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Abstract: This study aims at predicting the Standard Precipitation Index (SPI) drought class
transitions in Portugal, considering the influence of the North Atlantic Oscillation (NAO) as one of the
main large-scale atmospheric drivers of precipitation and drought fields across the Western European
and Mediterranean areas. Log-linear modeling of the drought class transition probabilities on three
temporal steps (dimensions) was used in an SPI time series of six- and 12-month time scales (SPI6 and
SPI12) obtained from Global Precipitation Climatology Centre (GPCC) precipitation datasets with
1.0 degree of spatial resolution for 10 grid points over Portugal and a length of 112 years (1902–2014).
The aim was to model two monthly transitions of SPI drought classes under the influence of the NAO
index in its negative and positive phase in order to obtain improvements in the predictions relative to
the modeling not including the NAO index. The ratios (odds ratio) between transitional probabilities
and their confidence intervals were computed in order to estimate the probability of one drought
class transition over another. The prediction results produced by the model with the forcing of NAO
were compared with the results produced by the same model without that forcing, using skill scores
computed for the entire time series length. Overall results have shown good prediction performance,
ranging from 73% to 76% in the percentage of corrects (PC) and 56%–62% in the Heidke skill score
(HSS) regarding the SPI6 application and ranging from 82% to 85% in the PC and 72%–76% in the
HSS for the SPI12 application. The model with the NAO forcing led to improvements in predictions
of about 1%–6% (PC) and 1%–8% (HSS), when applied to SPI6, but regarding SPI12 only seven of the
locations presented slight improvements of about 0.4%–1.8% (PC) and 0.7%–3% (HSS).

Keywords: 3-dimensional log-linear models; drought class transitions; odds; confidence intervals

1. Introduction

Drought is a natural temporary imbalance of water availability, consisting of a persistent
lower-than-average precipitation, of uncertain frequency, duration and severity, and of unpredictable
or difficult-to-predict occurrence, resulting in diminished water resource availability and carrying
capacity of ecosystems [1]. The importance of early warning to water users for timely implementation
of preparedness and mitigation measures is well known and has been widely addressed by several
authors [1–3]. Developing prediction tools appropriate for the climatic and agricultural conditions
prevailing in different drought-prone areas constitutes a research challenge. Drought prediction is
a major concern for water managers, farmers and other water end-users because it constrains their
decisions. Since droughts have a slow initiation, it is possible to release a timely prediction so that
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measures and policies can be taken in order to mitigate the effects of the drought [3,4]. Short-term
drought predictions, from one to three months, may be used to alert farmers and water managers
about the initiation, continuation or end of a drought and about the need for preparedness measures
before a drought is effectively installed or for a post-drought period. However, forecasting when a
drought is likely initiating or to coming to an end is a difficult task.

Drought severity is usually identified through indices such as the Standardized Precipitation Index
(SPI), the Palmer Drought Severity Index (PDSI) and the MedPDSI [5–7]. However, in the Interregional
Workshop on Indices and Early Warning Systems for Drought 2009, several organizations, including the
World Meteorological Organization (WMO) and the United States National Oceanic and Atmospheric
Administration (NOAA), recommended that the SPI be used by all national meteorological and
hydrological services around the world to characterize meteorological droughts as well as agricultural
and hydrological droughts because the SPI is an index that is simple to understand, is easy to calculate
and is statistically relevant and meaningful [8]. In fact, precipitation is the only required input
parameter and it considers in its conception the different impacts on groundwater, reservoir storage,
soil moisture, snowpack and stream-flow through the different time scales of computation [5,8].
The SPI is based on the probability of precipitation for any time scale. The probability of observed
precipitation is then transformed into an index that supports assessing drought severity and may
provide early warning of drought.

The precipitation occurrence and/or its inhibition leading to drought on different time and spatial
scales is driven by atmospheric forcings which may range from the mesoscale (hundreds of km) up
to the planetary scale (tens of thousands of km). The large-scale atmospheric state may roughly be
described by a time-varying state vector filled with a few numbers of leading principal components
of the sea-level pressure (SLP) field. That state vector either exhibits a transient behavior or persists
near certain states, the so-called weather regimes (WRs) or atmospheric circulation patterns, which
are detectable by cluster analysis [9]. Therefore, the projection or pattern correlation of the SLP field
onto the main WRs acts as large-scale atmospheric circulation indices, which are useful indicators
of the rainfall field. In particular, several large-scale indices of the Euro-Atlantic and Northern
Hemisphere SLP field [10,11] are well correlated with the cumulated precipitation in certain target
regions, namely Portugal [12]. We recall the main four Euro-Atlantic atmospheric WRs as: (1) the
blocking regime, with a large anomalous high pressure over Scandinavia; (2) the zonal regime (positive
phase of the North Atlantic Oscillation: NAO+), characterized by an intense zonal flow crossing
the North Atlantic area, reinforcing the Icelandic low and the Azores’ high pressure centers; (3) the
Atlantic Ridge regime, exhibiting a positive anomaly over the North Atlantic and low pressure over
northern Europe; and (4) the Greenland anticyclone pattern (negative phase of the North Atlantic
Oscillation: NAO´), showing a strong positive pressure anomaly centered over western Greenland.
Since some of the WRs display nearly symmetric anomalies, the corresponding projections of the SLP
field are not independent. The overall main features of the Euro-Atlantic large-scale atmospheric
field are then well captured by a set of large-scale indices: the North Atlantic Oscillation (NAO)
index [13], the EAP (East-Atlantic Pattern) index, the SCAND (Scandinavian Pattern) index [14] and
the East-Atlantic Western Russia (EAWR) index, all available at the National Centers for Environmental
Prediction (NCEP) website.One of the main patterns governing wet and dry rainfall regimes in most
of Europe is the NAO [14]. The NAO index is commonly given by the difference in normalized
SLP anomalies between a southern node, located in continental Iberia or the Azores, and a northern
node, usually in southwest Iceland [13,15]. Strong positive phases of the NAO (i.e., NAO+) tend
to be associated with above-average temperatures in the eastern United States and across northern
Europe and below-average temperatures in Greenland and oftentimes across southern Europe and
the Middle East. The NAO+ regime is also associated with above-average precipitation over northern
Europe and Scandinavia in the winter, and below-average precipitation or drought over southern and
central Europe, Mediterranean regions and the north of Africa. Opposite patterns of temperature and
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precipitation anomalies are typically observed during strong negative phases of the NAO available at
the National Centers for Environmental Prediction (NCEP) website.

