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Abstract: Real-time correction models provide the possibility to reduce uncertainties in flood
prediction. However, most traditional techniques cannot accurately capture many sources of
uncertainty and provide a quantitative evaluation. To account for a wide variety of uncertainties in
flood forecasts and overcome the limitations of stationary samples in a changing climate, a Bayesian
theory based Self-adapting, Real-time Correction Model (BSRCM) was proposed. BSRCM uses
the Autoregressive Moving Average (ARMA (n, m)) model as the prior distribution for the flood
hydrograph, and the autoregressive model or order p (AR(p)) as the likelihood function to describe
the likelihood relationship between the predicted and observed discharges, on the basis the posterior
distribution of real values of discharge at any step can be deduced under the framework of Bayesian
theory. Combined with the Xin’anjiang hydrological model, it was applied for flood forecasting in
the Misai basin in southern China. Results from this study indicate that: (1) BSRCM can achieve a
good precision and perform better than AR(p) in the study region; (2) BSRCM provides not only
deterministic results but also rich uncertainty information for real-time correction results, such as the
mean, error variance, and confidence intervals of flow discharge at any time during the flood event;
(3) BSRCM can achieve better performance with a longer lead time; (4) BSRCM can achieve a good
precision even with a small sample for parameter estimates. In addition to good precision, BSRCM
can also provide further scientific grounding in flood control, operations and decision making for
risk management.

Keywords: Bayesian theory; real-time correction; flood forecast; self-adapting; Xin’anjiang model;
Misai basin

1. Introduction

Flood forecasts provide the technical support for reservoir operations and play an important role
in flood control [1–4]. Thus, the accuracy of real-time flood forecasts is the technical basis for flood
control decision-making. Recently, great progress has been made in flood forecast technology. However,
hydrological models used for flood forecasting, including lumped models such as TOPMODEL [5] and
distributed models such as TOPKAPI [6], are all approximations of the actual hydrologic processes
and may not fully describe the real processes; hence, many types of uncertainties in flood forecasting
inevitably exist, which produces biases in the forecasting results. Real-time correction techniques
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improve the forecast accuracy by reducing uncertainties in the prediction [7]. Since the development of
real-time correction theory, many real-time correction models, including autoregressive models [8,9],
Kalman filtering models [10–13], fuzzy models [14,15], and neural network models [16], etc., have
been developed. Recently, combined approaches, such as the combination of filtering and error
forecasting procedures, and the combination of forecasted errors with time series models and the
Kalman filter method [17–19], were developed for real-time correction, and demonstrated their ability
to provide improved results. Among these models, the auto-regressive and Kalman filtering models
are found to produce better results in real-time correction than others [7]. However, these two
models cannot quantitatively describe various possible uncertainties. With increasing demands
on flood risk management, research on the uncertainties of flood forecasts has become a hotspot.
To improve the accuracy of flood risks’ prediction and provide uncertainty information for risk-guided
decision-making, quantification of the possible uncertainties in real-time correction appear to be a
crucial issue. However, currently available approaches for real-time correction of flood forecasts cannot
adequately quantify the uncertainties.

The recent progress in probabilistic flood forecasting provides great opportunities for real-time
correction of flood forecasts with treatment of uncertainties. Probabilistic flood forecasting has become
important because of the need for quantitative estimation of uncertainties in forecasting results. Among
recent research progress, the Bayesian forecasting system [20–26] is a noteworthy approach, which
provides a comprehensive estimation of uncertainties using three main procedures, including the
separation of hydrological uncertainty and precipitation input uncertainty, estimating these two types
of uncertainties independently, and synthesizing the overall uncertainty according to the Bayesian
theory. In view of the advantage of Bayesian inference in uncertainty estimation, the Bayesian flood
forecast system provides a promising resolution for real-time correction.

