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Abstract: Partitioning Scheme (PS) is one of the strategies that could play a constructive role in
improving the performance of conceptual rainfall–runoff (CRR) models. The main objective of this
paper is to develop a Rainfall Runoff-Partitioning Scheme (RR-PS) with the ability of distinguishing
different flow regimes in a basin and simulating each regime separately. The model utilizes a
combination of PS and “regular” procedures and is equipped with Fuzzy C-Means (FCM) and
Seasonal Partitioning (SP) to recognize different flow regimes. In addition, to avoid excessive
increase of the model parameters caused by PS, sensitivity analysis is used to recognize the sensitive
parameters. The PS part of integrated model is only run for the “sensitive” parameters and the
“regular” part of model is implemented for the “less-sensitive” parameters. Data from three different
scale basins in USA and Iran are used to evaluate the models. A HBV-Light (Hydrologiska Byråns
Vattenbalansavdelning-Light model) based CRR model (Improved HBV- IHBV) is developed in
FORTRAN (Formula Translation) with several modifications for testing the procedures. The results
show that in all cases IHBV-based models using PS method perform better than the regular IHBV
model. Overall, IHBV-SP demonstrates better performance than the other PS based models. Further
improvement is reached by adopting user-defined seasons in IHBV-SP through optimization.

Keywords: partitioning scheme; HBV-light; fuzzy C-means; sensitivity analysis; seasonal partitioning

1. Introduction

Population growth, industrialization, and climate change are three factors, among others, that
impose both quantitative and qualitative limits on available water resources. For these reasons,
policy makers and researchers are, more than ever, in need of effective strategies for managing
water resources; an objective that requires appropriate decision support systems, including modeling
tools [1]. Conceptual rainfall-runoff (CRR) models have a wide range of applications, including
extending streamflow records [2,3], designing and operating water resources systems [4], real-time
flood forecasting [5], estimating flows of ungagged catchments [3], and predicting the effects of
land-use [6] and climate change [7]. These models, with varying degrees of abstraction, attempt to
simulate complex hydrological processes [8]. The CRR models are popular among hydrologists because
of their intuitive representation of physical processes and the aggregation of spatial variability over
catchments, which make them much less complex than a physically-based alternative [9]. In addition,
unlike data-driven models, CRR models can predict situations that have not been observed in the
past [10]. According to Straten and Keesman [11], the parameters in the conceptual models, commonly
refer to a collection of aggregated processes covering sub-processes that cannot be represented
separately or explicitly. Therefore, it is of high significance to determine the parameters precisely;
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otherwise, the results of the model may be inaccurate and in some cases misleading. In recent years,
many efforts have been made to identify, measure and reduce the uncertainty of parameters in CRR
models. For example, in many studies multi-objective approach is deployed to reduce uncertainty
in the parameter estimation [12–14], in some papers attempts have also been made to estimate the
uncertainty parameter using methods such as the Generalize Likelihood Uncertainty Estimation
(GLUE) and Sequential Uncertainty Fitting Procedure (SUFI) [15–19]. Furthermore, in several other
studies, hybridization methods by combining hydrologic predictions from multiple competing models
are applied to overcome the model structural uncertainty [20–22].

In order to identify the optimal parameters in rainfall-runoff models, a large number of attempts
have been done to improve the calibration methods (for more information, see [23–25]). However,
sometimes the complexities of response surfaces may cause these methods to be trapped in local
optima [26]. Moreover, in calibration process, finding one set of parameters in different streamflow
regimes is usually complicated and uncertain [27,28]. This is due to the low frequency of high flows
that results in low flows having a relatively excessive weight [29]. An alternative method, which is
a possible answer to this challenge, is to use different simulations for different streamflow regimes;
a strategy called Partitioning Scheme in rainfall–runoff models (RR-PS) [30,31]. In RR-PS models,
input data are divided into convenient groups based on predefined objective or subjective criteria,
then the parameters are separately calibrated for each group. Wagener et al. [30] state that PS can be
performed based on hydrologist’s experience and hydrological understanding from model structure
and catchment conditions or can be performed using tools to find similar characteristics in the model’s
input data. The partitioning based on experience and hydrological understanding is restricted because
it is subjective and depends on the personal judgment of hydrologist. On the other hand, the most
common objective methods are data clustering analysis and seasonal partitioning.

Partitioning based on clustering is an unsupervised learning method where the data are grouped
according to their common characteristics. Several methods have been proposed for clustering data [32]
but of all the algorithms, Fuzzy C-means (FCM) is the most widely used method [17]. FCM has also
been used to develop hydrologic models [17,33,34]. In FCM, fuzzy sets are used for clustering the
data. Therefore, each data point can be considered as belongings to several groups with different fuzzy
memberships at the same time [35].