Pires and Perdigão [16] have shown high levels of correlation between the NAO index and the
SPI reaching the negative value ´0.60 for the winter months for some locations in northern Portugal,
which convert the NAO in an interesting tool for the improvement of drought predictions. The NAO
influences on the precipitation regimes and droughts in Portugal and the Iberian Peninsula are also
reported by other researchers [17,18]. Santos et al. [12] have shown that dry weather conditions prevail
when the NAO index is positive (NAO+). The drought frequency in Portugal has been increasing as a
consequence of a drying signal in the Mediterranean region attributable to a trend in the atmospheric
circulation forcing, namely a decadal scale enhancement of the positive phase of the North Atlantic
Oscillation [19].

Several statistical and physical-based techniques as well as the combination of both (hybrid
techniques) have been proposed for the forecasting of droughts and the cumulated precipitation on
a monthly basis. The state-of-the-art physical models used for weather and climate prediction such
as that of the European Center for Medium Range Weather Forecasts (ECMWF) have been used for
obtaining probabilistic ensemble-based forecasts up to six months in advance of the SPI worldwide
on scales of three, six and 12 months [20]. Since the computational burden of those predictions is
very high and they depend on the availability of a physical model, a reasonable alternative for the
meteorological community started by developing simple statistical models of the monthly and seasonal
cumulated precipitation [21,22]. Those models often apply multivariate statistical techniques such
as the Canonical Correlation Analysis (CCA), robust multilinear regression, and Singular Spectrum
Analysis (SSA), among others [23], and they rely on a set of previously well-chosen physical predictors
that are able to capture the main boundary layer’s forcing of the atmospheric dynamics (e.g., the sea
surface temperature (SST), the snow cover and land moisture fields) and the intrinsic predictable
features such as the internal (not externally forced) oscillations of the climatic system. In regard
to hybrid predictions, we must refer to several techniques. On one hand, we have the mixing by
Bayesian probabilistic averaging, either of different physical-based predictions [24] or of physical and
statistical models [25]. On the other hand, we may use the optimal regression of physical precursors
and dynamical forecasts of drought indices [26].

Hereby we will focus on statistical methods of drought prediction only. Combining the stochastic
properties of the SPI with weather pattern indices such as NAO is a challenge for the short-term
prediction of droughts by statistical methods. The stochastic properties of the SPI time series have
been explored for analyzing and predicting drought class transitions in the Portuguese context [27–32].

The methodologies include regression analysis [33], time series modeling such as ARIMA and
seasonal ARIMA [34,35], artificial neural network models (ANN) [36,37] and stochastic and probability
models such as Markov chains [38–40], log-linear models [31,41] and others [42,43]. Also, hybrid
models combining two techniques have been used, for instance wavelet transforms and neural
networks [44], stochastic and neural network modeling [45], wavelet and fuzzy logic models [46],
adaptive neuro-fuzzy inference [47] and data mining and ANFIS techniques [48]. Each methodology,
independently of its complexity, has advantages and limitations. Mishra and Singh [49] recently
reviewed and discussed the methodologies used so far for drought modeling.

Approaches to drought forecasting using drought indices associated with atmospheric-oceanic
anomaly indices have been suggested for predictions on monthly and seasonal scales. Examples
include the use of artificial neural networks and time series of drought indices additionally driving
the NAO index [37], and the use of probabilistic models that result from evaluating conditional
probabilities of future SPI classes with respect to current SPI and NAO classes [43].

Three-dimensional (3D) log-linear models allow modeling the state of a variable at time t + 1
knowing its state at time t and t ´ 1 [50]. Those models were used to predict SPI drought class
transitions one and two months ahead, knowing the drought class of the last two months [31]. In this
approach, log-linear models are fitted to 3D contingency tables of drought class transitions counts,
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corresponding to two time-step transitions relative to the SPI drought classes at months t ´ 1, t and
t + 1 obtained from categorical time series of SPI drought classes. Then, ratios of expected frequencies
(odds) relative to the most probable transition for the next month and their confidence intervals are
computed. This approach allows predictions with a leading time of two or more months and has
shown potential to be improved, namely with the inclusion of new categories in the contingency tables.
Recently, the introduction of a new variable representing the wet or the dry season of the year was
tested in order to improve the predictions [41].

Considering the advances in drought predictions reviewed above and the reported NAO influence
on precipitation and drought in Portugal, the objectives of this work consist of improving log-linear
modeling of the SPI drought class transitions when driven by the negative or positive phases of the
NAO index. This approach is an advance relative to the previous study [31] since it was based uniquely
on the assessment of SPI drought classes. In the current study, long series of monthly precipitation of
more than 100 years were used, which brings advantages in model-fitting and allows better estimates
for the transition probabilities.

2. Materials and Methods

2.1. Data, SPI and NAO

The data used in this study consists of GPCC gridded precipitation with 1.0 degrees of spatial
resolution and with 112 years length (1902–2014), for the 10 grid points located over mainland Portugal
(Figure 1). The GPCC dataset is a gauge-based gridded monthly precipitation dataset for the global
land surface, available in 2.5˝, 1˝ and 0.5˝ spatial resolutions. The GPCC product used is the GPCC
Precipitation Combined Full V6 and V4 Monitoring Data Product (1.0 ˆ 1.0) available at the website of
National Oceanic & Atmospheric Administration (NOAA)-Earth System Research Laboratory (ESRL).

Details regarding this dataset are available [51,52]. The GPCC dataset was used because the
observation time series of monthly precipitation are somewhat short and have not been updated
since 2006 while the adopted modeling approach benefits from using long and recent data to better
parameterize and assess the model. The data set used in the current study was previously used [41].
Moreover, a recent study has shown that the temporal and spatial behaviors of the SPI computed on
three-, six-, 12- and 24-month time scales with the GPCC data set compared well with those computed
with observation data sets [53].
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SPI values on a six-month (SPI6) and 12-month time scale (SPI12) were computed for the
10 precipitation time series referred above. The SPI12 is more appropriate to identify dry and wet
periods of relatively long duration and relates better with impacts of drought on the hydrologic
regimes [54]. Shorter time scales of six months or less are likely more useful to detect agricultural
droughts, reflecting a better change of class instead of its persistence [54].

Categorical time series of monthly drought classes were computed based on Table 1, relative to
both SPI6 and SPI12 time series; however, the severe and extremely severe drought classes in Table 1
were grouped because transitions referring to the extremely severe drought classes are much less
frequent than those for other classes, therefore avoiding too many zeros in the contingency tables that
may cause problems in the fitting.

