998 and MKDD were almost the same as the original MK. However, within
seasonal mean streamflow and seasonal total precipitation series, the MK Z values from MK1998 and
MKDD were significantly different from the original MK.

In general, the four modified Mann-Kendall tests limited the impacts of the autocorrelation
on the trend assessment of the time series to a certain extent. However, MK1998 and MKDD had
significant different test results compared to TFPW and MKDD1. This is mainly attributed to the fact
that TFPW and MKDD1 only account for lag-1 autocorrelation while MK1988 and MKDD take all
significant ρ values into consideration. The correlograms of monthly, seasonal and annual can be seen
in Figure 3. As it is shown, those data have significant autocorrelations extending beyond the first
lag. Obviously, consideration of only lag-1 autocorrelation (for TFPW and MKDD1) is not sufficient
to remove all significant serial correlation in the data series. It is also found that there is a presence
of annual cycles with repeated ACF values at about every 12th lag for monthly series and every 4th
lag for seasonal series. This may explain why the MK Z values of seasonal mean streamflow and
seasonal total precipitation series based on MK1998 and MKDD differed significantly from the original
MK. Although a time series exhibited no significant lag-1 autocorrelation, applying the original MK
may obtain the wrong results because of the presence of annual cycles. Thus, the modified MK tests
(MK1998 and MKDD) that consider full serial correlation structure should be used even though there
is no significant lag-1 autocorrelation due to the annual cycles.

In this study, significant autocorrelations could exhibit for more than just one lag in a lot of time
series (see Section 4.3.1), therefore, the modified MK tests (MK1998 and MKDD) that consider full serial
correlation structure were recommended here. However, based on the later analysis on monthly and
annual total precipitation, the original MK test was also applied due to the limitation of the modified
MK test for full serial correlation structure. Therefore, these three MK tests were employed to examine
the trends in the original time series and those resulting from the wavelet decomposition.
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Figure 3. The correlograms of monthly, seasonal and annual series. The upper and lower
solid lines represents the confidence intervals (95% confidence level). (a) monthly streamflow;
(b) monthly precipitation; (c) seasonal streamflow; (d) seasonal precipitation; (e) annual streamflow;
(f) annual precipitation.

4.2. Decomposition via DWT

Three criteria were applied to determine the smooth mother wavelet, the decomposition levels and
the extension mode, which were used in the data analysis for each data type and dataset. The results
of monthly streamflow are (see Table 2) showing significant differences among the three criteria. The
minimum MAE value (4.577) corresponds to the six decomposition levels, zero-padding extension and
db5 wavelet. The minimum er value (0.516) responds to the seven decomposition levels, zero-padding
extension and db7 wavelet. The minimum Er value (0.792) corresponds to the seven decomposition
levels, symmetrization extension and db5 wavelet. It is interesting to find that at the same level of
decomposition, the extension modes were symmetrical extension, periodic extension and zero-padding
extension, accordingly, at the same time, the values of Er were increasing (Figure 4). In other words,
the symmetrical extension mode is more suitable than the other two extension modes to expand the
hydrological time series according to the Er criterion. Further analysis of other types of data also
indicated that the symmetrical extension mode is most applicable to broaden hydrological time series,
followed by the periodic extension mode and the zero-padding extension mode, which performs worst
based on the Er criterion. Similarly, Kharitonenko also argued that the point-symmetric extension
method performs better than other methods [62]. In addition, according to the comparison of linear
fit of the original series and the approximate component decomposing from different db types in the
three extension modes, we found that the ways of boundary extension were symmetric extension,
period extension and zero-padding extension in sequence, and the degree of proximity was overall
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descending, for example, total annual precipitation (Figure 5); similar results were also found in other
types of data which are mainly consistent with the conclusions obtained from the criterion of Er.

Table 2. MAE, er, and Er of monthly mean flow series (sym: symmetrization extension; per: periodic
extension; zpa: zero-padding extension).

Extension
Mode

Decomposition
Levels Criterion db5 db6 db7 db8 db9 db10

sym

L = 6
MAE 4.637 4.658 4.627 4.632 4.643 4.638

er 1.772 1.613 1.723 2.005 1.643 1.783
Er 0.798 0.803 0.805 0.799 0.8 0.805

L = 7
MAE 4.667 4.68 4.642 4.634 4.66 4.666

er 1.425 0.863 1.295 1.687 0.990 0.616
Er 0.792 0.798 0.812 0.805 0.795 0.802

per

L = 6
MAE 4.672 4.679 4.697 4.699 4.677 4.684

er 2.287 2.732 3.252 2.628 2.297 1.759
Er 0.811 0.817 0.813 0.808 0.812 0.816

L = 7
MAE 4.799 4.814 4.736 4.736 4.792 4.806

er 1.352 1.793 1.142 1.142 1.787 1.505
Er 0.82 0.811 0.829 0.829 0.82 0.813

zpa

L = 6
MAE 4.577 4.6 4.606 4.591 4.587 4.604

er 1.907 1.131 1.469 1.656 1.715 1.341
Er 0.816 0.819 0.817 0.813 0.816 0.819

L = 7
MAE 4.577 4.606 4.616 4.595 4.581 4.604

er 0.922 0.747 0.516 0.583 1.066 0.624
Er 0.828 0.823 0.829 0.834 0.829 0.824

Notes: The minimum MAE, er, and Er are indicated in bold format.
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Figure 4. Er values of monthly mean streamflow series with different extension mode in six and seven
levels (sym: symmetrization extension; per: periodic extension; zpa: zero-padding extension). (a) L = 6;
(b) L = 7.