Seasonal Partitioning (SP) is another method used by several researchers for improving
rainfall-runoff models. In SP, data clustering is done based on seasonal definition and assigning
each data point to each defined season with considering date of the data point. Fleming and
Neary [36] showed that when basin response is seasonal and nonlinear, parameters calibration based
on each season can improve the results of the model. Nilsson et al. [37] showed that the outputs of a
rainfall–runoff model based on Artificial Neural Network (ANN) are more precise if seasonality indices
through the oscillation of sine and cosine curves are added to the inputs of the model. Garbrecht [38]
also investigated the performance of seasonality index in the rainfall–runoff model developed by ANN
and concluded that a model gives better results if trained for each month separately rather than being
trained for all months without any separation.

However, it is worthy of notice that in all partitioning scheme models, the number of parameters
or the number of model runs increases significantly. This increase of the model parameters is in
contradiction to the principle of parsimony and causes the curse of dimensionality in the calibration
process [12,39]. Although RR-PS have been discussed in some papers [17,33,36], no comparison has
been made among different PS methods to indicate which ones perform better.

The present study aims at evaluating the role of RR-PS methods in enhancing the
performance of rainfall–runoff models. For this purpose, a HBV-Light (Hydrologiska Byråns
Vattenbalansavdelning-Light model) based lumped CRR model (Improved HBV-IHBV) is developed
in FORTRAN (Formula Translation) programming language with several modifications for testing the
procedures. In this investigation, FCM analysis and SP method are used for partitioning model’s input
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data based on different basin streamflow regimes. Daily data from three different scale basins in USA
and Iran are used to evaluate the models.

2. Improved HBV Model Description

The HBV conceptual model was initially introduced by Bergstrom in 1976 and has since been
used for hydrological simulations, predictions, and water balance studies in more than 30 countries
with a wide variety of climates [40]. The HBV model, with a simple and robust structure and a low
number of parameters, attempts to cover the most important basin processes that contribute to basin
runoff [41]. As shown in Figure 1, in the HBV model, daily discharge is estimated using daily rainfall,
air temperature, and the monthly long-term mean potential evaporation [42]. In this model, the
simulation of snowmelt flow is carried out using a simple degree-day method while considering snow
refreezing and snow hold.
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The HBV-Light model version 3.0.0.2, developed by the Geography Department of Zurich
University [43,44], carries out the calibration process using Monte-Carlo simulation and Genetic
Algorithm. The model is available to the public from University of Zurich (UZH) website [44]. In the
present study, researchers have replaced the existing calibration methods with the Shuffle Complex
Evolution (SCE) algorithm introduced by Duan et al. [23]. SCE is preferred because it combines the
strengths of controlled random search (CRS) algorithms with competitive evolution, and thus proves
itself robust, effective, and efficient for a broad class of problems [45]. In the HBV-Light structure that
is described in UZH [44], the model does not consider overland flow and estimates snowmelt through
a simple degree-day equation. In order to be more compliant with catchment conditions in arid and/or
semi-arid regions, some modifications are made on the original HBV-Light structure. In improved
HBV (IHBV), overland flow (the dashed line in Figure 1) is calculated by the Green-Ampt infiltration
equation (Equation (1)) [46] and snowmelt is estimated using a modified degree-day equation as
shown by Equation (2). In this Equation, degree-day factor (Cf max) is a key parameter that varies by
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several variables such as air temperature, elevation, snow albedo, solar radiation and so on [47,48].
Thus, the term egamaˆpT–Ttq is added to simulate the effect of air temperature fluctuations on the
degree-day factor.

F “ Ks ˆ p1`
ψ∆θ
SM

q (1)

Melt “ C fmax ˆ egamaˆpT´Ttq ˆ pT´ Ttq (2)

where F is the infiltration rate (mm/day), ψ the wetting front matric potential (mm), ∆θ the change
in volumetric moisture content across the wetting front (mm/mm) and SM is soil moisture (mm). In
addition, Melt is snowmelt (mm/day) and T is the air temperature.

The range and the description of the remaining parameters in IHBV are shown in Table 1.
Because the HBV-Light source code was not available, the authors have developed the IHBV
model in FORTRAN. Further information on HBV and its applications can be found in related
references [41,49–51].

Table 1. The parameters of IHBV model.

Parameter Description Unit Range

Snow Routine:
Tt Threshold Temperature [˝C] ´2.0–3.0
Cfmax Degree-Day factor [mm/(˝C day)] 0.0–10.0
SFCF Snowfall correction factor [-] 0.5–1.5
CFR Refreezing coefficient [-] 0.0–1.0
CWH Water holding capacity [-] 0.0–6.0
gama Correction factor [-] 0.0–0.5

Soil Routine:
Ks Conductivity coefficient [mm/day] 0.0–200
ns =ψ∆θ [mm] 0.1–0.6
FC Maximum of soil moisture (SM) [mm] 0.1–900.0
cep Evaporation correction factor [-] 0.0–1.0
beta Shape coefficient [-] 0.0–7.5

LP Threshold for reduction of
evaporation (SM/FC)

[-] 0.0–1.0

Response Routine:
SUmax Threshold for Kin-outflow [mm] 5.0–1000.0
Perc Maximal flow from upper to lower box [mm/day] 0.0–15.0
Kin Recession coefficient (Upper storage) [1/day] 0.0–10.0
Kgw Recession coefficient 1 (Lower storage) [1/day] 0.0–0.2
Kbf Recession coefficient 2 (Lower storage) [1/day] 0.0–0.2
MaxBas Routing, length of weighting function [day] 1.0–10.0

3. Methodology

As noted above, using partitioning scheme in rainfall–runoff models (RR-PS) is a procedure which
helps calibrate the model for various streamflow regimes. In the following sections, FCM clustering
and SP techniques are explained.

