Supplementary Materials: Characterizing Changes in Streamflow and Sediment Supply in the Sacramento River Basin, California, Using Hydrological Simulation Program—FORTRAN (HSPF)

Michelle Stern, Lorraine Flint, Justin Minear, Alan Flint and Scott Wright

S1. Streamflow and Sediment Data

The daily streamflow and sediment boundary conditions for water years 1958 to 2008 were developed using available continuous streamflow data, locations of large dams, and natural watershed boundaries. Modeled stream reaches represented in the model included the main branch of the Sacramento River and the main contributing tributaries below large dams. Streamflow and sediment data from 42 out of the 288 USGS gages in the study domain were downloaded from the National Water Information System (NWIS) [1], and included records that ranged from four to 120 years for streamflow data and one to 58 years for sediment data (Table S1). Gages with the complete hydrologic record (1958–2008) were used as boundary conditions when located on the model boundary. Other gages located within the domain were used for calibration and validation. Snow water equivalent (SWE) data for snow calibration were collected from the California Data Exchange Center CDEC [2].

Suspended sediment concentrations and loads were available at varying periods for 18 locations in the study area from NWIS [1]. Of the 42 streamgaging stations (Table S1), 19 gages contained sediment data within the model period (1958–2008), with the majority of the data existing in 1975–1980. Various model outputs are available for comparison with the observed data for model calibration. Modeled outputs of suspended sediment concentrations (mg/L) or sediment loads (tons/day) are on a daily time step but can be summed or averaged to monthly or annual time scales. Annual sediment loads, instantaneous samples, and daily discharge or suspended sediment concentrations and sediment concentrations and sediment loads were calibrated to each gage for the period where data was available.

S2. Dams

The National Inventory of Dams (NID) [3] dataset is a compilation of state jurisdictional dams used primarily for hazard and risk assessment. The state jurisdictional dams are either 7.6 m in height or higher and exceed 18,500 m³ in storage, or are 1.8 m or higher with more than 62,000 m³ in storage coupled with a high hazard classification [4]. The NID is maintained by the Army Corps of Engineers (USACE). There are 1594 dams in California meeting the NID criteria above, and 471 are located in the Sacramento River watershed. For the purposes of this study, only the larger dams having a significant effect on trapping sediment loads were used to define boundary conditions. A series of criteria were developed to select dams to use as flow boundaries and that allowed negligible sediment to pass downstream. Dams used as boundary conditions in this model were chosen on the basis of sediment trap efficiency and watershed size. Large dams with high sediment trap efficiencies have the greatest contribution to streamflow and the smallest contribution of sediment loads.

Model Reach	USGS		Drainage Area	Flow Data	Calibration/Validation/	Sediment Data
Number	Station ID	Gage Name	(km²)	(Years)	Boundary	Available
1	11374000	Cow C near Millville	1101	62	C/V	1977-1978
5	11370500	Sacramento R at Keswick	16,752	73	В	
7	11376015	Nf Battle C Battle C Dam	173	9	В	
8	11372000	Clear C near Igo	591	71	В	
9	11375700	Nf Cottonwood C near Igo	230	24	В	
14	11375810	Cottonwood C near Olinda	1023	15	С	1977-1980
15	11374400	Mf Cottonwood C near Ono	632	19	С	1964–1966
16	11376550	Battle C below Coleman Fish Hatchery	925	50	C/V	
18	11376000	Cottonwood C near Cottonwood	2401	71	CN	1962–1967
10	1157 0000	Contonwood C near Contonwood	2401	71	0,1	1978-1980
22	11377100	Sacramento R at Red Bluff	23,051	120	C/V	1977-1980
26	11379000	Antelope C near Red Bluff Ca	319	42		
31	11381500	Mill C near Los Molinos	339	71	C/V	
40	11382000	Thomes C at Paskenta Ca	526	76	C/V	1962-1983
42	11383500	Deer C near Vina	539	100	C/V	
46	11390000	Butte C near Chico	381	81	C/V	
47	11388000	Stony C below Black Butte Dam near Orland	1911	35	В	
48	11383800	Sacramento R near Hamilton City	28,057	36	С	1977-1979
49	11389000	Sacramento R near Butte City	31,274	57	C/V	1977-1980
53	11407000	Feather R at Oroville	9386	113	В	
53	11407150	Feather R near Gridley	9521	34	V	1964–1993
57	11420500	Dry C at Virginia Ranch	185	13	В	
59	11407700	Feather R at Yuba City	10,293	12	V	1964–1976
60	11418500	Deer C near Smartville Ca	219	81	В	
60	11418000	Yuba R below Englebright Dam	2870	74	В	
60	11421000	Yuba R near Marysville	3467	72	C/V	
61	11389500	Sacramento R at Colusa	31,312	94	C/V	1972-1980
62	11391050	Sutter Bypass near Nicolaus	37,645	21	V	1979–1980
69	11425000	Feather R near Nicolaus	15,335	41	V	1978–1980
70	11451300	Nf Cache C near Clearlake Oaks	313	16	В	
73	11424000	Bear R near Wheatland	756	87	В	