Meanwhile, real-time correction methods take advantage of historical information to estimate
parameters whenever possible. The traditional methods can adapt well to basins with ample historical
data and long sample series. However, the runoff mechanisms of the natural watersheds could undergo
changes because of increasing human activities [27]. This change may cause inconsistencies between
historical sample series and current data. Thus, traditional real-time correction methods that depend
on the historical samples may suffer from certain negative influences and produce more uncertainties.

A promising technique to address these issues is the real-time correction approach for flood
forecasting that can capture and quantify the uncertainties and avoid the possible inconsistency
in historical information. Inspired by previous hydrological studies applying the Bayes’ theorem,
a Bayesian theory based Self-adapting Real-time Correction Model (BSRCM) was proposed in the
study. In the Bayesian theory framework, BSRCM adopts prior distributions to describe prior
information and likelihood functions to describe conditional distributions of discharge series, which is
a different approach from other pertinent studies. This study attempted to develop an autoregressive
real-time correction model based on the Bayesian theory for flood forecasting. The model can provide
quantitative evaluation of uncertainties and further improve the accuracy of real-time correction.
The paper is structured as follows. First, Section 2 presents the Bayesian theory based Self-adapting
Real-time Correction Model (BSRCM), the error autoregressive model and the hydrological model.
Second, Section 3 describes a case study in the Misai basin, a humid catchment in southeastern China.
In addition, the results and discussions of the application of BSRCM are provided in Sections 4 and 5
respectively. Finally, Section 6 summarizes the main conclusions drawn by the study.

2. Method

2.1. The BSRCM

Denote the starting time for the flood forecast as t, the observed streamflow before t as

X “ tx1, x2, ¨ ¨ ¨ , xtu, and the simulation of X as
"

X “

!

"
x 1,

"
x 2, ¨ ¨ ¨ ,

"
x t

)

. Meanwhile, denote the
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streamflow after t as S “ ts1, s2, ¨ ¨ ¨ , sKu and the simulation of S as
"

S “
!

"
s 1,

"
s 2, ¨ ¨ ¨ ,

"
s K

)

, where K is
the lead time. According to the Bayesian theory, the posterior distribution of forecasting variables can
be obtained under the condition that the prior distribution and likelihood function were known:

φk

´

sk

ˇ

ˇ

ˇ
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¯

“

fk

´
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s k |sk, Y

¯

gk psk |X q
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´8
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s k |sk, Y

¯

gk psk |X q dsk

(1)

where the probability density distribution, denoted as fk, is a likelihood function, gk is the prior
distribution, and φk is the posterior distribution.

In this study, the error Autoregressive model of order p (AR(p)) is used to describe the likelihood
relationship between the observed discharge and forecasted discharge. The Autoregressive Moving
Average model (ARMA(n, m) ) is used to describe the prior information of discharge. According to the
Bayesian theory, the posterior distribution of forecasting discharge at any time step can be deduced
and the real-time correction analysis can be conducted.

2.1.1. Prior Distribution

ARMA (n, m) is one of the most popular methods of time series analysis which can be used
to simulate time series in hydrologic forecast [28]. In this study, it is adopted to describe the prior
information about flooding in the study area with the assumption that the gauged discharge curve is
stationary during a specific period. The prediction or simulation variable sk can be expressed as:

sk “ µ` Ck∆XT ´OkΞk ` ηk (2)

where µ is the mean of X; ∆X “ tpxt´n`1 ´ µq , ¨ ¨ ¨ , pxt ´ µqu is departure series of X;
Ξk “

 

ξk,t´m`1, ¨ ¨ ¨ , ξk,t
(

is the m-dimensional residual error series at time t with lead time X; n is
the degree of auto-regression while m is the degree of moving average; Ck is the coefficient of ∆X
while OK is the coefficient of Ξk; supposing that the error series ηk are normally distributed—N

`

0, χ2
k
˘

,
and the prior distribution of sk is also normally distributed. Therefore, the distribution of sk can be
expressed as:

sk„N
´

µ` Ck∆XT ´OkΞT
k , χ2

k

¯

(3)