Table 1. Drought class classification of SPI (modified from MCKEE et al. [55]).

Code Drought Classes SPI Values

1 Non-drought SPI ě 0
2 Near normal ´1 < SPI < 0
3 Moderate ´1.5 < SPI ď ´1
4 Severe/Extreme SPI ď ´1.5

Monthly tabulated NAO indices, based on a Principal Component Approach of the Sea Level
Pressure field and dating back to 1950, are available from the National Centers for Environmental
Prediction (NCEP) Climate Prediction Center. However, in order to cover the full period of
the precipitation data (1902–2014), we used an extended historical record (starting in 1864) of a
station-based NAO index relying upon the difference of normalized SLP between Lisbon (Portugal)
and Reykjavik (Iceland).

Before moving on to modeling, a correlation study was performed in order to find the lag between
the NAO index and SPI time series that maximizes the correlation between them both. The Pearson
correlation coefficient was computed between the monthly NAO index and the SPI6 and SPI12 time
series for each grid location and a lag of five months for the SPI6 and 11 months for the SPI12 was
found. In both cases, these lags indicate that the largest influence of NAO occurs near the starting
month of the precipitation accumulation period for the SPI which is explained by the large memory of
the NAO index and the contemporaneous (no lag) large correlation between monthly precipitation
and the NAO index [16]. For the purposes of this modeling, when the NAO index for a given month is
equal or greater than zero, then the NAO state in that month is positive, otherwise it is negative.

2.2. Modeling

For modeling purposes, the number of two-step monthly transitions between any SPI drought
class was counted separately for the negative and positive NAO state to form two three-dimensional
(4 ˆ 4 ˆ 4) contingency tables [50] with N = 64 cells each. These two contingency tables for NAO´ and
NAO+ have three categories: the drought class at month t ´ 1, t and t + 1 with four levels for each one
(drought classes 1, 2, 3, and 4 defined in Table 1). Given the previously mentioned lag between the
NAO and the SPI and considering that predictions focus on month t + 1, the NAO index was evaluated
at month t ´ 4 or t ´ 10 which correspond to lags of 5 or 11 months for, respectively, the SPI6 and
SPI12. Examples of these contingency tables are presented in Tables 2 and 3 for the SPI6 and SPI12.
If the NAO state at month t ´ 4 (t ´ 10) was negative then the transition was counted for the table
NAO´, otherwise it was counted for the table NAO+.

Log-linear modeling input consists of the observed frequency nijk, i, j, k = 1, ..., 4 reported in the
contingency tables (e.g., Tables 2 and 3), which consist of the number of times that in a given month
the drought class i was followed by the drought class j in the next month (one-step transitions) and
then by the drought class k in the month after that (two-step transitions). The model computes the
expected frequency mijk, i, j, k = 1, ..., 4, i.e., the expected value E(nijk) of nijk, i, j, k = 1, ..., 4.
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Table 2. Three-dimensional contingency table for two consecutive transitions between drought classes
of SPI6, computed for location L0034 in the northwest of Portugal (see Figure 1).

NAO´

Drought Class Month
t + 1

Drought Class Month t
+ 1

Drought Class Month
t + 1

Drought Class Month
t + 1

1 2 3 4

drought class month t ´ 1
Drought class month t Drought class month t Drought class month t Drought class month t

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 271 10 1 0 30 38 3 0 2 2 1 1 3 1 2 1
2 40 40 0 0 13 70 6 2 1 10 9 3 0 3 4 1
3 1 5 1 3 0 13 8 0 0 5 7 3 0 0 2 3
4 6 0 0 3 0 1 3 3 0 0 1 2 0 0 3 9

NAO+
Drought class Month

t + 1
Drought Class Month

t + 1
Drought Class Month

t + 1
Drought Class Month

t + 1

1 2 3 4

drought class month t ´ 1
Drought class month t Drought class month t Drought class month t Drought class month t

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 173 18 2 0 51 38 2 1 7 1 1 0 0 3 0 0
2 40 35 0 1 16 108 10 2 2 18 12 3 0 7 3 5
3 4 3 0 1 0 19 17 2 0 6 18 5 0 2 3 5
4 1 1 1 0 1 5 4 0 0 2 7 7 0 1 5 12

Table 3. Three-dimensional contingency table for two consecutive transitions between drought classes
of SPI12, computed for location L0034 in the northwest of Portugal (see Figure 1).

NAO´

Drought Class Month
t + 1

Drought Class Month
t + 1

Drought Class Month
t + 1

Drought Class Month
t + 1

1 2 3 4

drought class month t ´ 1
Drought class month t Drought class month t Drought class month t Drought class month t

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 308 4 0 0 19 18 0 0 0 2 0 0 0 0 0 0
2 21 19 0 0 4 134 4 0 0 10 6 0 0 1 1 1
3 1 2 0 0 0 8 3 0 0 0 19 1 0 0 7 7
4 1 0 0 0 0 2 2 1 0 1 5 5 0 0 4 28

NAO+
Drought class Month

t + 1
Drought Class Month

t + 1
Drought Class Month

t + 1
Drought Class Month

t + 1

1 2 3 4

drought class month t ´ 1
Drought class month t Drought class month t Drought class month t Drought class month t

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 244 9 0 0 30 29 0 0 1 0 1 0 0 1 0 0
2 24 23 0 0 10 152 8 2 0 17 10 1 0 2 3 0
3 2 2 1 0 0 14 8 1 0 1 22 5 0 0 7 10
4 0 0 2 1 0 2 2 2 0 1 4 9 0 0 2 21

Previous studies [31,56] have shown that the quasi-association (QA) log-linear models [50] were
the ones that better fitted to similar two- and three-dimensional contingency tables; therefore, they
were adopted in this study and are described in Appendix A.

When log-linear models are used, odds are computed. Odds are defined as ratios between expected
transition frequencies. They indicate the proportion between the probabilities of transition to one class
over another class and assume values from 0 to +8 [50]. Herein, an odds (defined with its confidence
interval in Appendix A) represents the number of times that it is more, less, or equally probable that
the occurrence of a drought class transition takes place over another, i.e., they read that one month
from now it is “Oddskl|ij” times more, less, or equally probable, that a specific location will be in class k
instead of class l, given that at month t (present) is in class j, and at month t ´ 1 (past) was in class i. If
the NAO at month t´ 5 (t´ 10) is positive then we denote it by Odds`kl|ij, otherwise by Odds´kl|ij. For
the logarithm of these Odds, asymptotic confidence intervals associated with a probability 1 ´ α = 0.95
were computed.
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Odds confidence intervals, besides reflecting the sampling variability of the observed drought
transitions internal to each time series, also indicate if a given odds is significantly different from 1.
For a 5% significance level, if the confidence interval for an odds includes the value 1, then there is
a 95% probability that the odds in fact equals 1, meaning that the drought transition from class i to
class j to class k and the drought transition from class i to class j to class l are not significantly different.
Otherwise, there is also a 95% probability that the odds is in fact larger (smaller) than 1, meaning that
the first transition is significantly more (less) probable than the second. If the confidence interval of a
given odds is too large then the reliability of the prediction is small.