3.1. Clustering Analysis FCM

Cluster analysis using the FCM was initially proposed by Bezdek [35]. This method develops
a fuzzy partition providing a degree of membership (µFi) pertinent to each input data point xj to a
given cluster Fi. The main advantage of FCM over other clustering methods is that it is less likely
to be affected by local minima because it makes soft decisions using membership functions [17]. In
FCM method, the membership value of each data point is obtained based on its distance from each
cluster centroid. In other words, the membership value of each data point increases the closer it is
to the centroid of a cluster [35]. Several indices are proposed to determine the number of optimum
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clusters [52–54]. The most important of these indices are Partition Index (SC) and Separation Index
(S) suggested by Bensaid et al. [53]. SC is the ratio of compactness to separation for each cluster c
(Equation (3)) and S index shows separation strength among clusters (Equation (4)):
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where µik is the degree of membership of data point xk in cluster c, and v is the cluster centroid. n and
ni are the number of data points and the members in each cluster, respectively. A lower value of SC
and S indicates a better partition. It is worthy of mention that neither of the two indices are perfect and
trustable. Therefore, the number of optimum clusters obtained from these indices have to be checked
through the final results of the application where the clustering technique was applied [55] or must
be checked against knowledge of the previous records of the dataset. However, there is no general
agreement about choosing the number of optimum clusters [17].

3.2. Seasonal Partitioning (SP) Scheme

The SP is a simple method that can be used for partitioning of input data. In this method, different
seasons are defined and the whole modeling period is divided according to these seasons. Then, each
input data point is assigned to a season based on its time of occurrence. The starting and ending
dates of each season is important for proper parameter calibration. Traditionally, these dates are taken
according to the calendar, however, since they vary by geographical and climatological conditions,
more precise figures are obtained through calibration.

Thus, in defining seasons, the starting time of the first season and the ending date of the other
seasons, except for the last season, must be calibrated similar to other model parameters. Therefore,
in SP method with n seasons, one needs to calibrate n additional parameters as compared to the
FCM, which could be a drawback of SP, especially in problems with large number of seasons. These
parameters include beginning time of the first season (Tsea1) and duration of the first to (n ´ 1)th
season (Lsea1 to Lsean´1) as shown in Figure 2.
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3.3. Model Preparation Process

The first step in developing a PS based CRR model is the data separation by either FCM or SP
method. In the second step, the model parameters are distinctly defined for each partition. However, as
we proceed with partitioning, a problem regarding the growing number of model parameters appears.
For example, in a model with n partitions (n clusters or n seasons), the number of parameters becomes
n or n+ times the number of parameters in a non-partition model. In order to avoid this problem, we
categorized all the model parameters as “sensitive” and “less-sensitive” using a sensitivity analysis.
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According to Figure 3, “sensitive” parameters are those that have high impact on the model output
and therefore must be calibrated carefully and separately for each season. Similarly, “less-sensitive”
parameters have lower impact on the outputs and do not require seasonally separate calibration.
Following this procedure, we can reduce the number of model parameters in which otherwise could
cause runtime and dimensionality problems.
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In this research, an improved HBV model (i.e., IHBV) is used to evaluate the proposed procedures.
Then, three data partitioning methods are developed and investigated: (1) the FCM analysis of
precipitation and temperature input data (PT); (2) FCM analysis of the selection of extended input
data (IS); and (3) Seasonal partitioning (SP). Moreover, the SCE algorithm used in this paper employs
two complexes and 35 points in each complex with 3500 iterations and uses the NSE index as the
objective function.

4. Study Areas

To calibrate and verify the developed model, three basins in different scales were considered as
the study cases. The geophysical and climatological characteristics of these three basins are given in
Table 2. Ajichai and Lighvan are the largest and smallest basins of the study, respectively. They are
part of larger Urmia Lake basin and are located in Eastern Azerbaijan Province, northwest of Iran
(Figure 4a).

Ajichai, which is the main river in Ajichai basin, originates from the southern slopes of Mount
Sabalan and, after receiving other branches, drains into Lake Urmia. Lighvan basin originates from
the northern slopes of Mount Sahand and its main river is Lighvanchai that joins up with Barichai
River at the outlet of the basin (just before Lighvan gage). These basins are located adjacent to each
other in a cold and semi-humid climate with dominant snow precipitation during winter months.
Therefore, snow melting effectively and significantly contributes to the annual streamflow. The third
basin, also with dominant snowfall, is the North Fork Gunnison River near Somerset in Colorado, USA
(Figure 4b). It is designated with a hydrologic unit number of 14020004.