2.1.2. Likelihood Function

Based on the aforementioned method of error forecasting, an AR(k) model can be developed:

"
s k “ sk `ΘkYT ` εk (4)

where Y “ tyt´l`1, ..., ytu; Θk “
 

θk,l , ..., θk,l
(

are model parameters, l is the degree of model; εk is the
residual error series independent of sk and Y. Assuming that εk is normally distributed while its mean
is zero and the variance is δ2

k , the likelihood function of ŝk is normally distributed:

ŝk„N
´

sk `ΘkYT , δ2
k

¯

(5)

According to Equation (5), ŝk is normally distributed with mean sk `ΘkYT and variance δ2
k .

2.1.3. Posterior Distribution

After the prior distribution and likelihood function are determined, the posterior density function
can be obtained according to the Bayesian formula:

φkpsk |ŝk , X, Yq “
1
Tk

qp
sk ´ Ak ŝk ´Dk

Tk
q (6)
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with:

Ak “
χ2

k
χ2

k ` δ2
k

, Dk “
δ2

k pµ` Ck∆XT ´OkΞT
k q ´ χ2

KΘkYT

χ2
K ` δ2

K
, T2

k “
χ2

kδ2
k

χ2
k ` δ2

k

where Ak, Dk and Tk are corresponding intermediate variables.
Assuming q and Q are the density function and the distribution function of a standard normal

distribution, respectively, the corresponding posterior probability function Φk is:

Φkpsk |ŝk , X, Yq “ Qp
sk ´ Ak ŝk ´Dk

Tk
q (7)

2.2. Error Autoregressive Model (AR Model)

An error autoregressive model (AR model) is selected in the study for comparison with the
BSRCM. The basic principle of the AR (p) model is described as follows.

Using the self-correlation of the error series, the autoregressive model was developed by
incorporating the existing error series. The model can consider the stochastic disturbance elements
and further predict the errors. The model reads [29]:

H pjq “ ϕ1H pj´ 1q ` ϕ2H pj´ 2q ` ¨ ¨ ¨ ` ϕpH pj´ pq ` α pjq “
p
ÿ

i“1

ϕi H pj´ iq ` α pjq (8)

where j = 1, 2, . . . . . . , n, p > 0. Equation (8) is an autoregressive model of p order, namely AR(p).
The parameters ϕipi “ 1, 2, ¨ ¨ ¨ pq of this model can be obtained by the least square method. Generally,
the series of disturbance variable, α pjq, is independent white noise series. In addition, it is normally
distributed with a zero mean and a non-zero variance.

2.3. The Xin’anjiang Hydrological Model

Real-time correction models for flood forecast should be implemented by coupling with a
deterministic hydrological model. In this study, the Xin’anjiang model is used as the deterministic
model, which has been widely used in China since its development in 1973 [30–33]. The model is based
on the concept of saturation excess (Dunne) runoff formation mechanism, which means that runoff
would not occur until soil moisture reaches the field saturation. The study basin is divided into a set of
sub-basins. The outflow from each sub-basin is first simulated and then routed down the channels to
the basin outlet. The simulation of outflow from each sub-basin is consisted of four major parts:

(1) Evapotranspiration. It generates the deficit of soil storage which is divided into the upper, lower
and deep layers;

(2) Runoff production. It produces the runoff according to the rainfall and soil storage deficit;
(3) Runoff separation. It divides the total runoff into three components: surface, subsurface

and groundwater;
(4) Flow routing. It transfers the local runoff to the outlet of each sub-basin to form the outflow of

the sub-basin.

The flow chart of Xin’anjiang model is shown in Figure 1. All symbols inside the blocks are
variables, including inputs, outputs, state variables and internal variables, while those outside the
blocks are parameters.
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components, WU, WL, and WD, in the upper, lower and deep layer, respectively. 