For obtaining the most probable class transition for the month t + 1, the odds for the three
closest class transitions, starting from the drought class at month t, are computed as well as their
confidence intervals. The most probable transition is chosen. For instance, if the drought classes at
month t ´ 1 and t are equal to 3 and 4, respectively, then Odds34|34, Odds24|34 and Odds23|34 will be
computed. If the values and respective confidence intervals obtained for those odds are, for instance,
Odds43|34 “ 2.45r1.18, 3.89s, Odds42|34 “ 5.35 r3.92, 8.62s and Odds32|34 “ 1.99 r0.76, 5.01s, then class 4
is more probable than class 3 and much more probable than class 2, obviously because a jump from a
class to another with a one-point difference is always more probable than that to a class with two or
three points of difference. At last, class 3 is more probable than class 2, resulting in that class 4 is the
most probable for the month t + 1, thus meaning maintenance of the previous class.

2.3. Model Performance

The model performance was assessed using the Heidke skill score (HSS) [23,57]. The HSS
measures the fractional improvement of the forecast over a random prediction. The range of the HSS is
´8 to 1. Negative values indicate that the chance forecast is better than the model prediction, HSS = 0
means no skill, while a perfect forecast obtains a HSS of 1. The computation of the HSS involves
building the contingency table presented in Table 4 which is used in HSS and defined as follows:

HSS “

˜

4
ÿ

i“1

pii ´

4
ÿ

i“1

pi p1i

¸

{

˜

1´
4
ÿ

i“1

pi p1i

¸

(1)

where pii is the proportion of predictions that agreed with the observations for class i and pik is the
proportion of events with predictions at class i and observed at class k with i ‰ k, and pi and p1i are the
marginal totals in Table 4. This approach was previously tested [41].

Table 4. Contingency table for the prediction of four drought classes for computing the Heidke
skill score.

Drought Classes Observed

predicted 1 2 3 4 Marginal total
1 p11 p12 p13 p14 p'1 = Σp1k
2 p21 p22 p23 p21 p'2 = Σp2k
3 p31 p32 p33 p34 p'3 = Σp3k
4 p41 p42 p43 p44 p'4 = Σp4k

Marginal total p1 = Σpi1 p2 = Σpi2 p3 = Σpi3 p4 = Σpi4 100%

The measure that gives the total number of agreements, called the proportion of corrects (PC), is
easily obtained from Table 4, and is simply given by:

PC “
4
ÿ

i“1

pii (2)
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3. Results and Discussion

Both contingency tables for NAO´ and NAO+, either relative to the SPI6 (Table 2) or the SPI12
(Table 3), present higher frequency values for the transitions that imply the maintenance of the
precedent drought classes and smaller frequencies for the transitions that imply the increase/decrease
of the drought classes, particularly when changing by two or three values. As for previous
studies [31,41], this maintenance trend results from the fact that droughts (of six- and 12-month
temporal scales) install slowly, tend to remain for a relatively long time, and have a slow dissipation.
These maintenance characteristics are less evident when using the SPI6 since it responds quickly to
increases or decreases in the precipitation because the computation cumulative period is shorter than
for SPI12. Data in Tables 2 and 3 show that NAO´ favors the transitions from drought class 1 to itself,
i.e., maintaining a non-drought condition, while the NAO+ favors transitions from drought class 3
and 4 to themselves, although not significantly, i.e., the maintenance of moderate and severe drought
classes, particularly when considering the SPI6.

Tables 5 and 6 present results for four out of the 10 locations using, respectively, SPI6 and SPI12
data (L0035, L0038, L0045 and L0048). These tables allow us to compare the drought classes “OBS”
when calculated from observed data and predicted with the log-linear modeling driven and not driven
by NAO, respectively referred to as “predicted w/NAO” and “predicted”. The period selected for the
comparison, October 2011 to February 2013, refers to a drought event, therefore including its initiation,
development and dissipation. For each site, the observed SPI6 (SPI12) drought class at months t ´ 1
and t are presented, as well as the classes at month t + 1 “observed” and “predicted w/NAO” and
“Predicted”. In addition, the NAO index values at month t ´ 4 (t ´ 10) are also presented. When two
or three drought classes are equally probable, then the predicted drought class is identified as “1 or 2”
or “2 or 3 or 4”, for instance, which means that probabilities for the transitions into classes 1 or 2 or into
classes 2 or 3 or 4 are similar. The cells in Tables 5 and 6 are highlighted in grey when the predictions
do not match the observations.

Results in Tables 5 and 6 show that the model performs very well in predicting the maintenance
of the drought class, but generally does not perform well when a decrease or increase of the drought
class category occurs which breaks with the drought class established in the preceding two months.
Because of the negative correlation between the NAO index and precipitation in Iberia [12,16,17], the
wet and less dry classes, i.e., classes 1 and 2 (see Table 1), tend to occur when the NAO index is negative.
However, with the log-linear model driven by NAO, some cases of class change could be predicted
better, namely those in the negative NAO regime (NAO´) (e.g., 13 February and 12 August for SPI6
in L0035), leading to wet conditions in western Iberia. That is because the sensitivity of precipitation
to the NAO index is generally stronger in the wetter regimes, in accordance with the asymmetric
correlations between NAO and SPI presented by Pires and Perdigão [16].

From comparing predictions relative to SPI6 (Table 5) with those of SP12 (Table 6), it could
be observed that the number of disagreements is large for SPI6. This behavior is likely due to the
larger number of class changes in the case of SPI6, since this index denotes a shorter time span of the
cumulated precipitation than SPI12 and therefore produces a quicker response to the variability of
precipitation which results in more frequent changes of drought classes. Results for the other locations
and for other drought events simulated have shown behaviors similar to those referred above.
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Table 5. SPI6: comparison between observed (OBS) and predicted drought class transitions (“Predicted w/NAO” and “Predicted” for four locations during the period
October 2011 to February 2013).