Table S1. United States Geological Survey stream gaging stations used for model calibration (C), validation (V), and boundary conditions (B). Bold rows indicate gages located on the Sacramento River. Nf = North fork, Mf = Middle fork, Lf = Lower fork, R = River, C = Creek.

74	11451760	Cache C above Rumsey	2473	26	V	1960–1986
76	11451000	Cache C near Lower Lake	1368	72	В	
77	11425310	Hasley Powerhouse near Auburn	15,335	34	В	
78	11391021	Fremont Weir Spill To Yolo Bypass near Verona	37,645	28	C/V	
84	11451950	Cache C near Brooks	2696	4	V	1983-1986
88	11452500	Cache C at Yolo	2950	112	C/V	1960-1967
90	11447500	Sacramento R at Sacramento	60,885	31	V	1956-1979
94	11453000	Yolo Bypass near Woodland	2950	76	C/V	1979–1980
95	11446500	American R at Fair Oaks	4890	111	В	
98	11390500	Sacramento R below Wilkins Slough near Grimes	33,463	77	C/V	
99	11425500	Sacramento R at Verona	37,645	87	V	1979–1980
97	11447650	Sacramento R at Freeport	60,885	67	C/V	1956-2014

Trap efficiency, or the amount of incoming sediment trapped by a dam, is a metric that depends on reservoir size, watershed area, and sediment yield. For this study, a simplified equation for the trap efficiency curve was used [5]:

$$C = 1 - 1/[1 + (0.00021 \times K/W)]$$
(1)

where *C* is the trap efficiency, *K* is the dam capacity (m^3) and *W* is the watershed area (km^2). Sediment trap efficiency was then normalized by the watershed area to form a value, CW, representing the watershed area scaled by the trap efficiency, using:

$$CW = C \times W \tag{2}$$

Dams were ranked by importance using the CW value, and an arbitrary lower cutoff value of 0.01 was used to determine which dams to incorporate (at least 1% of the upstream watershed sediment was estimated to be trapped by the dam). Thirteen dams from the NID database fit these criteria and were located on a tributary within the model domain (Table S2).

Table S2. List of dams from National Inventory of Dams (NID) used in HSPF model of Sacramento Valley; chosen for a high trap efficiency-to-watershed ratio (CW) which indicates a relatively large dam with a small sediment load contribution to the watershed.