Hydroclimatological data includes precipitation, temperature, evaporation and outlet streamflow.
Available data for the required duration (see Table 2) for Ajichai and Lighvan basins are taken from
Iran Meteorological Organization and Iran Water Resources Management Company. For North Fork,
they are obtained from U.S. MOPEX dataset [56].
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Table 2. Geophysical and climatological characteristics of the basins.

Description Basin Name

Ajichai Lighvan North Fork

Locations Urmia Basin, East
Azerbaijan, Iran

Urmia Basin, East
Azerbaijan, Iran

North Fork Gunnison
River, CO, USA

Latitude 37˝45’–38˝19’ N 37˝45’–37˝50’ N 38˝42’–39˝15’ N
Longitude 46˝48’–47˝52’ E 46˝25’–46˝26’ E 107˝05’–107˝41’ W
Minimum Altitude 1513 2140 1914
Maximum Altitude 3832 3620 3976
Area, km2 5660.0 76.5 1362.3
Annual Precipitation, mm 410.8 396.1 674.6
Annual Runoff, mm 25.5 329.4 278.3
Annual Pot. Evaporation, mm 988.9 1201.8 1015.7
Mean Annual Temperature, ˝C 8.2 6.9 4.1
Data Period 1 Oct 1999–30 Sep 2012 1 Oct 1979–30 Sep 2006 1 Oct 1948–30 Sep 2002
Calibration Period 1 Oct 1999–30 Sep 2008 1 Oct 1979–30 Sep 1998 1 Oct 1948–31 Dec 1990
Validation Period 1 Oct 2008–30 Sep 2012 1 Oct 1999–30 Sep 2006 1 Jan 1991–30 Sep 2002

5. Results and Discussions

In order to evaluate the results, six goodness of fit indices are used as described in Table 3.
Nash–Sutcliffe Efficiency (NSE) [57], Root Mean Square Error (RMSE), and Coefficient of Determination
(R2) are common indices in evaluating the goodness of fit for rainfall–runoff outputs. However, they
lack the ability to correctly evaluate some specific characteristics of the output hydrographs that are of
interest for most hydrologists, such as the accuracy of estimates in peak flows.
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Table 3. Goodness of fit indices to compare the results.

Name Equation Range

1 Nash-Sutcliffe Efficiency NSE “ 1´
N
ř

i“1
pQi

obs ´Qi
simq

2
{

N
ř

i“1
pQi

obs ´Qobsq
2 -8 To 1

2 Root Mean Square Error RMSE “

d

1
N

N
ř

i“1

`

Qi
obs ´Qi

sim

˘2 0 To +8

3 Peak-Weighted
Root Mean Square Error RMSE´ PW “

d

1
N

N
ř

i“1

pQi
obs `Qobsq

p2Qobsq
pQi

obs ´Qi
simq

2 0 To +8

4 High Flow Weighted NSE
NSE´ HF “ 1´

N
ř

i“1

”

WHFi ˆ pQi
obs ´Qi

simq
2
ı

N
ř

i“1
pQi

obs ´Qobsq
2

WHFi “
Qi

obs `Qobs

2Qobs

-8 To 1

5 Low Flow Weighted NSE
NSE´ LF “ 1´

N
ř

i“1

”

WLFi ˆ pQi
obs ´Qi

simq
2
ı

N
ř

i“1
pQi

obs ´Qobsq
2

WLFi “
pQmin

obs ´QobsqpQi
obs ´Qobsq

2QobspQmax
obs ´Qobsq

` 1

-8 To 1

6 Determination Coefficient R2 “

»

—

—

—

—

–

N
ř

i“1
pQi

obs ´Qobsq ˆ pQi
sim ´Qsimq

d

T
ř

i“1
pQi

obs ´Qobsq
2 ˆ

d

T
ř

t“1
pQi

sim ´Qsimq
2

fi

ffi

ffi

ffi

ffi

fl

2

0 To 1

Note: Qi
obs,Q

i
sim,

–
Qobs,

–
Qsim, QMin

obs and QMax
obs are the observed flow, simulated flow, average flow, average

simulated flow and the smallest and the largest observed flow in the period, respectively.

Although NSE index has been criticized for imposing more weight on higher flows through
its quadratic function [58], it cannot evaluate the condition of peak flows independently. Thus,
Scharffenberg and Fleming [59] suggested the peak-weighted root mean square error (RMSE-PW) as a
single error index for assessing peak flows. However, similar to other error-based indices, RMSE-PW
suffers from scale dependency and therefore is not suitable by itself for fitness evaluation. Therefore,
we suggest High-Flow and Low-Flow Weighted NSE indices (NSE-HF and NSE-LF) for peak and low
flow evaluations. These indices are NSE based with similar range. Linearly distributed weights are
used to calculate the RMSE-PW and NSE-HF indices for high flows. Thus, for flows greater than the
mean observed streamflow, weights greater than 1.0 are used in calculating these indices. Whereas,
for flows equal to or less than the observed mean, linearly distributed weights between 1.0 and 0.5
are applied. Similarly, in calculating NSE-LF indices for low flows, linearly distributed weights more
than 1.0 are used for flows that are equal to or less than the mean observed streamflow. Furthermore,
linearly distributed weights between 1.0 and 0.5 are applied for flows equal to or more than the mean
observed streamflow.