L0035 NAO Drought Class at Drought Class at Month t + 1 L0038 Drought Class at Drought Class at Month t + 1

Date Month t ´ 4 Month t ´ 1 Month t OBS Predicted w/NAO Predicted date Month t ´ 1 Month t OBS Predicted w/NAO Predicted

October-2011 ´1.58 3 3 2 2 or 3 or 4 2 or 3 or 4 October-2011 1 1 1 1 1
November-2011 ´3.39 3 2 2 1 or 2 2 November-2011 1 1 2 1 1
December-2011 ´0.18 2 2 3 2 2 December-2011 1 2 2 2 2
January-2012 2.97 2 3 4 2 or 3 or 4 2 or 3 or 4 January-2012 2 2 2 2 2
February-2012 1.45 3 4 4 4 4 February-2012 2 2 2 2 2
March-2012 0.74 4 4 4 4 4 March-2012 2 2 2 2 2
April-2012 3.2 4 4 4 4 4 April-2012 2 2 3 2 2
May-2012 2.05 4 4 4 4 4 May-2012 2 3 2 2 or 3 2 or 3
June-2012 1.28 4 4 3 4 4 June-2012 3 2 2 2 2
July-2012 1.78 4 3 2 2 or 3 or 4 2 July-2012 2 2 2 2 2

August-2012 ´2.36 3 2 1 1 or 2 2 August-2012 2 2 2 2 2
September-2012 ´0.83 2 1 1 1 1 September-2012 2 2 2 2 2
October-2012 ´2.58 1 1 2 1 1 October-2012 2 2 1 2 2
November-2012 ´1.31 1 2 2 1 or 2 2 November-2012 2 1 1 1 1
December-2012 ´0.44 2 2 1 2 2 December-2012 1 1 1 1 1
January-2013 ´1.44 2 1 2 1 1 January-2013 1 1 1 1 1
February-2013 ´3.21 1 2 1 1 or 2 2 February-2013 1 1 1 1 1

L0045 NAO Drought Class at Drought Class at Month t + 1 L0048 Drought Class at Drought Class at Month t + 1

Date Month t ´ 4 Month t ´ 1 Month t OBS Predicted w/NAO Predicted date Month t ´ 1 Month t OBS Predicted w/NAO Predicted

October-2011 ´1.58 3 4 2 2 or 3 or 4 4 October-2011 1 1 1 1 1
November-2011 ´3.39 4 2 3 2 2 November-2011 1 1 2 1 1
December-2011 ´0.18 2 3 4 2 or 3 or 4 2 or 3 or 4 December-2011 1 2 2 2 2
January-2012 2.97 3 4 4 3 or 4 4 January-2012 2 2 3 2 2
February-2012 1.45 4 4 4 4 4 February-2012 2 3 3 2 or 3 2 or 3
March-2012 0.74 4 4 4 4 4 March-2012 3 3 3 2 or 3 2 or 3
April-2012 3.2 4 4 4 4 4 April-2012 3 3 4 2 or 3 2 or 3
May-2012 2.05 4 4 4 4 4 May-2012 3 4 4 3 or 4 4
June-2012 1.28 4 4 3 4 4 June-2012 4 4 4 3 or 4 4
July-2012 1.78 4 3 2 2 or 3 or 4 2 or 3 July-2012 4 4 2 3 or 4 4

August-2012 ´2.36 3 2 1 1 or 2 2 August-2012 4 2 2 1 or 2 2
September-2012 ´0.83 2 1 2 1 1 September-2012 2 2 2 2 2
October-2012 ´2.58 1 2 1 1 or 2 2 October-2012 2 2 1 2 2
November-2012 ´1.31 2 1 1 1 1 November-2012 2 1 1 1 1
December-2012 ´0.44 1 1 1 1 1 December-2012 1 1 1 1 1
January-2013 ´1.44 1 1 1 1 1 January-2013 1 1 2 1 1
February-2013 ´3.21 1 1 1 1 1 February-2013 1 2 1 2 2
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Table 6. SPI12: comparison between observed (OBS) and predicted drought class transitions (“Predicted w/NAO” and “Predicted” for four locations during the
period October 2011 to February 2013).

L0035 NAO Drought Class at Drought Class at Month t + 1 L0038 Drought Class at Drought Class at Month t + 1

Date Month t ´ 10 Month t ´ 1 Month t OBS Predicted w/NAO Predicted date Month t ´ 1 Month t OBS Predicted w/NAO Predicted

October-2011 ´4.62 2 2 2 2 2 October-2011 1 1 1 1 1
November-2011 ´1.38 2 2 3 2 2 November-2011 1 1 1 1 1
December-2011 2.79 2 3 4 2 or 3 or 4 3 December-2011 1 1 1 1 1
January-2012 ´0.44 3 4 4 4 3 or 4 January-2012 1 1 1 1 1
February-2012 2.39 4 4 4 4 4 February-2012 1 1 2 1 1
March-2012 1.08 4 4 4 4 4 March-2012 1 2 2 2 2
April-2012 ´1.58 4 4 4 4 4 April-2012 2 2 2 2 2
May-2012 ´3.39 4 4 4 4 4 May-2012 2 2 2 2 2
June-2012 ´0.18 4 4 4 4 4 June-2012 2 2 2 2 2
July-2012 2.97 4 4 4 4 4 July-2012 2 2 2 2 2

August-2012 1.45 4 4 4 4 4 August-2012 2 2 2 2 2
September-2012 0.74 4 4 3 4 4 September-2012 2 2 2 2 2
October-2012 3.2 4 3 4 2 or 3 or 4 2 or 3 or 4 October-2012 2 2 2 2 2
November-2012 2.05 3 4 4 3 or 4 3 or 4 November-2012 2 2 2 2 2
December-2012 1.28 4 4 2 4 4 December-2012 2 2 2 2 2
January-2013 1.78 4 2 2 2 2 January-2013 2 2 1 2 2
February-2013 ´2.36 2 2 1 2 2 February-2013 2 1 1 1 1

L0045 NAO Drought Class at Drought class at Month t + 1 L0048 Drought Class at Drought Class at Month t + 1

Date Month t ´ 10 Month t ´ 1 Month t OBS Predicted w/NAO Predicted date Month t ´ 1 Month t OBS Predicted w/NAO Predicted