The FR is the factor of runoff contributing area which is related to W. The rest of the symbols 
inside the blocks are all internal variables. RB is the direct runoff from impervious areas. R is the 
runoff produced from pervious areas and is divided into three components, i.e., RS, RI, and RG 
denoting surface runoff, interflow and groundwater runoff, respectively. These three components 
are further transferred into QS, QI, and QG and combined to form the total inflow to the channel 
network of the sub-basin. The outflow of the sub-basin is Q. 
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The watershed drains an area of 797 km2. It has a humid climate and the mean annual precipitation is 
about 1800 mm. There are one stream gauge and six rainfall gauging stations in the basin (Figure 2). 

Figure 1. Flow chart of the Xin’anjiang model.

The inputs to the model are areal mean rainfall, P, and measured pan evaporation, EM. The outputs
are the discharge, TQ, from the whole basin and the actual evapotranspiration, E, which includes three
components, EU, EL and ED. The state variables are the areal mean tension water storage, W, and the
areal mean free water storage, S. The areal mean tension water W has three components, WU, WL, and
WD, in the upper, lower and deep layer, respectively.

The FR is the factor of runoff contributing area which is related to W. The rest of the symbols
inside the blocks are all internal variables. RB is the direct runoff from impervious areas. R is the runoff
produced from pervious areas and is divided into three components, i.e., RS, RI, and RG denoting
surface runoff, interflow and groundwater runoff, respectively. These three components are further
transferred into QS, QI, and QG and combined to form the total inflow to the channel network of the
sub-basin. The outflow of the sub-basin is Q.

The attributes outside the blocks in Figure 1 are all parameters. K is the ratio of potential
evapotranspiration to pan evaporation if pan evaporation measurements are used as input. WM and B
are two parameters describing the tension water distribution. WM is the areal mean tension water
capacity which has three components, UM, LM and DM. B is the exponent of the tension water capacity
distribution curve. IM is the factor of impervious area. SM and EX are similar to WM and B while they
describe the free water capacity distribution. KI and KG are coefficients related to RI and RG. CI, CG,
L, CS, KE and XE are parameters for flow routing.

3. Case Study

3.1. Study Basin

The Misai Basin (118.0˝ E and 29.10˝ N) located in southeastern China is selected for this study.
The watershed drains an area of 797 km2. It has a humid climate and the mean annual precipitation is
about 1800 mm. There are one stream gauge and six rainfall gauging stations in the basin (Figure 2).
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observed precipitation and discharge are shorter than 1 hour, while the network density of rainfall 
gauging stations is about 1 per 130 km2. Nine flood events of the Misai basin were selected for 
examining the BSRCM. The first five events were used to calibrate the Xin’anjiang model while the 
remaining four were for validation. 

The structure of BSRCM is described by Equations (1)–(7) and the main procedures of BSRCM 
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Figure 2. The distribution of gauging stations, river network and DEM of the Misai basin.

3.2. Model Implementation

The observed precipitation of the six rainfall gauging stations shown in Figure 2 and observed
streamflow discharge at the Misai station were used in the simulation. The time intervals of the
observed precipitation and discharge are shorter than 1 hour, while the network density of rainfall
gauging stations is about 1 per 130 km2. Nine flood events of the Misai basin were selected for
examining the BSRCM. The first five events were used to calibrate the Xin’anjiang model while the
remaining four were for validation.

The structure of BSRCM is described by Equations (1)–(7) and the main procedures of BSRCM are
as follows: (a) at time step t, the residual error series of the observed and forecast flows by Xin’anjiang
model for the previous t-1 steps are used to determine the AR(2) model, on the basis, the parameters of
the likelihood function can be obtained; Similarly, the parameters of prior distribution can be obtained
by Equation (3), while the parameters Ak, Dk and Tk in Equation (7) and the posterior distribution
of real discharge at time step t can be deduced; (b) According to the posterior distribution of real
discharge at time step t, the 50% quantile can be obtained as the corrected results of time step t; (c) at
time step t+1; Similarly, the parameters Ak, Dk and Tk and the posterior distribution of real discharge
at time step t+1 will be updated by the “ new information ” of observed discharge at the time step t;
(d) According to the posterior distribution of real discharge at time step t+1, the 50% quantile can be
obtained as the corrected results of time step t+1; (e) and by this analogy, the corrected results of any
moment can be obtained.