Dam Name	Year Completed	River	Longitude	Latitude	CW Value
Keswick	1949	Sacramento River	-122.445	40.612	5.1
Whiskeytown	1963	Clear Creek	-122.540	40.599	0.7
Misselbeck	1920	North Fork Cottonwood Creek	-122.697	40.500	0.04
Macumber	1907	North Fork Battle Creek	-121.733	40.538	0.1
Eagle Canyon Canal Diversion	1910	North Fork Battle Creek	-121.921	40.423	0.02
Red Bluff Diversion	1967	Sacramento River	-122.202	40.154	0.9
Black Butte	1963	Stoney Creek	-122.337	39.818	2.4
Oroville	1968	Feather River	-121.486	39.539	12.3
Virginia Ranch	1962	French Dry Creek	-121.310	39.324	10.3
Englebright	1941	Yuba River	-121.267	39.238	3.3
Camp Far West Diversion	1964	Bear River	-121.332	39.042	0.1
Indian Valley	1975	North Fork Cache Creek	-122.536	39.080	0.4
New Camp Far West	1963	Bear River	-121.317	39.050	1.0
Clear Lake	1910	Cache Creek	-122.566	38.923	1.8
Lakewood	1982	Dry Creek	-121.072	38.962	0.02
Nimbus	1955	American River	-121.220	38.636	1.9

Shasta Dam was omitted from the model because continuous time series data were available at Keswick Dam and an analysis of available sediment data from the Keswick gage indicated a very small contribution of sediment to the Sacramento River. When continuous daily time series data were not available at a dam or impoundment, the surrounding watershed above the dam was modeled to account for all sediment sources within the watershed. The Red Bluff Diversion Dam (RBDD) was constructed in 1967 and was used to divert streamflow to agricultural land southwest of the diversion. The RBDD was decommissioned to facilitate annual fish migrations but was operational through the end of the model period (2008). Time series data from the RBDD were not available, so average monthly values from the United States Bureau of Reclamation [6] were used and scaled during the calibration process to match agricultural demands from the Sacramento River.

S3. Hydrologic Response Unit (HRU) Delineation

Using GIS data for soils, land use, elevation, and hydrography, the model domain was divided into HRUs. An initial HRU delineation was done using the USGS National Hydrography Dataset (NHD) eight-digit Hydrologic Units (HUC-8) defining the subdrainages of the Sacramento River Basin. Using similar soil and hydrologic characteristics the HUC-8 areas were either combined or subdivided to create 99 HRUs. BASINS [7] was used with the National Land Cover Database (NLCD) 2006 (mrlc.gov/nlcd2006.php) land cover data to calculate the proportion of each HRU that corresponded to each land use type. In HSPF, there is a limit to the number of model segments; therefore, the NLCD data was simplified from 15 to eight categories to decrease the total number of modeled PERLNDs and IMPLNDs. For each HRU, it is possible to have a maximum of eight pervious land units (PERLNDs, based on the land use within each HRU), and one impervious land unit (IMPLND) corresponding to the percent area of impervious land within the HRU. This enabled each HRU to be parameterized based on land use as well as physical properties including soil information and elevation. The delineation process resulted in 99 HRUs with a total of 361 PERLNDs and 99 IMPLNDs subdivided using the land use categories.

S4. Snow Calibration

Prior to hydrology and sediment calibrations, snow parameters must be calibrated by comparing observed snow water equivalent (SWE) data to modeled outputs to ensure a reasonable simulation. The Snow Mountain and Humbug CDEC stations provided daily-adjusted SWE data and New Manzanita Lake, Lower Lassen Peak, and Feather River Meadow provided monthly values of SWE (Table S3). HSPF generally under-predicted observed SWE in the HRUs with snow stations but was close to the observed SWE in the smallest basin that had measured data available (Figure S1).

HSPF over-estimated snowpack for several of the years in HRU 7 but the average difference for the period of 1958–2000 was –7.5 mm and the overall trend of snowpack was similar to the observed data. The under-prediction of snow in the other model segments with snow gages (1, 24, 27 and 37) was expected because the snow-covered area was not represented by the large HRU that included lower elevations that did not receive snow.