October-2011 ´4.62 2 2 2 2 2 October-2011 1 1 1 1 1
November-2011 ´1.38 2 2 3 2 2 November-2011 1 1 1 1 1
December-2011 2.79 2 3 4 3 3 December-2011 1 1 1 1 1
January-2012 ´0.44 3 4 4 4 3 or 4 January-2012 1 1 1 1 1
February-2012 2.39 4 4 4 4 4 February-2012 1 1 2 1 1
March-2012 1.08 4 4 4 4 4 March-2012 1 2 2 2 2
April-2012 ´1.58 4 4 4 4 4 April-2012 2 2 3 2 2
May-2012 ´3.39 4 4 4 4 4 May-2012 2 3 3 2 or 3 2 or 3
June-2012 ´0.18 4 4 4 4 4 June-2012 3 3 3 3 3
July-2012 2.97 4 4 4 4 4 July-2012 3 3 3 3 3

August-2012 1.45 4 4 4 4 4 August-2012 3 3 3 3 3
September-2012 0.74 4 4 4 4 4 September-2012 3 3 3 3 3
October-2012 3.2 4 4 4 4 4 October-2012 3 3 3 3 3
November-2012 2.05 4 4 3 4 4 November-2012 3 3 2 3 3
December-2012 1.28 4 3 2 2 or 3 or 4 2 or 3 or 4 December-2012 3 2 2 2 2
January-2013 1.78 3 2 2 2 2 January-2013 2 2 2 2 2
February-2013 ´2.36 2 2 1 2 2 February-2013 2 2 1 2 2
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In order to have a true picture of the performance of the model driven by the NAO compared to
the model that is not driven by the NAO, the proportion of corrects (PC) and the Heidke skill score
(HSS) were computed for the entire period of the time series. PC and HSS results are shown in Tables 7
and 8 respectively, for the SPI6 and the SPI12. These results show that improvements in the predictions
occur when using the model with the NAO driven compared to the model without that driven: relative
to SPI6, improvements of the PC score range from 1% to 5.6%, averaging 3%, while the HSS shows
improvements ranging from 1.3% to 8.5% with an average of 4.5% (Table 7); for SPI12, three locations
did not show any improvement when using modeling driven by the NAO, while the other seven
locations’ improvements were quite small, ranging from 0.4% to 2% for PC and 0.7% to 3.2% for HSS
(Table 8).

Table 7. SPI6: results for the proportion of corrects (PC) and the Heidke skill score (HSS) for the model
with the NAO driven (Model w/NAO) and the model without the NAO driven (Model) and the
difference between both.

SPI6
PC HSS

Model w/NAO Model Difference Model w/NAO Model Difference

L0034 75.95% 72.17% 3.78% 59.98% 53.99% 5.99%
L0035 77.37% 74.18% 3.19% 62.27% 57.41% 4.86%
L0036 73.94% 70.83% 3.10% 56.96% 52.08% 4.88%
L0037 75.51% 72.62% 2.89% 58.40% 54.74% 3.67%
L0038 75.13% 74.10% 1.03% 58.85% 57.51% 1.34%
L0044 76.55% 70.91% 5.64% 61.02% 52.49% 8.53%
L0045 77.07% 73.74% 3.34% 61.90% 56.97% 4.93%
L0046 74.24% 73.29% 0.95% 57.50% 55.80% 1.69%
L0047 75.36% 71.95% 3.41% 59.06% 53.69% 5.36%
L0048 76.63% 73.81% 2.82% 61.27% 57.22% 4.05%

The application of the log-linear modeling driven by the NAO produces larger improvements
of predictions when applied to the SPI6 compared to SPI12,which is likely due to the fact that the
correlation between the NAO index (always taken as the monthly value at the beginning of the
precipitation accumulation period—PAP) and SPI6 is larger than that with SPI12. This is quite
understandable due to the decreasing lagged cross-correlation function between a monthly NAO index
value and the forthcoming monthly precipitation values and due to the fact that the PAP of SPI12
is larger compared to that of SPI6. This may also be explained by the slow response to changes in
precipitation of SPI12, which produces fewer changes in drought classes compared with SPI6.

The overall modeling performances are good: PC scores ranged from 73.9% to 77.3% and 82.6%
to 85.5% when using SPI6 and SPI12, respectively, while HSS scores ranged from 57.0% to 62.3% and
72.3% to 76.4% (HSS) for SPI6 and SPI12, respectively. Those scores normally decrease with the forecast
lag (a single month here). Much of the scores are explained by the time overlapping between the SPI
precipitation accumulation period of the forecast class and those used as predictors (the previous
two months), in our case: five out of six months in SPI6 and 11 out of 12 months in SPI12.
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Table 8. SPI12: results for the proportion of corrects (PC) and the Heidke skill score (HSS) for the
model with the NAO driven (Model w/NAO) and the model without the NAO driven (Model) and
the difference between both.

SPI12
PC HSS

Model w/NAO Model Difference Model w/NAO Model Difference

L0034 83.90% 83.11% 0.79% 73.84% 72.62% 1.22%
L0035 84.04% 82.96% 1.08% 73.99% 72.06% 1.93%
L0036 83.30% 84.15% ´0.85% 72.86% 74.56% ´1.70%
L0037 82.55% 82.14% 0.41% 72.27% 71.56% 0.71%
L0038 85.47% 83.63% 1.84% 76.40% 73.52% 2.88%
L0044 84.27% 82.22% 2.05% 74.08% 70.89% 3.19%
L0045 84.72% 83.78% 0.94% 75.08% 73.52% 1.56%
L0046 84.04% 83.26% 0.78% 74.10% 72.77% 1.33%
L0047 82.62% 83.18% ´0.56% 72.33% 73.10% ´0.77%
L0048 83.07% 83.18% ´0.11% 72.71% 72.83% ´0.12%

The better performances obtained with the modeling application of SPI12 are likely related to the
less frequent change of drought classes with SPI12, which favors capturing the behavior of changes in
drought classes in the preceding months. Indeed, the number of changes in drought class is almost
double that of SPI6 when compared with the SPI12. These numbers were computed and are presented
in Table 9, jointly with other relevant information explained later in the next paragraph. For both SPI12
and SPI6, when the maintenance in a given class breaks due to an increase or decrease of rainfall, the
modeling fails in predicting the future drought class. Nevertheless, the maintenance in a given class is
well captured by the model.

Table 9. Percentage of correct class change predictions relative to the total number of cases in which
the observed drought class at month t + 1 differs from the drought class in the previous month for the
model with and without NAO, as well as the total number of class changes for the SPI6 and SPI12.