Further, the selected results by three criteria are given in Table 3 directly, instead of listing all
calculated values of other types of data, due to limited space. As shown, results vary from one
criterion to another. Determining the best criterion with higher accuracy and precision will facilitate
the utilization of DWT for the decomposition results which depend on extension mode, decomposition
level, and selected wavelet function [42]. All three criteria described the proximity between original
time series and the approximate components that were obtained through the decomposition of the
original series, therefore this study made the linear fit of original series and approximate components
in order to compare the degree of proximity and evaluate the best optional criterion, as shown in
Figure 6. Linear-fitting trend lines of approximate components obtained from the criterion that is
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proposed in this study matched the trend line of the original series to the largest extent, except for the
annual total precipitation.Water 2016, 8, x 14 of 33 
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Figure 5. Linear fit of original series and approximate components of annual total precipitation series
in three extension modes (sym: symmetrization extension; per: periodic extension; zpa: zero-padding
extension) with the decomposition level L = 4. The dash lines are the linear fits of the approximate
components decomposing from different db types. (a) sym; (b) per; (c) zpa.

Table 3. The results of extension mode, decomposition levels and db type that were used in DWT
of monthly, seasonal and annual flow and precipitation series in the three criteria (MS: monthly
streamflow; SS: seasonal streamflow; AS: annual streamflow; MP: monthly precipitation; SP: seasonal
precipitation; AP: annual precipitation; sym: symmetrization extension; per: periodic extension; zpa:
zero-padding extension).

Criterion Data Type Extension Mode Decomposition Levels db Type

MAE

MS zpa 6 db5
MP zpa 7 db5
SS zpa 4 db7
SP zpa 5 db7
AS zpa 4 db6
AP sym 4 db5

er

MS zpa 7 db7
MP per 6 db6
SS sym 5 db10
SP per 4 db10
AS zpa 4 db7
AP per 4 db10

Er

MS sym 7 db5
MP per 6 db8
SS sym 4 db5
SP sym 4 db9
AS sym 4 db9
AP per 5 db8
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Figure 6. Linear fit of original series and approximate components of monthly, seasonal
and annual streamflow and precipitation series in the three criteria. (a) monthly streamflow;
(b) monthly precipitation; (c) seasonal streamflow; (d) seasonal precipitation; (e) annual streamflow;
(f) annual precipitation.

Overall, the criterion Er in this study performed with higher accuracy and precision in comparison
to the other two criteria, therefore, the selected results were used in DWT (see Table 3).
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4.3. Decomposition and Analysis of Monthly Data

The monthly mean flow and total precipitation time series were decomposed into seven and
six lower resolution levels via the DWT approach, respectively. The detail components represent the
2-month periodicity (D1), 4-month periodicity (D2), 8-month periodicity (D3), 16-month periodicity
(D4), 16-month periodicity (D4), 32-month periodicity (D5), 64-month periodicity (D6) and 128-month
periodicity (D7). A6 and A7 represent the approximate components at the sixth and seventh level of
decomposition, respectively. The application of the discrete wavelet transform on the monthly flow
and precipitation are shown in Figures 7 and 8 respectively. The lower detailed levels with higher
frequencies represent the rapidly changing component of the series; on the contrary, higher detailed
levels with lower frequencies represent the slowly changing component, such as approximation
component A7 in Figure 7 and A6 in Figure 8.
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Figure 7. Original monthly mean streamflow series and its approximation (A7) and detail components
(D1–D7) decomposed via DWT. (a) original data; (b) A7; (c) D1; (d) D2; (e) D3; (f) D4; (g) D5; (h) D6;
(i) D7.
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Figure 8. Original monthly precipitation series and its approximation (A6) and detail components
(D1–D6) decomposed via DWT. (a) original data; (b) A6; (c) D1; (d) D2; (e) D3; (f) D4; (g) D5; (h) D6.
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4.3.1. Monthly Mean Streamflow Series

The results of the trend analysis in the original and the wavelet components of the monthly mean
flow series using three MK trend tests are shown in Table 4. As can be seen, the correlation coefficients
of the detail components, approximations and different combinations are very high, with most of the
values greater than 0.6. The modified MK test proposed by Hirsch and Slack (1984), which accounts
for seasonality and serial dependence, was not applied in this study because this method is not
powerful when there is long-term persistence (with autoregressive parameter >0.6) [41]. In addition,
significant autocorrelation exhibits more than for one lag in most of the wavelet decomposition
components as well as for different combinations, for example, the A7 and each detail component with
A7 decomposing from the monthly streamflow series via DWT (see Figure 9). This is why the two
modified MK tests (MK1998 and MKDD) that consider full serial correlation structure were employed
in this study. As shown in Table 4, the MK1998 and MKDD for autocorrelation performed well in most
series with high ACFs. However, given the situation that the slope β of the trend approaches zero,
such as for D2, D3 and D4, the two modified MK tests are not robust even though the existing trend can
be approximated by linear trend. Since this situation mainly occurs in the individual detail component
and it has little influence on each detail component with the approximation, it is not considered and
explored in later trend analysis. In addition, the original MK test performs worse when the ACF is
high, as expected. However, the original MK test is still powerful in the case that the slope β of the
trend approaches zero even though the ACFs of the series are extremely high (r > 0.9). This could
explain why the original MK test was applied in this study.

Table 4. Slope β (computed by TSA), Lag-1 ACFs, Mann-Kendall values (three MK tests) and energy of
monthly mean streamflow series: original data, detail components (D1–D7), approximations (A7) and a
set of combinations of the details and their respective approximations. C0 is the correlation coefficients
between the decomposition combinations and the original series.