4. Results

4.1. Lead Time of One Hour

4.1.1. Model Parameters

According to the flood forecasting results by the Xin’anjiang model, the real-time correction model
activates at one third of the whole flood event duration. Initial model parameters of nine flood events
can be estimated, which are shown in Table 1.
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Table 1. Parameters estimation results at starting time.

Flood Total
Duration

Starting Time
(h) of the Flood

Duration (h)
Ck Ok X θ1 θ2 χ AK DK TK

1 192 64 0.97 ´0.02 101.47 ´0.02 0.97 72.19 0.66 66.40 58.82
2 99 33 1.02 ´0.22 78.95 ´0.22 1.02 79.17 0.50 745.00 55.90
3 141 47 0.96 ´0.08 57.65 ´0.08 0.96 33.13 0.75 ´25.08 28.72
4 165 55 0.96 0.02 85.49 0.02 0.96 61.85 0.66 26.66 50.11
5 132 44 1.03 ´0.42 35.86 ´0.42 1.03 24.62 0.68 299.53 20.30
6 156 52 0.95 ´0.04 32.71 ´0.04 0.95 30.21 0.54 68.67 22.19
7 192 64 1.01 ´0.08 16.79 ´0.08 1.01 12.65 0.64 84.02 10.10
8 207 69 0.93 0.06 93.94 0.06 0.93 66.55 0.67 63.07 54.30
9 144 48 0.98 0.00 94.35 0.00 0.98 67.87 0.66 429.18 55.10

During the BSRCM model runs, the model parameters update in real-time. When the forecasting
discharge is obtained at the next step, the corresponding error is automatically added into the sample
used to estimate the parameters of BSRCM. Using the “new information” of the error sample, the
BSRCM parameters can be updated at the new time step.

4.1.2. Comparisons

The statistical results of the two models (namely, AR(p) model and BSRCM), including flood peak
errors, relative errors of flood volume, the coefficient of determination, and flood peak lag time, are
listed in Table 2.

Table 2. Statistical results of AR(p) model and BSRCM (50% quantile is treated as the corrected result
of BSRCM).

Flood

Relative Error of
Flood Volume

Error
BSRCM/AR(2)

Relative Error of
Flood Peak

BSRCM/AR (2)

Coefficient of
Determination

BSRCM/AR
(2)/Xin’anjiang Model

Flood Peak Lag Time
BSRCM/AR

(2)/Xin’anjiang Model

1 0.05 0.02 0.16 0.09 0.99 0.96 0.91 1 1 1
2 0.04 0.18 ´0.01 ´0.01 0.98 0.98 0.89 0 0 ´1
3 0.09 0.21 0.02 0.02 0.97 0.85 0.74 ´1 ´1 ´1
4 0.02 0.14 0.01 ´0.14 0.99 0.89 0.88 0 0 0
5 0.10 ´0.02 0.10 ´0.04 0.99 0.98 0.94 1 1 1
6 0.06 0.15 0.01 0.06 0.99 0.95 0.6 0 0 ´1
7 0.08 0.16 0.06 0.01 0.99 0.95 0.75 0 0 0
8 ´0.02 0.07 ´0.02 ´0.10 0.99 0.98 0.9 0 1 1
9 0.04 ´0.12 0.01 ´0.14 0.98 0.9 0.91 0 0 1

Note: In this study, the results of BSRCM is the 50% quantile of posterior distribution of real values of flow
discharge at the corresponding moment.