5.1. Sensitivity Analysis Results

Sensitivity analysis describes the impact of variation in the model parameters on the model
outputs. To perform this analysis, initially the range of each parameter is determined. Then, the model
is executed using an initial set of parameters, which is used as the benchmark for comparison. Next,
by keeping other parameters at the initial level, the value of each particular parameter is varied from
its lower band (zero percent) to the upper band (100 percent) using increments of five percent. Finally,
using the NSE index as the objective function, difference between the current and the initial objective
function (∆OF) is obtained.
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As illustrated in Figure 5, the sensitive parameters in each basin are not quite the same. Therefore,
sensitive and less-sensitive parameters are separately defined for each basin.
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In addition, Figure 5 shows that FC, Kbf and Kperc are common sensitive parameters in all three
basins, beta is common in two basins, and each of SFCF, CFmax, TT, and LP are identified as sensitive
only in one basin. The sensitivity analysis reveals that sensitive parameters may vary from one basin
to another due to hydro-climatic condition of each basin. For example in the North Fork, snowmelt
related parameters are more sensitive, while in Lighvan and Ajichai infiltration and temperature
parameters are more important.

In order to efficiently run the RR-PS model, the first five sensitive parameters are selected for
partitioning (i.e., PS part) while the remaining thirteen less-sensitive parameters are excluded from
partitioning and are used in the “regular” part of the model as shown in Figure 3.

5.2. Data Partitioning Through FCM and SP

As noted earlier, the inputs of FCM are selected in two ways. The first method works based
on input data selection (IS). In IS, in addition to the model input data, which are temperature and
precipitation, initially accumulatively lagged temperature and precipitation data are also investigate
using linear correlation between these parameters and the observed streamflow in each basin.

The optimum lag is then determined for the maximum correlation coefficient for each variable.
The results show that the 148-day accumulative temperature data and the 69-day accumulative
precipitation data (Tacc148 and Pacc69) in Ajichai, Pacc69 in Lighvan and Pacc219 in North Fork with
maximum correlation coefficients are most suitable to be used in the model.

In the second method, FCM analysis is applied using only two inputs, precipitation and
temperature data. In the next step, we need to determine the best number of clusters. Figure 6
shows that using S and SC indices, the best number of clusters for all basins is in the range of 2 to 4. To
determine the exact number of clusters, the RR-PS model is run with FCM-IS and FCM-PT and for 2, 3,
and 4 clusters. The results, as reported in Table 4, reveal that based on both calibration and test NSE
indices, in general the most appropriate response is provided by 3 clusters.
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Table 4. Comparison of Nash-Sutcliffe Efficiency (NSE) indices of HBV model.

Clusters FCMMethod
Calibration NSE Test NSE

Ajichai Lighvan North
Fork Ajichai Lighvan North Fork

2 IS 0.42 0.67 0.81 0.58 0.13 0.87
2 PT 0.51 0.68 0.83 0.49 0.39 0.87
3 IS 0.52 0.68 0.82 0.58 0.44 0.85
3 PT 0.58 0.64 0.85 0.53 0.41 0.89
4 IS 0.57 0.68 0.80 0.31 0.41 0.85
4 PT 0.54 0.67 0.87 0.57 0.34 0.87

Next, the results show that IHBV-SP equipped by user-defined seasons as compared to calendar
based season length, has improved NSE index by 35.0%, 9.0%, and 1.2% in calibration period and by
1.5%, 35.0%, and 4.0% in test period for Ajichai, Lighvan and North Fork basins, respectively. It should
be noted that the descriptive parameters of user-defined seasons are determined in the calibration
process. For example, assuming the calendar year, the calibration results indicate that the first season
starts on Day 27, 48, and 56 in Ajichai, Lighvan, and North Fork basins, respectively. Similarly, the
length of first season is found to be 78, 71, and 72 days and that of fourth season is found as 88, 95, and
115 days for Ajichai, Lighvan, and North Fork, respectively. As observable, the starting date of the
first season as well as the length of each season varies from one basin to another. This could be due to
different climatic conditions in each basin. Figure 7 shows that according to our applications there is in
fact an inverse correlation between the length of the starting date and the mean daily temperature of
basins. As can be seen in Figure 7, basins with the lower mean temperature have later starting dates
for the first season. For example, in North Fork basin, with the lowest mean daily temperature (4.1 ˝C),
the starting date of the first season is latest among all (the 56th day of the year); while in Ajichai basin
with a mean daily temperature of 8.2 ˝C, the first season starts on the 27th day of the year. This shows
that cold weather is a determining factor in specifying the start of the first season.
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5.3. Comparison of Results

The results in all the three basins are evaluated by the indices stipulated in Table 3. The evaluations
show that despite the fact that partitioning scheme (IHBV-SP, IHBV-IS and IHBV-PT) complicates the
problem by increasing the number of model parameters, in overall it improves the model results. It is
worth mentioning that these findings are in accordance with the literature [60].