Series Slope (β) ACF MK MK1998 MKDD C0 Energy

Original ´0.0027 0.399 ´13.179 * ´5.503 * ´4.025 * – 69,705
A7 ´0.0103 0.995 ´34.542 * ´5.855 * ´9.761 * 0.212 14,476
D1 ´0.0003 ´0.437 ´0.647 ´0.849 ´0.942 0.556 18,159
D2 0 0.338 ´0.066 ´0.171 ´0.122 0.385 8783
D3 0.0003 0.83 0.366 0.444 0.337 0.611 22,011
D4 0.0003 0.932 0.614 1.485 3.356 * 0.252 4569
D5 ´0.0003 0.98 ´1.287 ´1.016 ´0.806 0.171 1895
D6 ´0.0002 0.995 ´0.797 ´0.579 ´0.911 0.126 985
D7 0.0006 0.999 3.682 * 1.307 2.145 * 0.023 348

D1 + A7 ´0.0102 ´0.227 ´16.555 * ´15.260 * ´20.989 * 0.595 32,641
D2 + A7 ´0.0103 0.512 ´15.830 * ´12.121 * ´15.987 * 0.438 23,381
D3 + A7 ´0.0098 0.852 ´10.262 * ´9.374 * ´7.963 * 0.645 36,696
D4 + A7 ´0.0098 0.964 ´18.084 * ´12.563 * ´16.646 * 0.333 18,692
D5 + A7 ´0.0101 0.984 ´23.363 * ´10.236 * ´15.233 * 0.275 16,204
D6 + A7 ´0.0098 0.993 ´25.500 * ´8.628 * ´11.843 * 0.244 15,522

Notes: * Indicates significant trend values at α = 5%; the most effective periodic components for trends are
indicated in bold format.
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Figure 9. The correlograms of A7 and each detail component with A7 decomposing from the monthly 
streamflow series via DWT. The upper and lower solid lines represent the confidence intervals (95% 
confidence level). (a) A7; (b) A7+D1; (c) A7+D2; (d) A7+D3; (e) A7+D4; (f) A7+D5; (g) A7+D6; (h) 
A7+D7.

Table 4. Slope β (computed by TSA), Lag-1 ACFs, Mann-Kendall values (three MK tests) and energy
of monthly mean streamflow series: original data, detail components (D1–D7), approximations (A7) 
and a set of combinations of the details and their respective approximations. C0 is the correlation 
coefficients between the decomposition combinations and the original series. 

Series Slope (β) ACF MK MK1998 MKDD C0 Energy 
Original −0.0027 0.399 −13.179 * −5.503 * −4.025 * – 69705

A7 −0.0103 0.995 −34.542 * −5.855 * −9.761 * 0.212 14476
D1 −0.0003 −0.437 −0.647 −0.849 −0.942 0.556 18159 
D2 0 0.338 −0.066 −0.171 −0.122 0.385 8783 
D3 0.0003 0.83 0.366 0.444 0.337 0.611 22011
D4 0.0003 0.932 0.614 1.485 3.356 * 0.252 4569 
D5 −0.0003 0.98 −1.287 −1.016 −0.806 0.171 1895 
D6 −0.0002 0.995 −0.797 −0.579 −0.911 0.126 985 
D7 0.0006 0.999 3.682 * 1.307 2.145 * 0.023 348 

D1 + A7 −0.0102 −0.227 −16.555 * −15.260 * −20.989 * 0.595 32641
D2 + A7 −0.0103 0.512 −15.830 * −12.121 * −15.987 * 0.438 23381 
D3 + A7 −0.0098 0.852 −10.262 * −9.374 * −7.963 * 0.645 36696
D4 + A7 −0.0098 0.964 −18.084 * −12.563 * −16.646 * 0.333 18692 
D5 + A7 −0.0101 0.984 −23.363 * −10.236 * −15.233 * 0.275 16204 
D6 + A7 −0.0098 0.993 −25.500 * −8.628 * −11.843 * 0.244 15522 

Notes: * Indicates significant trend values at α = 5%; the most effective periodic components for trends 
are indicated in bold format. 
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Figure 9. The correlograms of A7 and each detail component with A7 decomposing from the monthly
streamflow series via DWT. The upper and lower solid lines represent the confidence intervals (95%
confidence level). (a) A7; (b) A7 + D1; (c) A7 + D2; (d) A7 + D3; (e) A7 + D4; (f) A7 + D5; (g) A7 + D6;
(h) A7 + D7.

In Table 4, the most effective periodic components vary from one MK test to another. The original
MK, MK1998 and MKDD tests indicate that D2 and D3; D7; D3 are responsible for the real trend in the
monthly mean streamflow, respectively. Based on further analysis of different details of D1–D6 and
the combination of D7 + A7, all three MK tests indicated that the MK Z value approached the MK Z
value of the original series only under the combination of D7 + A7 and D3, which means the D7 is
not the dominant periodic component for the trend. It is interesting to find that the total energy of the
detail components (D1–D7) and the approximation (A7) approach the energy of the original series; and
the highest energy of the periodic components is D3, as presented in Table 4. It also can be been that
the change of C0 was basically the same with the change of energy in detail component combinations.
D3 with A5, which has the highest energy, also has the highest C0 (0.645). In addition, two sequential
MK (the original MK and MKDD) graphs of the different periodic components with approximations
corresponding to the original series of the monthly mean streamflow are shown in Figure 10, in which
the trend line of D3 with A7 is most similar to the trend line of the original series. This evidence proves
that D3 is the dominant periodic component for the observed trend in the monthly mean streamflow.

4.3.2. Monthly Total Precipitation

As shown in Table 5, all of the original MK, MK1998 and MKDD tests suggest that D3 is the
dominant periodic component in affecting the trend of the monthly total precipitation series in Table 5.
The DW3 has the highest energy and C0, which corresponds with the results of the monthly mean

Figure 9. The correlograms of A7 and each detail component with A7 decomposing from the monthly
streamflow series via DWT. The upper and lower solid lines represent the confidence intervals
(95% confidence level). (a) A7; (b) A7 + D1; (c) A7 + D2; (d) A7 + D3; (e) A7 + D4; (f) A7 + D5;
(g) A7 + D6; (h) A7 + D7.