Because BSRCM can generate posterior distribution of real values of flow discharge at every time
step, the uncertainty of the results can be quantified. In this study, the 50% quantile is regarded as the
value of real-time correction at the corresponding moment and is used to make a comparison with the
results of the AR(2) and Xin’anjiang model. According to Table 2, it is noted that the two real-time
correction models both improve the precision of flood forecasting while the BSRCM performs better
than the AR(2). The coefficient of determination of the nine floods is over 0.95 by the BSRCM while, for
four floods predicted by AR(2), it is over 0.95. The relative errors of flood volume and peak discharge
of nine floods simulated by the BSRCM are less than those by the AR(2) model. In addition, the results
of flood peak lag time simulated by BSRCM are less than those by the AR(2) model.
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(1) Flood hygrograph comparison

Flood events are named according to their starting dates with the flood ID in the format
YYYYMMDD. The first four digits denote the year, the middle two the month, and the last two
the day, respectively. Taking the flood 19820619 as an example, the observed and simulated results
by the three models are compared in Figure 3. It indicates that BSRCM predictions could match the
observation better than AR(2) predictions.
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(2) Quantile and confidence interval results by BSRCM

The BSRCM provides not only the correction mean results, but also the uncertainty information
about corrected results, such as the corresponding quantile of a specific probability, confidence interval
of different confidence levels, posterior density and distribution of discharge at any time. Figure 4
shows the 90% confidence interval of the flood 19860707. The 5%Q denotes forecasted hydrograph of
5% quantile, while 95%Q denotes the forecasted starting hydrograph of 95% quantile, and thus the
zone between the two lines is the 90% confidence interval.
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Figure 4. The correction results and 90% confidence interval of flood 19820619.

(3) Posterior density and posterior distribution of flood peak correction results

As mentioned above, posterior density and posterior distribution of flood peak correction result
can be obtained. According to the posterior distribution, the uncertainty information can be analyzed
straightforwardly. Taking flood 19820619 as an example, Figure 5 shows the Posterior distribution
and density of the peak of the flood 19820619. According to the posterior distribution and density of
this flood peak, the uncertainty information, such as the mean of peak discharge, the corresponding
quantile of any probability, confidence interval of different confidence levels, error variance, and
variable coefficient can be obtained.
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Figure 5. (a) Posterior distribution of peak discharge of flood 19820619; (b) Density of peak discharge
of flood 19820619.

4.2. Lead Time n > 1 h

4.2.1. Statistical Analysis of Correction Results with Different Lead Times

Table 3 lists the statistical correction results of all flood events with five different lead times.
Results show that the deterministic coefficients of real-time correction show a decreasing trend along
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with the increase of lead time. All deterministic coefficients are greater than 0.90 except for the flood
event 19830529 with a lead time n = 5 hour. It indicates that the BSRCM can produce good real-time
correction results for flood forecasting even with long lead times.

Table 3. Deterministic coefficients of nine floods with the condition of different lead times.

Flood ID
Lead Time (h) 1 2 3 4 5

19820619 0.99 0.98 0.97 0.96 0.93
19830529 0.98 0.95 0.93 0.91 0.85
19830614 0.97 0.98 0.98 0.97 0.94
19830620 0.99 0.99 0.98 0.94 0.96
19840402 0.99 0.98 0.98 0.99 0.99
19850703 0.99 0.98 0.97 0.95 0.91
19860704 0.99 0.98 0.99 0.96 0.98
19870620 0.99 0.98 0.96 0.95 0.92
19880621 0.98 0.95 0.93 0.90 0.93

4.2.2. Flood Hygrographs of Different Lead Times

Figure 6 shows the flood hygrograph of real-time correction for the flood event 19820619. Results
show that the real-time correction results of different lead times have the larger biases during the
initial running period of the BSRCM. The biases become smaller with the model forecast, and further
approach the “observed value”. It suggests that the BSRCM can achieve a good performance using
“new information” automatically.
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Figure 6. Real-time correction results of flood 19820619 by BSRCM. The legend “1 h” denotes the
correction flood hydrograph when lead time n = 1 h, and so forth.