As observable from Table 5, except in Ajichai where IHBV has the worst result during the
calibration period, HBV-Light is the weakest among all for the other two basins during the same
period, and for all the three basins during the test period. In addition, RMSE-PW, NSE-HF, and
NSE-LF indices demonstrate that HBV-Light has been the weakest model in both high and low flows.
Therefore, the improved version (i.e., IHBV) shows better performance than the original HBV-Light
model. Moreover, in all cases, partition-based models perform better than either of the HBV-Light
or IHBV models. On the other hand, the results obtained in Ajichai and Lighvan basins show that
IHBV-SP has been the most powerful of all the investigated models.

Table 5. Comparison of results for all the basins.

Evaluation
Index

Ajichai Lighvan North Fork

HBV-Light IHBV IHBV-IS IHBV-PT IHBV-SP HBV-Light IHBV IHBV-IS IHBV-PT IHBV-SP HBV-Light IHBV IHBV-IS IHBV-PT IHBV-SP

I. Calibration Period

NSE 0.56 0.42 0.52 0.60 0.73 0.57 0.66 0.68 0.64 0.72 0.76 0.79 0.82 0.85 0.83
RMSE 0.12 0.13 0.12 0.11 0.09 0.67 0.59 0.58 0.61 0.54 0.66 0.62 0.57 0.53 0.56
RMSE-PW 0.30 0.35 0.34 0.27 0.22 0.90 0.81 0.81 0.87 0.76 1.16 1.05 0.98 0.88 1.00
NSE-HFW ´1.88 ´3.02 -2.65 -1.38 ´0.50 0.22 0.37 0.37 0.28 0.44 0.27 0.40 0.47 0.57 0.45
NSE-LFW 0.63 0.51 0.60 0.65 0.77 0.63 0.71 0.73 0.70 0.76 0.80 0.82 0.85 0.86 0.85
R2 0.57 0.42 0.52 0.60 0.73 0.63 0.67 0.70 0.66 0.73 0.76 0.79 0.82 0.85 0.83

II. Test Period

NSE 0.33 0.42 0.56 0.58 0.65 0.28 0.36 0.44 0.41 0.50 0.83 0.85 0.85 0.89 0.87
RMSE 0.12 0.11 0.09 0.09 0.08 0.76 0.71 0.67 0.68 0.63 0.56 0.51 0.51 0.45 0.48
RMSE-PW 0.23 0.19 0.16 0.18 0.15 0.89 0.88 0.85 0.84 0.80 1.01 0.88 0.87 0.74 0.86
NSE-HFW ´1.57 -0.91 ´0.31 ´0.71 ´0.17 0.00 0.02 0.10 0.10 0.20 0.44 0.57 0.58 0.69 0.59
NSE-LFW 0.42 0.48 0.61 0.65 0.69 0.32 0.41 0.49 0.46 0.54 0.86 0.87 0.87 0.90 0.89
R2 0.35 0.43 0.57 0.60 0.66 0.60 0.53 0.60 0.57 0.62 0.83 0.85 0.85 0.89 0.87

The bold and underlined values indicate the best and the worst values, respectively.

The most improvement by partitioning was obtained in Ajichai basin. In this basin, seasonal
partitioning enhanced the amount of NSE, NSE-HF, and NSE-LF indices by 0.23, 0.74, and 0.21
increments, respectively. The performance of IHBV-SP in Lighvan was also better than the other
models in both periods. In North Fork, IHBV-PT had the best performance, which could be due to
better matching of the defined clusters with the streamflow. However, among the RR-PSs, IHBV-IS
shows the weakest performance, which is probably due to utilizing linear correlation as input selection
tool. Since the relationship between inputs and the output of a model is not always linear, the linear
correlation cannot always make the right choices in the model input selection process (see also [61]).

Figure 8 illustrates a comparison between the results of FCM or SP and the observed streamflow
at each basin. As observable from Figure 8c, clusters 1 and 3 (cls-1 and cls-3) match low flows and high
flows in North Fork very well, while cls-2 mostly matches middle flows and local peaks. However, as
it can be seen from Figure 8a,b the clusters in Ajichai and Lighvan are unable to catch the observed
streamflow states as well as they did in North Fork. Therefore, two input based clustering methods,
i.e. IHBV-PT and IHBV-IS, show weaker performances in these two basins than the seasonally based
IHBV-SP method. Meanwhile, IHBV-SP has been able to provide a good seasonal separation in each of
the three basins. Figure 8d–f show that in the test period, middle to high flows mostly occur in seasons
4 and 1, while low to middle flows occur in seasons 2, 3 and 4. This clear separation helps IHBV-SP to
have a more precise partitioning and consequently a better model performance.