Figure S1. Modeled annual snowpack (mm) from hydrologic response unit (HRU) 7 (red) compared to the adjusted snow water equivalent (SWE) (blue) for California Data Exchange Center (CDEC) station New Manzanita Lake (NMN).

Table S3. California Data Exchange Center (CDEC) snow stations used for snow calibration. HRU = hydrologic response unit.

Model HRU Number	Snow Station	CDEC ID	Time Interval	Data Available
1	Snow Mountain	SNM	Daily	1983-2008
7	New Manzanita Lake	NMN	Monthly	1958-2000
24	Lower Lassen Peak	LLP	Monthly	1958-2008
27	Feather River Meadow	FEM	Monthly	1958-2008
37	Humbug	HMB	Daily	1981-2008

S5. Hydrologic and Sediment Calibration

Hydrologic parameters for each HRU were initially determined in BASINS by overlaying spatial layers of physical properties such as land use, erosion potential (k-factor), soil texture, slope, and hydrologic soil group. The calibration approach for this study maintained spatial relationships of physical properties used to estimate hydrologic parameters across the domain in order to compensate for sparse calibration data. This requires spatially distributed values corresponding to physical properties that can be scaled up or down during the calibration process yet still preserve the spatial characteristics of each HRU. Each hydrologic parameter was initially assessed using the BASINS Technical Note 6 [8], with subsequent adjustments during the calibration process. In this calibration method, parameters are a function of spatial inputs such as land use and soils data. Some of the parameters are considered "calibration parameters", which initially start at an arbitrary value ranging by land use and are further modified through the calibration process.

Once the hydrologic parameters were developed, calibration was completed with the aid of the BASINS Technical Note 6 [8]. The modeled output of daily mean streamflow was compared to observed stream gage data with the full time period record (Table S1). Visual inspection of hydrographs and daily comparison scatter plots allowed scaling of the parameters until the best fit possible was achieved with additional consideration given to the gages on the Sacramento River, the main calibration target. The complete list of hydrologic parameters and ranges used in the model can be found in Table S4. Visual inspection of flow hydrographs for the validation (Figure S2) and calibration periods showed a good relationship of modeled to observed streamflow data. Modeled annual streamflow at the Sacramento River at Freeport location generally matched very well against observed data (Figure S3). Calibration statistics for each gage are located in Table S5.

BASINS Technical Note 8 [9] was used to determine initial ranges for each sediment parameter. The most common method for calculating sediment transport of sand in HSPF is the power function method [9]. The power function method is based on velocity and relies on accurate FTABLEs. The user adjusts the coefficient and the exponent in the sandload power function for each reach segment until the modeled results coincide with observed data. The Toffaleti and Colby methods were developed for wide rivers where the hydraulic radius is approximately equal to the depth, and are not often used due to lack of calibration parameters [9]. The Toffaleti and Colby methods are based on empirical relationships instead of calibration-based coefficients and exponents. The Toffaleti method was chosen because it showed a better agreement with observed sediment data than the Colby method. The Toffaleti method requires values for particle diameters and fall velocities of sand particles and HSPF divides the stream into four zones, applying the power function below to represent the velocity profile:

$$U = (1 + CNV) \times V \times (Y/FHRAD) ^{CNV}$$
(3)

where *U* is the flow velocity at distance Y above the bed (m/s), *V* is the mean stream velocity (m/s), CNV is the exponent derived empirically as a function of water temperature ($0.1198 + 0.00048 \times$ TMPR), TMPR is the water temperature in degrees C, and FHRAD is the hydraulic radius of the stream in meters.

A comprehensive explanation of the Toffaleti method can be found in the HSPF user manual [10]. To use the Toffaleti method, the modeled water temperature module HTRCH must be active within HSPF. The additional meteorological requirements for the HTRCH module are: daily solar radiation, wind speed, cloud cover and dew point. The transport of sediment is not very sensitive to water temperature for these conditions [11], the meteorological variables from the Fair Oaks California Irrigation Management Information System (CIMIS) [12] station for the year 2004 were used for the entire model period. The mean particle size (D₅₀) values were determined using a cumulative distribution function analysis of particle size distribution data from the USGS database [13]. Data were extracted for all gages in the model domain for which full particle size distributions were available.