SPI6 L0034 L0035 L0036 L0037 L0038 L0044 L0045 L0046 L0047 L0048 Average

Model w/NAO 16.2 17.1 15.8 17.3 25.8 20.0 20.1 13.2 17.9 21.9 18.5
Model 11.3 11.0 14 13.4 17.3 7.4 12.1 12.9 13.6 14.5 12.8

Difference 4.9 6.1 1.8 3.9 8.5 12.6 8 0.3 4.3 7.4 5.8
Nr. class changes 421 403 443 421 438 404 422 432 431 421 423.6

SPI12 L0034 L0035 L0036 L0037 L0038 L0044 L0045 L0046 L0047 L0048 Average

Model w/NAO 10.4 15.0 8.5 6.5 17.2 11.4 15.2 19.3 7.3 6.2 11.7
Model 5.6 10.1 14.1 3.2 9.8 2.4 11.7 16.7 9.7 6.2 9.0

Difference 4.8 4.9 -5.6 3.3 7.4 9 3.5 2.6 ´2.4 0 2.8
Nr. class changes 249 267 248 248 244 246 256 270 278 241 254.7

The percentage of correct predictions when a drought class change occurs relative to the total
number of cases when the observed drought class at month t + 1 differs from the drought class in
the previous month was computed. Results are presented in Table 9 and refer to the entire time
series length regarding the NAO driven predictions, the predictions without the NAO driven and
their difference. These results show that the percentage of “predictions w/NAO” that agree with the
observed class when there was a class change ranges from 13.2% to 25.8% with an average of 18.5% for
SPI6 and from 6.2% to 19.2% with an average of 11.5% for SPI12. Relative to the model with the NAO
forcing, those percentages are indeed slightly higher, showing an increase in the percentage of corrects
ranging from 0.3% to 12.6% with an average of 5.8% for SPI6. For SPI12, this increase occurs in seven
locations ranging from 2.6% to 9%, showing consistency with Table 8 where the same remaining three
locations did not present improvement in the predictions.

These results show that log-linear modeling applied to both SPI6 and SPI12 actually cannot
adequately predict the correct class change when there is a break relative to the drought class
established in the previous two months. Those are cases where the rainfall regime during the two last
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months of the SPI precipitation period was totally different from the remaining ones. Maybe in these
cases, though not a priori detectable, the lag between the NAO index and the SPI should be smaller
in respect to the NAO´ conditioned probability transition matrices. However, the fact that some of
these cases can be predicted indicates that it may be possible to further use the model and particularly
improve the way it is driven by NAO, namely using shorter time lags between NAO and SPI despite
the fact that these do not correspond to the best correlation results. Another modification in modeling
consists in considering three NAO states—very negative, around zero and very positive—instead
of two, negative and positive, as used in this study. In fact, under the influence of a very negative
(positive) NAO state, the model may be forced to strongly favor a decrease (increase) of drought class.
The middle state, near zero, should not favor any transition.

4. Conclusions

This paper has contributed to the improvement of the log-linear forecasting models of drought
class transitions [31,32] by conceiving a general method which includes the dependence of past
drought SPI classes on a set of mutually exclusive weather regimes or large-scale mid-latitude
atmospheric patterns. Its usefulness relies on the influence of Euro-Atlantic WRs, with particular
relevance of the North Atlantic Oscillation on the large-scale European rainfall field [13,16,18], and
on target regions such as Portugal and the Iberian Peninsula [12,17], through the influence of WRs
on the meridional shifting of the polar front and storm-tracks [13]. Despite the availability either of
statistical forecasting models (e.g., those based on multivariate linear regression) of the cumulated
quantitative precipitation [21,22], which could eventually be converted into SPI classes, or of stochastic
continuous models of the drought indices [34–37], the log-linear modeling assigns the SPI classes’
forecasted probabilities, which might potentially be useful as input into economic value decision
models. Moreover, the log-linear models have the advantage of choosing the SPI partition set in
a suited manner for discriminating different levels of drought severity (negative SPI values) or in
alternative, different levels of rain exceedances and floods (positive SPI values). Another relevant issue
is the fact that drought forecasting has essentially the same nature of the seasonal-to-annual weather
forecasting problem, i.e., they are both probabilistic in essence due to the determinist chaotic nature
of atmospheric dynamics. They have been evaluated, though not still operationally by the ECMWF
integrated seasonal forecasted system [20], and therefore, simple probabilistic log-linear models, such
as that designed in the paper, may capture some signals of the probability forecasts of drought.

In particular, for the developed model, the log-linear modeling of SPI drought class transitions
driven by the NAO brought some improvements in the predictions when applied to SPI6 in comparison
to the model not driven by the NAO. The improvement is relatively modest since much of the NAO
influence on SPI is already implicit, even in a transition model without the explicit NAO forcing. That
is because of the tight correlation of about ´0.60 between monthly precipitation and the NAO index in
western Iberia [16]. Regarding the application to SPI12, it cannot be concluded that a real improvement
in predictions exists since only seven of the locations presented slight improvements.

The overall performances of the log-linear modeling are good, so it can be concluded that the
log-linear modeling, when applied to SPI6 and SP12, performs well in predicting the drought class
one month ahead while knowing the drought classes of the two previous months, although it fails in
predicting many transitions to a drought class that is different than the drought classes in the previous
two months; nevertheless, it captures the maintenance of the drought class very well. With the use of
the model driven by the NAO, some transitions of class can be correctly predicted, namely those under
the influence of negative NAO. On those events under the negative NAO phase, the class predictions
tend to be shifted to wetter classes as compared to the predictions without the explicit forcing of NAO.
Conversely and consistently, a strengthening or maintenance of the drought became more probable in
the NAO-driven predictions throughout the subset of events under the positive phase of the NAO. As
a whole, the skill of drought classes’ forecasts is consistent with that of linear statistical schemes of the
continuous quantitative precipitation referred to in the introduction.
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Overall, results show that the log-linear approach driven by NAO may be used with drought
monitoring and forecasting since it provides useful information to water managers and users, helping
them in their decisions to mitigate drought. Future research will focus on considering shorter time
lags between SPI and NAO indices, using a NAO index with three states, as well as including other
weather regime indices (e.g., NAO, EAP, SCAND and EAWR [13,14]) into the log-linear modeling or a
Markov chain approach. Another approach could consider time averages (e.g., three or six months of
averaging) other than the monthly averages of the NAO index used here.
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Appendix A—Technical Details on the Log-Linear Modeling and Odds

The observed frequency nijk, i, j, k = 1, ..., 4 reported in the contingency tables consists of the
number of times that, in a given month, the drought class i was followed by the drought class j in the
next month, and then by the drought class k in the month after that (two-step transitions). Denoted by
mijk, i, j, k = 1, ..., 4, the expected frequency, which is the expected value E(nijk) of nijk, i, j, k = 1, ..., 4, of
the QA log-linear model is given by:

logmijk “ λ` λa
i ` λb

j ` λc
k ` βij` αik` η jk` τijk` δ1i Ipi “ jq ` δ2i Ipi “ kq ` δ3j Ipj “ kq ` δ4i Ipi “ j “ kq (A1)

where:

‚ λ is the constant parameter also designated by grand mean;
‚ λa

i , λb
i and λc

i are the effects of the i, j and k levels of category A, B and C, respectively (drought
class at month t ´ 1, t and t + 1 ), with i, j, k = 1, ..., 4;

‚ β, α, η and τ are the linear association parameters between the categories;
‚ δ1i, δ2i, δ4i, are the parameters associated with the i-th diagonal element of category A; δ3j is

associated with the j-th diagonal element of category B;
‚ I takes the value 1 when the condition holds and the value 0 otherwise.