Figure 7 is the flood hygrograph of 90% confidence interval of real-time correction results with the
lead time n > 1 h. The range of confidence intervals gets wider the extension of lead time. It indicates
that the uncertainty of real-time correction gets larger with a greater lead time.
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5. Discussion

5.1. Parameters and Error Varying with Time Step

According to the flood hygrograph of real-time correction and observation, the error of real-time
correction is relatively large at the beginning of a model run, but the error tends to decrease with time.
The reason for this is examined by revisiting the proposed BSRCM. At the beginning of the model run,
the size of sample used to estimate model parameters is too small, which could lead to uncertainty in
the parameters’ estimation. This uncertainty could be reduced as the modeling continues because the
size of the historical sample becomes larger, i.e., the prior information continuously increases.

It is found that AK, DK and TK are the key parameters which determine the posterior distribution
of real-time correction; hence, determining the final results of real-time correction. The variation
process of AK, DK and TK during the real-time correction of a flood forecast are demonstrated in
Figures 8–10. It can be found that the posterior distributions of these three parameters have a tendency
to be more stationary over time with the increasing historical information.
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The variation of the error and the parameters (AK, DK and TK) as a function of the lead time
from one to five hours is shown in Figures 11–15. It indicates that the error of real-time correction
reduces with simulation time, and the corrected results approach the observed discharge values closely.
Taking Figure 11 as an example, in the early stages of the real-time correction, the real-time correction
error is large and reaches almost ´300. By T = 20 h, the real-time correction error rapidly reduces and
approaches zero. When T > 20 h, the real-time correction error essentially equals zero and is stable
over time. The other three cases also indicate the similar behaviors of the error.

Water 2016, 8, 75 12 of 16 

 

 
Figure 9. Variation of DK for different forecast lead times during real-time correction of a flood 
forecast. 

 
Figure 10. Variation of TK for different forecast lead times during real-time correction of a flood 
forecast. 

The variation of the error and the parameters (AK, DK and TK) as a function of the lead time from 
one to five hours is shown in Figures 11–15. It indicates that the error of real-time correction reduces 
with simulation time, and the corrected results approach the observed discharge values closely. 
Taking Figure 11 as an example, in the early stages of the real-time correction, the real-time 
correction error is large and reaches almost −300. By T = 20 h, the real-time correction error rapidly 
reduces and approaches zero. When T > 20 h, the real-time correction error essentially equals zero 
and is stable over time. The other three cases also indicate the similar behaviors of the error. 

 
Figure 11. Forecast lead time n = 1. Figure 11. Forecast lead time n = 1.



Water 2016, 8, 75 13 of 16

Water 2016, 8, 75 13 of 16 

 

 
Figure 12. Forecast lead time n = 2. 

 
Figure 13. Forecast lead time n = 3. 

 
Figure 14. Forecast lead time n = 4. 

 
Figure 15. Forecast lead time n = 5. 

  

Figure 12. Forecast lead time n = 2.

Water 2016, 8, 75 13 of 16 

 

 
Figure 12. Forecast lead time n = 2. 

 
Figure 13. Forecast lead time n = 3. 

 
Figure 14. Forecast lead time n = 4. 

 
Figure 15. Forecast lead time n = 5. 

  

Figure 13. Forecast lead time n = 3.

Water 2016, 8, 75 13 of 16 

 

 
Figure 12. Forecast lead time n = 2. 

 
Figure 13. Forecast lead time n = 3. 

 
Figure 14. Forecast lead time n = 4. 

 
Figure 15. Forecast lead time n = 5. 

  

Figure 14. Forecast lead time n = 4.

Water 2016, 8, 75 13 of 16 

 

 
Figure 12. Forecast lead time n = 2. 

 
Figure 13. Forecast lead time n = 3. 

 
Figure 14. Forecast lead time n = 4. 

 
Figure 15. Forecast lead time n = 5. 

  

Figure 15. Forecast lead time n = 5.