In Table 4, the most effective periodic components vary from one MK test to another. The original
MK, MK1998 and MKDD tests indicate that D2 and D3; D7; D3 are responsible for the real trend in the
monthly mean streamflow, respectively. Based on further analysis of different details of D1–D6 and
the combination of D7 + A7, all three MK tests indicated that the MK Z value approached the MK Z
value of the original series only under the combination of D7 + A7 and D3, which means the D7 is
not the dominant periodic component for the trend. It is interesting to find that the total energy of the
detail components (D1–D7) and the approximation (A7) approach the energy of the original series; and
the highest energy of the periodic components is D3, as presented in Table 4. It also can be been that
the change of C0 was basically the same with the change of energy in detail component combinations.
D3 with A5, which has the highest energy, also has the highest C0 (0.645). In addition, two sequential
MK (the original MK and MKDD) graphs of the different periodic components with approximations
corresponding to the original series of the monthly mean streamflow are shown in Figure 10, in which
the trend line of D3 with A7 is most similar to the trend line of the original series. This evidence proves
that D3 is the dominant periodic component for the observed trend in the monthly mean streamflow.

4.3.2. Monthly Total Precipitation

As shown in Table 5, all of the original MK, MK1998 and MKDD tests suggest that D3 is the
dominant periodic component in affecting the trend of the monthly total precipitation series in Table 5.
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The DW3 has the highest energy and C0, which corresponds with the results of the monthly mean
streamflow. Three sequential MK graphs of the different periodic components with respect to the
original series of the monthly total precipitation are shown in Figure 11, in which the trend line of
D3 with A6 is most similar to the trend line of the original series. It makes sense that D3 is the most
effective periodic component for the real trend seen in the monthly total precipitation. It is clear
that the dominant periodic components in the monthly precipitation and streamflow are consistent.
In addition, MK1998 and MKDD tests were not applicable in the trend examination of D5 due to
the negative values in the calculations of the correction factor cf which can result in incorrect results.
However, detailed are not explored in this study due to the relatively lesser impact on our results.
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Figure 10. Two sequential Mann-Kendall (MK and MKDD) graphs of monthly streamflow series
exhibiting the progressive trend lines of each detail component (with the addition of the approximation)
with respect to the original series. The upper and lower dashed lines represent the confidence limits
(α = 5%). (a) MK; (b) MKDD.

Table 5. Lag-one ACFs, Mann-Kendall values (three MK tests) and energy of monthly total precipitation
series: original data, details components (D1–D6), approximations (A6) and a set of combinations
of the details and their respective approximations. C0 is the correlation coefficients between the
decomposition combinations and the original series.

Series ACF MK MK1998 MKDD C0 Energy

Original 0.482 0.202 0.228 0.193 - 2,438,503
A6 0.999 ´9.241 * ´1.510 ´2.187 * 0.071 828,972
D1 ´0.626 0.317 0.692 0.526 0.434 305,735
D2 0.369 ´0.168 ´0.270 ´0.190 0.455 336,637
D3 0.852 0.325 0.385 0.313 0.716 840,561
D4 0.954 ´0.047 ´0.084 ´0.269 0.25 98,838
D5 0.987 ´1.789 enable enable 0.13 25,058
D6 0.997 0.682 0.465 0.696 0.08 12,201

D1 + A6 ´0.581 ´1.748 ´1.841 ´2.013 * 0.44 1,134,729
D2 + A6 0.385 ´1.042 ´0.938 ´0.986 0.461 1,168,091
D3 + A6 0.853 ´0.336 ´0.337 ´0.309 0.72 1,663,805
D4 + A6 0.958 ´1.512 ´0.899 ´1.581 0.26 928,184
D5 + A6 0.989 ´5.125 * ´1.716 ´2.319 * 0.148 854,880
D6 + A6 0.997 ´4.703 * ´1.178 ´1.892 0.108 839,865

Notes: * Indicates significant trend values at α = 5%; the most effective periotic components for trends are
indicated in bold format.
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Figure 11. Three sequential Mann-Kendall graphs of monthly total precipitation series exhibiting the
progressive trend lines of each detail component (with the addition of the approximation) with respect
to the original series. The upper and lower dashed lines represent the confidence limits (α = 5%).
(a) MK; (b) MK1998; (c) MKDD.

4.4. Decomposition and Analysis of Seasonal Data

The seasonal mean streamflow and total precipitation series were both decomposed into four
detail components and one approximation. D1, D2, D3 and D4 represent the 6-month, 12-month,
24-month and 48-month fluctuations, respectively. The A4 represents the approximation components at
the fourth level of decomposition. The D2 component in the seasonal series decomposition represents
the annual (12-month) periodicity which is very useful in confirming whether or not the annual cycles
can explain the trends found in the flow and the precipitation series.

4.4.1. Seasonal Mean Streamflow Series

In Table 6, the original MK, MK1998 and MKDD tests indicate that D1 and D2; D1; D1 are the
dominant periodic components in influencing the real trend in the seasonal mean streamflow series,
respectively. As shown in Table 6, the DW1 has the highest energy and C0 in the periodic components.
Three sequential MK graphs of the seasonal mean streamflow are presented in Figure 12, and the trend
line of D1 with A4 is most harmonious with the trend line of the original series. Obviously, D1 is the
most effective periodic component for the real trend observed in the seasonal streamflow series.
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Table 6. Lag-1 ACFs, Mann-Kendall values and energy of seasonal mean streamflow series: original
data, details components (D1–D4), approximations (A4) and a set of combinations of the details
and their respective approximations. C0 is the correlation coefficients between the decomposition
combinations and the original series.