Figure 9 compares the scatterplots of the results by IHBV and the most suitable model in each
basin during the test period. The dashed red line with a slope 1 (i.e., Y = X) shows where the perfect
estimation occurs (with zero error). This graph is also used to detect the possible trends in the model
outputs. In other words, it can reveal which models underestimate or overestimate the streamflow
throughout the observed data range. The other lines are fitted using the outputs of the models as
indicated below each figure. According to Figure 9, all the developed models have underestimated the
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peak flows to some degrees. In Lighvan, the fitted lines of both models (i.e., IHBV and IHBV-SP) are
very close to the line with slope 1.

Water 2016, 8, 63 12 of 17 

 

This clear separation helps IHBV-SP to have a more precise partitioning and consequently a better 
model performance. 

 

Figure 8. Comparison of different clustering levels in (a) Ajichai; (b) Lighvan; and (c) North Fork; and 
comparison of IHBV-SP results with the observed flow in (d) Ajichai; (e) Lighvan; and (f) North Fork in 
test period. 

Figure 9 compares the scatterplots of the results by IHBV and the most suitable model in each 
basin during the test period. The dashed red line with a slope 1 (i.e., Y = X) shows where the perfect 
estimation occurs (with zero error). This graph is also used to detect the possible trends in the model 
outputs. In other words, it can reveal which models underestimate or overestimate the streamflow 
throughout the observed data range. The other lines are fitted using the outputs of the models as 
indicated below each figure. According to Figure 9, all the developed models have underestimated 
the peak flows to some degrees. In Lighvan, the fitted lines of both models (i.e., IHBV and IHBV-SP) 
are very close to the line with slope 1. 

However, the predictions are widely scattered and far from the observed data. In Ajichai 
(Figure 9a), the model predictions are more tilted downward showing a strong underestimation 
trend. However, it shows that IHBV-SP has significantly improved the results. Moreover, as can be 
seen in Figure 9c, in North Fork both IHBV-PT and IHBV models underestimate the peak 
streamflow with similar performance but less scattered as compared to the other two basins. 
However, PS models based on FCM analysis (IHBV-PT and IHBV-IS) require partitioning of new 
input data in each run. While in SP method no addition analysis other than defining the seasons is 
required. Nevertheless, as mentioned above, the FCM methods are useful when the model input 

Figure 8. Comparison of different clustering levels in (a) Ajichai; (b) Lighvan; and (c) North Fork; and
comparison of IHBV-SP results with the observed flow in (d) Ajichai; (e) Lighvan; and (f) North Fork
in test period.

Water 2016, 8, 63 13 of 17 

 

data are suitable for partitioning. On the other hand, for the cases where seasonal variations are 
important, partitioning based on seasons (i.e., SP) would help to improve the model outputs. In 
general, partitioning is only useful if there exists a grouping-based behavior within the system.  

 

Figure 9. The scatterplots of the results by IHBV and the most suitable model during the test period 
and in: (a) Ajichai; (b) Lighvan; and (c) North Fork. 

Another method to evaluate the performance of the CRR models is the assessment of behavior 
of residuals. Based on maximum likelihood theory, the model residuals must have a mean of zero 
and constant variance (i.e., homoscedasticity) [62,63]. Figure 10 shows the models’ residuals relative 
to the predicted discharge during the test period for each basin.  

 

Figure 10. Scattergrams of residuals during test period: (a) Ajichai; (b) Lighvan; and (c) North Fork. 

To clarify the behavior of residuals, x-axis is defined logarithmically. By comparing the 
scattergram of IHBV-IS, IHBV-PT, and IHBV-SP with IHBV, it becomes clear that residuals in all of 
the models are distributed around zero, although it is not possible to make an explicit judgement 
about homoscedasticity in the residuals of each RR-PS model. Therefore, it is preferred that 
homoscedasticity of residuals of each model be tested by the non-parametric Kruskal–Wallis H-test 
as it follows [64]. 

2

1

12
3( 1)

( 1)

k
i

i i

R
H n

n n n=

= − +
+   (5)

where n is the length of time series, k is the number of classes determined by user, ni is number of 
residuals located in ith class and Ri is the sum of the ranks occupied by the ni residuals of the ith 

Figure 9. The scatterplots of the results by IHBV and the most suitable model during the test period
and in: (a) Ajichai; (b) Lighvan; and (c) North Fork.



Water 2016, 8, 63 13 of 17

However, the predictions are widely scattered and far from the observed data. In Ajichai
(Figure 9a), the model predictions are more tilted downward showing a strong underestimation
trend. However, it shows that IHBV-SP has significantly improved the results. Moreover, as can be
seen in Figure 9c, in North Fork both IHBV-PT and IHBV models underestimate the peak streamflow
with similar performance but less scattered as compared to the other two basins. However, PS models
based on FCM analysis (IHBV-PT and IHBV-IS) require partitioning of new input data in each run.
While in SP method no addition analysis other than defining the seasons is required. Nevertheless, as
mentioned above, the FCM methods are useful when the model input data are suitable for partitioning.
On the other hand, for the cases where seasonal variations are important, partitioning based on seasons
(i.e., SP) would help to improve the model outputs. In general, partitioning is only useful if there exists
a grouping-based behavior within the system.