For bed sediment, the median particle sizes for gravel and sand fractions were computed for each sample and averaged for each gage to estimate a D_{50} value for every reach. Settling velocities for

sand, silt, and clay were computed using the method outlined by Deitrich [14]. The complete list of sediment parameters is in Tables S6 and S7. The lack of reach calibration parameters with Toffaleti's method made the pervious and impervious land parameters essential in the calibration process and required a greater spatial distribution to compensate for the minimal observed data and fewer calibration parameters. Highly detailed and accurate FTABLEs also contributed to the successful calibration using the Toffaleti method. Results from the calibration of sediment varied by gage and results are shown in Table S8. Modeled annual sediment loads at the Sacramento River at Freeport location showed a good relationship to observed data (Figure S4).

Figure S2. Modeled daily flow at Reach 97 (red) compared to observed flow for Sacramento River at Freeport (11447650) (dashed blue) for the validation period (1980–1995).

Figure S3. Modeled annual streamflow (cms) (Reach 97, red) and observed (Sacramento River at Freeport, blue).

Figure S4. Modeled annual sediment loads (Mt) (Reach 97, red) and observed (Sacramento River at Freeport, blue).

Table S4. Hydrologic parameters used in the Hydrological Simulation Program—FORTRAN (HSPF) model. Table modified from [8]. ET = evapotranspiration, mm = millimeters, m = meters.

Name	Definition	Units		Range of Values		s	Function of	Range of Values Used in Calibrated Model
			Typ	oical	Po	ssible		
			Min	Max	Min	Max	-	
			SNOW	-PARM1				
LAT	Latitude of watershed segment	degrees	30	50	-90	90	Location	40
MELEV	Mean elevation of watershed segment	meters	15	900	0	10,000	Topography	800
SHADE	Fraction shaded from solar radiation	none	0.1	0.5	0	0.8	Forest cover, topography	0.3
SNOWCF	Snow gage catch correction factor	none	1.1	1.5	1	2	Gage type, characteristics, location	1.2
COVIND	Snowfall required to fully cover surface	mm	25	76	0.25	none	Topography, climate	10
			PWAT-	-PARM2				
FOREST	Fraction forest cover	none	0	0.5	0 0.95		Forest cover	0-1
LZSN	Lower zone nominal soil moisture storage	mm	76	200	0.25	2500	Soil, climate	76.2–508
INFILT	Index to infiltration capacity	mm/hr	0.25	6.35	0.003	2500	Soil, land use	0.25-38.1
LSUR	Length of overland flow	meters	61	152	0.3	none	Topography	91.4-152.4
SLSUR	Slope of overland flow plane	m/m	0.01	0.15	0.001	0.3	Topography	0.001-0.22
KVARY	Variable groundwater recession	1/mm	0	76	0	127	Baseflow recession variation	12.7-88.9
AGWRC	Base groundwater recession	none	0.92	0.99	0.85	0.999	Baseflow recession	0.85-0.999
			PWAT-	-PARM3				
PETMAX	Temperature below which ET is reduced	°C	2	7	none	none	Climate, vegetation	4.4
PETMIN	Temperature below which ET is set to zero	°C	-1	2	none	none	Climate, vegetation	1.67
INFEXP	Exponent in infiltration equation	none	2	2	1	3	Soil variability	2
INFILD	Ratio of max/mean infiltration capacities	none	2	2	1	3	Soil variability	2
DEEPFR	Fraction of groundwater inflow to deep recharge	none	0	0.2	0	0.5	Geology, groundwater recharge	0
BASETP	Fraction of remaining ET from baseflow	none	0	0.05	0	0.2	Riparian vegetation	0-0.2
AGWETP	Fraction of remaining ET from active groundwater	none	0	0.05	0	0.2	Marsh/wetlands extent	0-0.4
			PWAT-	-PARM4				
CEPSC	Interception storage capacity	mm	0.8	5	0	250	Vagatation type/density land use	2.5-6.35
CEI JC	interception storage capacity	111111	0.0	5	0	230	vegetation type/defisity, fand use	(monthly values)
UZSN	Upper zone nominal soil moisture storage	mm	2.5	25.4	0.2	250	Surface soil conditions, land use	6.9–50.8
NSUR	Manning's n for overland flow	none	0.15	0.35	0.05	0.5	Surface conditions, residue, etc.	0.08-0.5
INTFW	Interflow inflow parameter	none	1	3	1	10	Soil, topography, land use	1.0-10