Data ACF MK MK1998 MKDD C0 Energy

Original 0.065 ´7.624 * ´4.055 * ´3.188 * - 14,100
A4 0.969 ´17.946 * ´8.343 * ´16.597 * 0.313 4878
D1 ´0.359 1.5 0.772 0.571 0.765 6040
D2 0.205 0.56 0.993 0.677 0.449 2497
D3 0.745 0.044 0.1 0.059 0.246 491
D4 0.952 1.557 1.57 1.886 0.191 477

D1 + A4 ´0.131 ´6.562 * ´3.633 * ´2.651 * 0.822 11,032
D2 + A4 0.464 ´8.928 * ´8.132 * ´7.344 * 0.552 7293
D3 + A4 0.869 ´13.844 * ´7.722 * ´8.074 * 0.39 5462
D4 + A4 0.947 ´13.443 * ´9.512 * ´12.182 * 0.393 5036

Notes: * Indicates significant trend values at α = 5%; the most effective periotic components for trends are
indicated in bold format.
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Figure 12. Three sequential Mann-Kendall graphs of seasonal mean streamflow series exhibiting the
progressive trend lines of each detail component (with the addition of the approximation) with respect
to the original series. The upper and lower dashed lines represent the confidence limits (α = 5%).
(a) MK; (b) MK1998; (c) MKDD.

4.4.2. Seasonal Total Precipitation Series

As shown in Table 7, the original MK, MK1998 and MKDD tests indicate that D1 and D2; D1; D1
are the most influential components in affecting the real trend in the seasonal mean streamflow series,
respectively. The sequential MK analysis of the seasonal total precipitation is shown in Figure 13, the
trend line of D1 with A4 is most similar to the trend line of the original series. The original sequential
MK graph also argues that D2 is the most influential periodic component for the trend. As can be
seen in Table 7, the energy of D1 and D2 accounted for 17% and 33% of the total energy of the original
sequence, respectively, which accounted for most of the total energy of details (92%), and the higher
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C0 and energy indicate that D1 and D2 are probably the dominant periodicities. Further analysis was
conducted and results showed that the energy of D1 + D2 + A4 accounted for 96% of the energy of
the original series while the correlation coefficient C0 of D1 + D2 + A4 and the corresponding original
series was up to 0.961 (Table 7). The results from all three MK tests show that the MK values of the
D1 + D2 + A4 and the MK values of the original series are very close to each other. Apparently, D1 and
D2 are the dominant periodic component for the trend of the seasonal total precipitation. It is important
to say that the energy of the detail component combinations is a very important index to indicate the
most effective components. In addition, D2, which represented the annual (12-month) periodicity in
the seasonal time and was considered as the most dominant periodic component, t indicating that
annual cycles can explain the trends found in streamflow.

Table 7. Lag-one ACFs, Mann-Kendall values and energy of seasonal total precipitation series: original
data, details components (D1–D4), approximations (A4) and a set of combinations of the details
and their respective approximations. C0 is the correlation coefficients between the decomposition
combinations and the original series.

Data ACF MK MK1998 MKDD C0 Energy

Original ´0.051 0.168 0.086 0.067 - 600,926
A4 0.988 ´5.513 * ´1.902 ´3.115 * 0.11 277,514
D1 ´0.507 ´0.072 ´0.050 ´0.033 0.556 100,382
D2 0.055 ´0.143 ´1.107 ´0.955 0.783 196,786
D3 0.791 ´0.129 ´0.139 ´0.116 0.243 20,315
D4 0.948 ´0.446 ´0.479 ´0.542 0.116 4836

D1 + A4 ´0.445 ´1.106 ´0.727 ´0.501 0.567 376,755
D2 + A4 0.075 ´0.920 ´2.745 * ´4.076 * 0.79 475,719
D3 + A4 0.819 ´1.865 ´1.131 ´1.171 0.268 297,078
D4 + A4 0.959 ´3.744 * ´1.779 ´2.304 * 0.161 281,563

D1 + D2 + A4 ´0.126 0.05 0.025 0.019 0.961 578,056

Notes: * Indicates significant trend values at α = 5%; the most effective periotic components for trends are
indicated in bold format.
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Figure 13. Three sequential Mann-Kendall graphs of seasonal total precipitation series exhibiting the
progressive trend lines of each detail component (with the addition of the approximation) with respect
to the original series. The upper and lower dashed lines represent the confidence limits (α = 5%).
(a) MK; (b) MK1998; (c) MKDD.
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4.5. Decomposition and Analysis of Annual Aata

In order to obtain a more thorough trend analysis, the annual mean streamflow and total
precipitation time series were decomposed into four and five levels, respectively, which correspond
to 2-year, 4-year, 8-year and 16-year variations. The continuous wavelet transform (CWT) and the
global wavelet spectra (GWS) were also employed to analyze the annual data so as to explain its
time-frequency characteristics, perfectly.

4.5.1. Periodicities of Annual Streamflow and Precipitation Data

The CWT scalograms and the global wavelet spectra of the CWTs are shown in Figures 14 and 15
to illustrate the general periodic structure of the streamflow and precipitation time series. Light regions
on the scalogram plot and peaks in the GWS figure indicate the effective periodic events.

Water 2016, 8, x 25 of 33 

 

4.5.1. Periodicities of Annual Streamflow and Precipitation Data 

The CWT scalograms and the global wavelet spectra of the CWTs are shown in Figures 14 and 
15 to illustrate the general periodic structure of the streamflow and precipitation time series. Light 
regions on the scalogram plot and peaks in the GWS figure indicate the effective periodic events. 