Water 2016, 8, 75 14 of 16

5.2. Selection of Model Start-Up Period

Clearly, the selection of the model start-up time will affect the correction results of the BSRCM. If
the starting time is too early, the uncertainties of parameters at the initial period will be large due to the
small size of the sample. The uncertainties will further affect the precision of the BSRCM. In addition,
if the start running time of BSRCM is too late, the most important flood peak which is significant for
flood control and operation may be missed. Hence, how to select the starting time of the BSRCM is
crucial. To address this question, a comparison was made among different starting times, including
one third, one fourth, one fifth, one sixth of the duration of the entire flood event to the real-time
correction of a flood event. Taking the flood event 19820619 as an example, the statistical results for
five lead times (n = 1, 2 . . . . . . , 5 h), are listed in the Table 4.

Table 4. Statistical correction results of different starting time.

Forecast Lead
Time (h)

Starting
Time

Relative Error
of Flood

Volume (%)

Relative Error
of Peak

Discharge (%)

Error of Flood
Peak Time (h)

Deterministic
Coefficient

1
One third
of flood
duration

´0.01 ´0.02 1 0.99
2 0.01 ´0.08 1 0.98
3 0.01 ´0.08 1 0.97
4 0.03 ´0.16 1 0.96
5 0.04 ´0.22 1 0.93

1
One

fourth of
flood

duration

´0.01 ´0.02 1 0.99
2 ´0.01 ´0.08 1 0.98
3 0.01 ´0.08 1 0.96
4 0.02 ´0.16 1 0.95
5 0.05 ´0.22 1 0.92

1
One fifth
of flood
duration

0.01 0.01 1 0.99
2 ´0.01 0.01 1 0.97
3 ´0.02 ´0.08 1 0.95
4 0.01 ´0.16 1 0.95
5 0.01 ´0.19 1 0.93

1
One sixth
of flood
duration

´0.01 0.01 1 0.98
2 ´0.02 0.01 1 0.93
3 0.01 ´0.08 1 0.95
4 0.05 ´0.16 1 0.93
5 0.01 ´0.19 1 0.88

Results of Table 4 indicate that, with all four starting times, the BSRCM can achieve good precision.
In contrast to statistical correction results of different starting times, it seems that the selection of model
starting times plays an insignificant role in the accuracy of the real-time correction. The influence of
different starting times tends to decrease over time, the BSRCM will quickly go into a stationary period
to obtain a good effect of real-time correction.

6. Conclusions

In this study, a new approach for flood forecasting, BSRCM, was proposed and applied to a humid
basin in southeastern China coupled with the Xin’anjiang hydrological model. Based on the modeling
study, the following conclusions can be drawn:

(1) The BSRCM can increase the precision of flood forecasting and perform well in real-time
correction. Results of simulations for nine floods in the Misai basin indicate that, according
to the analysis of the determination coefficient, and relative errors of flood volume and flood
peak, the BSRCM performed well in the real-time correction and better than the AR(p) model.
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(2) The BSRCM provides not only deterministic results but also rich uncertainty information for
the forecasting results. The new model can generate the posterior distribution of discharge at
any time during the entire flood period. Therefore, the uncertainty information of forecasting
results, such as the mean, error variance, variable coefficient, quantile of a specific probability and
confidence interval of different confidence levels, can be determined. The uncertainty information
could provide more technical support to the local flood control agencies.

(3) The BSRCM can achieve good performance with longer lead times. Through the comparisons of
the lead time from one to five hours, it was found that the posterior distributions of the three
parameters, AK, DK and TK, tend to be more stationary over time with increasing historical
information, and the BSRCM with different lead times can predict good results.

As a result, the real-time correction with the BSRCM in this study not only produces high
accuracy but also provides rich uncertainty information of real-time correction results. Because the
risk evaluations for flood control and operations are based on an uncertainty analysis of forecasts, the
BSRCM can provide further scientific grounding for flood control and risk-based decision making.
Furthermore, since the BSRCM only depends on information for forecasting floods before the starting
point but does not depend on that of other historical floods in parameter estimation, it is suitable for
real-time correction of flood forecasting under the background of climate change and human activity.
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