Another method to evaluate the performance of the CRR models is the assessment of behavior of
residuals. Based on maximum likelihood theory, the model residuals must have a mean of zero and
constant variance (i.e., homoscedasticity) [62,63]. Figure 10 shows the models’ residuals relative to the
predicted discharge during the test period for each basin.
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To clarify the behavior of residuals, x-axis is defined logarithmically. By comparing the scattergram
of IHBV-IS, IHBV-PT, and IHBV-SP with IHBV, it becomes clear that residuals in all of the models
are distributed around zero, although it is not possible to make an explicit judgement about
homoscedasticity in the residuals of each RR-PS model. Therefore, it is preferred that homoscedasticity
of residuals of each model be tested by the non-parametric Kruskal–Wallis H-test as it follows [64].

H “
12

npn` 1q

k
ÿ

i“1

R2
i

ni
´ 3pn` 1q (5)

where n is the length of time series, k is the number of classes determined by user, ni is number
of residuals located in ith class and Ri is the sum of the ranks occupied by the ni residuals of the
ith sample. When ni > 5, the sampling distribution of the H-statistic is fitted approximately by the
chi-square distribution with k´1 degrees of freedom. In this test, the acceptance of null hypothesis
confirms that k independent random samples come from the same population with similar variance,
which is an indication of homoscedasticity.
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If H is smaller than the chi-square value with given significance level α and k´1 degrees of
freedom, then the null hypothesis is accepted. Table 6 illustrates that with α = 0.05, the null hypothesis
for IHBV-SP with k = 5 in Ajichai, and IHBV-SP and IHBV-PT with k = 3 in North Fork basins, would
be accepted, proving homoscedasticity in errors. This means that these models, in comparison with
IHBV and IHBV-IS, are able to remove the tendency of residuals.

Table 6. The value of H-test for residuals of the models.

Basin K χ2
1´α,k´1

H-test

IHBV IHBV-IS IHBV-PT IHBV-SP

Ajichai 5 9.49 134.0 138.4 56.4 8.0
Lighvan 5 9.49 546.4 547.1 484.8 662.8
North Fork 3 5.99 20.3 33.5 1.4 1.0

The bold values indicate where the null hypothesis is accepted.

However, homoscedasticity in Lighvan basin for all four models with k = 5 as well as for k = 3, 4,
6, and 7 would be rejected but later cases are not shown here to save space.

Finally, the computational time, using a computer with Intel Core i5-520M processor 2.40 GHZ, in
all of the studied models seems reasonably short. For example, the computational time of IHBV-SP
for North Fork with the largest number of model parameters (i.e., 38 parameters) and the longest
calibration period (15,706 days) is 2280 seconds for 3500 iterations, which is the maximum model
execution time among all models and basins. Conversely, the computational time of HBV-Light model
with the least number of parameters (15 parameters) for Ajichai basins is 160 seconds, which is the
minimum among all. Moreover, the application of IHBV model in Ajichai basin with 19 parameters
and with a calibration period of 3287 days, takes only 284 seconds for 3500 iterations. Although the
computational time in these models is not too long, it is still possible to reduce it significantly using
other state-of-the-art optimization methods such as Surrogate-Enhanced Evolutionary Annealing
Simplex Algorithm (SEEAS) or Melody Search (MeS) algorithms [65,66].

6. Conclusions

This paper demonstrated the application of an improved conceptual model (i.e., IHBV) along
with partitioning scheme to minimize the streamflow prediction errors. To avoid excessive increase of
the model parameters, sensitivity analysis was used to identify sensitive and less-sensitive parameters.
Then, only sensitive parameters were used in the partitioning module and less-sensitive parameters
were calibrated using the regular method with the whole data. Furthermore, the application of three
partitioning methods including a seasonal partitioning (IHBV-SP) and two input data partitioning
by Fuzzy C-Means (i.e., IHBV-IS and IHBV-PT) along with the simple IHBV model were investigated
and compared. The results show that among developed models, IHBV-SP had the best performance
in Ajichai and Lighvan while IHBV-PT performed better in North Fork. IHBV-IS had the weakest
performance among all the partitioning methods, which could partly be due to shortcomings of the
linear correlation based input data selection method.

Moreover, complementary analysis on model residuals showed that they have a mean near
zero. In addition, the application of Kruskal–Wallis H-test proved the homoscedasticity for IHBV-SP
with k = 5 in Ajichai, and IHBV-SP and IHBV-PT with k = 3 in North Fork basins. However, the
homoscedasticity condition in Lighvan basin was not evidenced.
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