Figure 14 indicates that an obvious periodic event occurred for the annual streamflow with 
decreased trends intensity as periods ranged from 7–14 years, 17–24 years and 4–5 years, separately. 
The major periodicities can be cataloged to decadal events, including the intense 10- and 10-year scale 
events with peaks of GSW figures. Periodic events do not possess an overall property, with its 
continuity ending in the late 1990s, which can be explained by intensive human activities that 
probably resulted in a significant decrease and cutoff of streamflow [7]. Moreover, Figure 15 
illustrated a decreased intensity of obvious periodic events for the annual precipitation as periods 
ranged from 25–30 years, 11–13 years, 4–5 years, 7–10 and 17–24 years, respectively. Similar to annual 
mean flow, the major periodicities of total precipitation are defined as decadal events, including the 
intense 28-year scale oscillation that is continues over time. 

 

(a) (b) 

Figure 14. Continuous wavelet spectrum (a) and global wavelet spectrum (b) of the annual mean 
streamflow series. 

(a) (b) 

Figure 15. Continuous wavelet spectrum (a) and global wavelet spectrum (b) of the annual total 
precipitation series.  

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
Year

5

10

15

20

25

30

S
ca

le
(s

),
y

ea
rs

0 4 8 12 16 20 24 28 32
0

1

2

3

M
a

g
ni

tu
de

Scale(s),years

0 4 8 12 16 20 24 28 32
0

2000

4000

6000

8000

10000

12000

M
ag

ni
tu

de

Scale(s),years

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
Year

5

10

15

20

25

30

S
ca

le
(s

),
y
ea

rs

Figure 14. Continuous wavelet spectrum (a) and global wavelet spectrum (b) of the annual mean
streamflow series.
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Figure 15. Continuous wavelet spectrum (a) and global wavelet spectrum (b) of the annual total
precipitation series.

Figure 14 indicates that an obvious periodic event occurred for the annual streamflow with
decreased trends intensity as periods ranged from 7–14 years, 17–24 years and 4–5 years, separately.
The major periodicities can be cataloged to decadal events, including the intense 10- and 10-year
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scale events with peaks of GSW figures. Periodic events do not possess an overall property, with
its continuity ending in the late 1990s, which can be explained by intensive human activities that
probably resulted in a significant decrease and cutoff of streamflow [7]. Moreover, Figure 15 illustrated
a decreased intensity of obvious periodic events for the annual precipitation as periods ranged from
25–30 years, 11–13 years, 4–5 years, 7–10 and 17–24 years, respectively. Similar to annual mean flow,
the major periodicities of total precipitation are defined as decadal events, including the intense 28-year
scale oscillation that is continues over time.

4.5.2. Annual Mean Streamflow Series

As shown in Table 8, the D1; D1,D3 and D4; D1 and D4 are the dominant periodic components
for the real trend in the annual mean streamflow suggested by the original MK, MK1998 and MKDD
test, respectively. D1 had the highest C0 as well as the highest energy which implied that D1 might
be the most influential periodic component for the trend. The sequential MK analysis of the annual
mean streamflow is exhibited in Figure 16, the trend line of D1 with A4 approaches to the trend line of
the original series, suggested by three MK tests. The sequential MK graphs tests also indicate that D3
(MK1998) and D4 (MK1998 and MKDD) could be the most effective periodic component for the trend
found in the annual mean streamflow series. The reason why the original sequential MK test does
not suggest that D4 is the dominant periodicity is that D4 with A4 has a very high autocorrelation
coefficient (see Table 8) (the presence of the positive autocorrelation will overestimate the significance
of trends). In addition, it is vital to note that decadal events are the major periodicities found in
the CWT and GWS, which makes sense that D3 and D4 represent the decadal events found in the
CWT figure and are the most effective periodic components. Therefore, D1, D3 and D4 are the most
dominant periodic components for the trend in the annual mean streamflow.

Table 8. Lag-one ACFs, Mann-Kendall values and energy of annual mean streamflow series: original
data, detail components (D1–D4), approximations (A4) and a set of combinations of the details and their
respective approximations. C0 is the correlation coefficients between the decomposition combinations
and the original series.

Data ACF MK MK1998 MKDD C0 Energy

Original 0.166 ´5.239 * ´5.239 * ´5.239* - 1528
A4 0.948 ´9.823 * ´5.058 * ´8.497* 0.6 1184
D1 ´0.618 0.145 0.208 0.151 0.562 220
D2 0.322 0.048 0.101 0.088 0.45 149
D3 0.818 ´0.805 ´0.882 ´1.295 0.252 18
D4 0.903 0.296 0.212 0.215 0.049 18

D1 + A4 0.18 ´5.831 * ´5.609 * ´4.645 * 0.827 1390
D2 + A4 0.653 ´6.877 * ´8.021 * ´7.182 * 0.753 1328
D3 + A4 0.937 ´8.791 * ´5.595 * ´10.864 * 0.629 1229
D4 + A4 0.915 ´10.925 * ´5.980 * ´5.717 * 0.631 1156

Notes: * Indicates significant trend values at α = 5%; the most effective periotic components for trends are
indicated in bold format.

4.5.3. Annual Total Precipitation Series

Based on previous trend analyses, MK1998 and MKDD effectively limited the influence of
autocorrelation series trend analyses. However, in the analysis of D1, D2, D1 with A5, and D2
with A5, MK1998 and MKDD tests were still not applicable to trend analyses because there were
negative values in the calculations of the correction factor cf (see Table 9). Further studies are needed
to improve the modified MK for complete autocorrelation structure on this issue, but this is not further
explored in this study.
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To avoid the compatibility issue that results from MK1998 and MKDD in the trend analysis of 
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Figure 16. Three sequential Mann-Kendall graphs of annual mean streamflow series exhibiting the
progressive trend lines of each detail component (with the addition of the approximation) with respect
to the original series. The upper and lower dashed lines represent the confidence limits (α = 5%).
(a) MK; (b) MK1998; (c) MKDD.