The expected frequencies mijk represent the expected number of two transitions between the
drought classes i, j, and k in two consecutive months during the study period. The ratios of expected
frequencies are the odds, which indicate the proportion between the probabilities of occurrence for two
different events and assume values from 0 to +8 [50]. Odds is defined as:

Oddskl|ij “ mijk{mijl , k ‰ l, and i, j, k, l “ l, ..., 4 (A2)

For the logarithm of these Odds, asymptotic confidence intervals associated with a probability
1´ α can be computed, which are given by:

”

Log Oddskl|ij ´ q1´α{2

b

VpLog Oddskl|ijq, Log Oddskl|ij ´ q1´α{2

b

VpLog Oddskl|ijq
ı

(A3)

where q1´α{2 is the 1´ α{2 quantile of a standard normal variable and VpLog Oddskl|ijq is the variance
of the Log Oddskl|ij. The estimates of the odds and corresponding asymptotic confidence intervals are
obtained by exponentiation of the respective interval borders for the logarithm of the odds.

The QA log-linear models allow for linear-by-linear association of the main diagonal of the
contingency tables and are adequate to fit tables where the number of levels per category is the
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same and have ordered categories, resulting from a pairwise comparison of dependent samples,
which is the case [39]. In adjusting these models, it is assumed that the nijk, i, j, k = 1,..., 4 are values
taken by independent Poisson distributed variables and the parameter estimators λ̂, λ̂a

i , λ̂b
j , λ̂c

k, β̂, δh
and m̂i,j,h, h, j = 1,..., 4, obtained using the maximum likelihood method, are asymptotically normally
distributed [50]. The assumption of independency of nijk, i, j, k = 1,..., 4 could be considered because
transitions between drought classes in successive months mainly depend on the amount of precipitation
occurring in those months, not on transitions in previous months [40].

Not all the parameters in the model are linearly independent because of the constraint:

4
ÿ

i“1

λa
i “

4
ÿ

j“1

λb
j “

4
ÿ

k“1

λc
k (A4)

which is required in this kind of modeling in order to make the parameters identifiable [50]. As a
result, it was assumed λa

1 “ λb
1 “ λc

1 “ 0, thus simplifying the model as in previous studies [31].
To ease the computations, a matrix notation may be used. The linearly independent parameters

in the model are 30:

pλ, λa
2, λa

3, λa
4, λb

2, λb
3, λb

4, λc
2, λc

3, λc
4,α,β,η, τ, δ11, δ12, δ13, δ14, δ21, δ22, δ23, δ24, δ31, δ32, δ33, δ34, δ41, δ42, δ43, δ44q

and they constitute the parameter vector θ, with components θ1, ..., θ30, where, for instance, θ2“ λa
2.

The corresponding maximum likelihood estimators of the parameters will constitute the vector θ̂. Let,
n and m be, respectively, the vectors of observed frequencies and expected frequencies all ordered
according to the index s = 16i + 4j + k ´ 20. This ordering is required because the QA log-linear models
have to be rewritten in a matrix notation for computational purposes. The model matrix X, containing
known constants, is a 64 ˆ 30 matrix derived from Equation (A1). This matrix X is the same for all
contingency tables because it relates to the QA log-linear model and does not depend on the data set.
The QA log-linear model in matrix notation is then:

Log pmq “ Xθ (A5)

Considering that a rather long time span was used [50], it may be assumed that the vector θ̂ of
the estimates has a normal distribution with mean value θ and with the variance-covariance matrix:

COV “ pXTDpm̂qXq´1 (A6)

where Dpm̂q is the diagonal matrix whose principal elements are the expected frequency estimates and
´1 indicates the inverse of the matrix. Moreover, the vector θ̂ is independent from the residual deviance

G2 “ 2
ÿ

i

ÿ

j

ÿ

k

nijkLog
´

nijk{mijk

¯

(A7)

working as the measure for the goodness of fit of the log-linear model. G2 is asymptotically distributed
as a central Chi-Square with four degrees of freedom, since there are 16 cells in the contingency tables
and 12 linearly independent parameters to be adjusted [50]. As a result, to validate the adjustment
of the model, the Chi-Square test with statistic G2 may be used [50,58]. The null hypothesis that the
model fits well and the data is not rejected for those models having a residual deviance not exceeding
the Chi-Square quantile for a probability 1 ´ α = 0.95 and the corresponding degrees of freedom, i.e.,
the models presenting a test p-value exceeding the chosen significance level are considered well fitted.
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For obtaining the confidence intervals for the odds, we need to compute VpLog Oddskl|ijq. So, let
us consider the row vectors of the matrix X designated by xs with s = 1, ..., 64. From Equation (A5), the
logarithms of the expected frequencies are given by:

ẑS “ xT
s θ̂, s “ 1, ..., 64 (A8)

where T stands for transpose. Those values are also normally distributed with variance:

VpẑSq “ xT
s pX

TDpm̂qXqxs, s “ 1, ..., 64 (A9)

For large samples, the Oddskl|ij have asymptotic normal distribution and the logarithmic transform
Log Oddskl|ij “ Log Eijk ´ Log Eijl converges more rapidly to a normal distribution. Thus,

Log Oddskl|ij “ ẑS1 ´ ẑS2 (A10)

where s1 and s2 correspond to the class transitions ijk and ijl, respectively, which is sorted according
to the index s. So the variance for the Log Odds to be used in Equation (A3) can be easily computed
as follows:

VpLog Oddskl|ijq “ pxs1 ´ xs2q
T
pXTDpm̂qXqpxs1 ´ xs2q (A11)
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