Table 9. Lag-one ACFs, Mann-Kendall values and energy of annual total precipitation: original data,
detail components (D1–D5), approximations (A5) and a set of combinations of the details and their
respective approximations. C0 is the correlation coefficients between the decomposition combinations
and the original series.

Data ACF MK MK1998 MKDD MKDD1 TFPW C0 Energy

Original ´0.266 ´0.902 ´1.286 ´1.344 ´1.196 ´0.984 - 10,820,675
A5 0.921 ´2.265 ´0.817 ´0.890 ´0.542 ´10.994 * ´0.182 9,977,842
D1 ´0.691 ´0.186 enable enable ´0.426 ´0.434 0.807 616,764
D2 0.27 ´0.103 enable enable ´0.079 ´0.379 0.493 208,741
D3 0.796 0.062 0.092 0.105 0.022 ´0.213 0.292 87,441
D4 0.938 ´0.778 ´0.529 ´0.836 ´0.162 ´2.072 0.201 17,038
D5 0.93 ´4.619 ´1.636 ´1.530 ´1.163 ´10.994 * 0.228 38,918

D1+A5 ´0.688 ´0.227 enable enable ´0.518 0.213 0.8 10,628,434
D2+A5 0.276 ´0.172 enable enable ´0.130 ´0.516 0.479 10,148,639
D3+A5 0.793 ´0.062 ´0.089 ´0.101 ´0.022 ´1.095 0.272 10,078,044
D4+A5 0.944 ´0.750 ´0.632 ´1.450 ´0.152 ´2.141 * 0.174 10,095,310
D5+A5 0.938 ´5.032 * ´1.834 ´1.723 ´1.299 ´10.994 * 0.222 9,718,913

Notes: * Indicates significant trend values at α = 5%; the most effective periotic components for trends are
indicated in bold format.

To avoid the compatibility issue that results from MK1998 and MKDD in the trend analysis of
D1 with A5 and D2 with D5, which may ignore that D1 and D2 are the possible dominant periodic
component for the trend found in the annual total precipitation, the MKDD1 and TFPW tests were
used to conduct trend examinations. As displayed in Table 9, the results of the MKDD1 and TFPW
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indicate that D1 with A5 and D2 with A5 are not the dominant periodic components. As discussed
above, the MKDD1 and TFPW tests are not overall powerful, therefore, they are not applied, to make
sure which detail component is the most effective periodic component for the observed trend.

The D4; D4 and D5; D4 and D5 are the dominant periodic components for the real trend of
the annual mean streamflow suggested by the original MK, MK1998, and MKDD, separately. The
sequential MK analysis of the annual total precipitation is presented in Figure 17, the trend line of D4
with A5 does not match well with the trend line of the original series. D4 has the lowest C0, which
also indicates that the difference of D4 with A5 and the original series is high. Therefore, D4 is not
considered to be the most effective component in influencing the trend. This also illustrates that when
analyzing the dominant periodic component for the trend, both MK values and their sequential MK
graph should be taken into consideration. In addition, MK1998 and MKDD also indicate that D5 is
the most effective periodic component for the trend found in the annual total precipitation series. It is
worth mentioning that the intense 28-year scale oscillation which is defined as a decadal event is found
in the CWT and GWS, which figures out that D5 represents the decadal events found in the CWT figure
and is the most influential periodic component. According to previous analysis, the combination of the
periodic component and respective approximation with higher energy has more significant impacts on
the trend of the observed series. From the results of trend assessment, D5 is the most effective periodic
component for the observed trend, but it has the lowest energy. This might be due to the fact that the
energy of A5 accounts for 92% of the energy of the annual total precipitation series while the energy of
the detail components only account for about 8% of the total energy. There is no big energy difference
among each detail component with A5. In this case, energy is no longer an important index to evaluate
the most effective periodic component for the observed trends. To sum up, D5 is the most dominant
periodic component for the trend in the total precipitation streamflow.
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Figure 17. Three sequential Mann-Kendall graphs of annual total precipitation series exhibiting the
progressive trend lines of each detail component (with the addition of the approximation) with respect
to the original series. The upper and lower dashed lines represent the confidence limits (α = 5%).
(a) MK; (b) MK1998; (c) MKDD.
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4.6. Factors Related to Precipitation and Streamflow Variations

Previous trend analysis indicated that there are no significant trends in precipitation, while
strong decreasing trends were found in streamflow. Precipitation variations have been closely
associated with the increasing global temperature and El Niño/Southern Oscillation (ENSO) [7,48,63].
Baddoo et al. (2015) [48] proved that ENSO events influenced precipitation in Huangfuchuan basin,
with El Niño corresponding to precipitation decline and La Niña to precipitation increment, with a
semiannual to annual lag. Global temperature has been increasing since the 1980s and the climate
aridity in Huangfuchuan basin has increased in the recent three decades [7]. It is found that the
combination of climate change and human activities has resulted in significant decreasing streamflow,
and intensive anthropogenic activities in the upper and middle reaches of the Yellow River basin, such
as reservoirs, agricultural irrigation and soil and water conservation measures, account for more of this
reduction [7,49,53,63]. Zhou et al. [7] found that the primary cause of streamflow reduction in
Huangfuchuan was attributed to water diversion for irrigation in 1979–1998, and soil conversation
measures in 1999–2006.

For the monthly, seasonal and annual mean streamflow series analysis, the common periodic
components that were found to be the most influential for the observed trends are 8 months, 6 months
and 2 years, as well as 8–16 years, separately. For the monthly, seasonal and annual total precipitation
series analysis, the common periodic components seen as the most influential for the observed trends
are 8 months, 6–12 months and 32 years, respectively. As can be seen, the different data types
produced pretty different conclusions in terms of the most dominant periodicities for observed trends.
The leading factors that impact the trends in the monthly and seasonal series in the Huangfuchuan
watershed are intra-annual cycles (6–12 months), which may be associated with strong seasonal and
annual cycles in the data. Studies indicated that shorter and discontinuous periodicities found in
streamflow are likely influenced by human activities [49,64]. Therefore, the intra-annual periodic
modes are also linked with anthropogenic activities. Inter-annual (2 and 8 years) and decadal
(16 and 32 years) periodicities can be seen as the most influential components for the observed
trends in annual series, and decadal events are the major periodicities. Baddoo et al. (2015) found
that the correlation between precipitation in Huangfuchuan and ENSO events is at the 2–7 year
periodicities. It is suggested that the effect of ENSO on precipitation will in turn affect the streamflow
activities [65]. Li and Yang (2005) [66] found a correlation between precipitation and solar activities
in the Yellow River basin at 9 and 11 years. The combination effects of solar activities and ENSO are
found at 18–32 years [67]. Here, inter-annual periodicities are likely related to 2–7 year ENSO events
and decadal periodic modes may be correlated to the combined effects of solar activities and ENSO
cycles. Overall, multiple factors (e.g., ENSO, solar activities) are influencing the periodicities identified
in precipitation and streamflow over the Huangfuchuan basin.

5. Conclusions and Recommendations

The wavelet transform and different MK tests were employed to investigate the possible trends
and the basic structure of the trends in the mean streamflow and total precipitation in Huangfuchuan
watershed. A comparative analysis of five different MK methods, including the original MK test and
the modified MK tests with lag-one and full serial correlation, showed that consideration of only lag-1
autocorrelation (for TFPW and MKDD1) is not sufficient to remove all significant serial correlation
in the data series. The results of the trend analysis also indicated the significant downward trends
in all monthly, seasonal and annual mean streamflow series, but weak upward trends in monthly
and seasonal total precipitation series and poor negative trends in the annual total precipitation
series. Precipitation variation in Huangfuchuan basin has been closely linked to ENSO events [48].
The combined effects of human activities and climate change account for the significant decreasing
streamflow, however, intensive anthropogenic activities are the major factors [7,27,49,53,68].

The modified MK tests (MK1998 and MKDD) that consider full serial correlation structure
performed better than the original MK and the modified test for lag-1 autocorrelation (TFPW and
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MKDD1), because significant autocorrelations exhibit for more than just one lag in most of the wavelet
decomposition components as well as for different combinations. But in the case that the slope β of the
trend approaches zero, the two modified MK tests are not robust even though the existing trend can be
approximated by linear trend. The original MK test performs worse when the ACF is high, as expected.
However, the original MK test is still powerful in the case that the slope β of the trend approaches zero
even though the ACFs of the series are extremely high (r > 0.9). Additionally, MK1998 and MKDD
tests are not applicable to the analysis of monthly and annual total precipitation series, and this can be
attributed to negative values of the correction factor cf. Further discussion is not explored here, since it
had little influence on this study. But future studies are needed to improve the modified MK, with
complete autocorrelation structure on this issue. In summary, this study suggests that the original MK
test and the modified MK test for full serial correlation structure should be applied together to better
analyze the trend in the hydrological time series and the wavelet decomposition components obtained
from DWT.

Three criteria were explored to determine the most appropriate smooth mother wavelet, the
decomposition levels and the extension mode in the DWT procedure. The result revealed that the
criterion Er based on the relative error of energy that is proposed in this study performed better in
comparison to the other two criteria, MAE and er. Additionally, the usage of Er is very convenient and
is not influenced by the method itself compared to er (the effect of er is influenced by the MK test).

In addition to the MK Z values and the sequential MK graphs, a new and powerful index, the
energy of the hydrological time series, was proposed and successfully utilized in this study to confirm
the dominant periodic components for the trends. Furthermore, this index is easy to apply and has few
limits. However, it is important to note that if there is no significant energy difference among different
detail components with respective approximation, energy is no longer the key index to indicate which
detail components are the most effective periodic component for the observed trend. Overall, from the
energy of the hydrological time series point of view, this not only provides a robust index to determine
which periodic component is the dominant periodic component for the trend, but also explores a new
way of analyzing the hydrologic time series.

Intra-annual periodicities (6–12 months) were found to be the most influential components in
producing the trends in monthly and seasonal series, which may be related to strong seasonal and
annual cycles in monthly and seasonal data and human activities [49,64]. In the CWT and GWS of the
annual series, the periodicities located between 2- and 4-year scales are seen, but the major periodicities
are decadal events. Inter-annual (2, 4 and 8 years) and decadal (16 and 32 years) periodicities found
in annual series are likely associated with 2–7-year ENSO cycles and the combination effects of
11-year solar activities and 2–7-year ENSO events, respectively [48,49,67]. Additionally, although
streamflow in the Huangfuchuan basin has been greatly influenced by human activities, the long-term
fluctuations (decadal events) exhibited in annual streamflow are still evident. This indicates that the
long-term fluctuations in streamflow are more influenced by climate variabilities (e.g., ENSO cycles,
solar activities). However, the combined effects of ENSO events and solar activities in streamflow have
not been extensively explored to date, especially in the yellow River basin. Thus, further studies could
incorporate some linkages between the streamflow and combined climatic variabilities. The above
findings will contribute to not only analyzing the trends in the hydrological time series, but also water
resource planning and management in the semi-arid or arid river watersheds of China.
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