IRC	Interflow recession parameter	none	0.5	0.7	0.3	0.85	Soil, topography, land use	0.3–0.98
LZETP	Lower zone ET parameter	none	0.2	0.7	0.1	0.9	Vegetation type/density, root depth	0.15–0.8 (monthly values)
			IWAT-	-PARM2				
LSUR	Length of overland flow plane	meters	15	46	0.3	none	Topography, drainage system	91.4
SLSUR	Slope of overland flow plane	none	0.01	0.05	0.004	0.15	Topography, drainage	0.05
NSUR	Manning's n for overland flow	none	0.03	0.1	0.01	0.15	Impervious surface conditions	0.05
RETSC	Retention storage capacity	mm	0.8	2.5	0	250	Impervious surface conditions	2.5
			IWAT-	-PARM3				
PETMAX	Temperature below which ET is reduced by half	°C	2	7	none	none	Climate, vegetation	4.4
PETMIN	Temperature below which ET is set to zero	°C	-1	2	none	none	Climate, vegetation	1.7

Madal Daash Nambar	Coope Name		NSE			R ²			ME%	
Model Keach Number	Gage Name	All	С	V	All	С	V	All	С	V
1	Cow C near Millville	0.56	0.55	0.61	0.60	0.58	0.66	-33	-39	-43
16	Battle C below Coleman Fish Hatchery	0.52	0.61	0.53	0.55	0.62	0.56	10	8	5
18	Cottonwood C near Cottonwood	0.69	0.66	0.69	0.75	0.70	0.74	-36	-27	-39
22	Sacramento R at Red Bluff	0.93	0.92	0.93	0.93	0.92	0.94	-8	-7	-10
31	Mill C near Los Molinos	0.32	0.51	0.50	0.57	0.61	0.62	45	29	19
40	Thomes C at Paskenta Ca ¹	0.55	_	0.45	0.61	-	0.58	-19	-	-20
42	Deer C near Vina	0.48	0.55	0.53	0.61	0.64	0.65	-19	-30	-35
46	Butte C near Chico	0.57	0.69	0.70	0.76	0.76	0.81	11	3	-5
49	Sacramento R near Butte City	0.91	0.89	0.93	0.92	0.91	0.94	-9	-11	-12
53	Feather R near Gridley ²	0.93	_	0.94	0.93	-	0.94	-4	_	-3
60	Yuba R near Marysville	0.81	0.84	0.82	0.82	0.85	0.82	90	457	-15
61	Sacramento R at Colusa	0.89	0.89	0.90	0.92	0.92	0.93	-11	-12	-13
62	Sutter Bypass near Nicolaus ³	0.53	_	_	0.76	-	_	95	_	_
78	Fremont Weir Spill To Yolo Bypass near Verona 4	0.58	_	_	0.68	-	_	10	_	_
88	Cache C at Yolo	0.77	0.75	0.80	0.80	0.79	0.82	-44	-43	-49
90	Sacramento R at Sacramento ⁵	0.91	_	_	0.91	-	_	7	_	_
94	Yolo Bypass near Woodland	0.67	0.62	0.60	0.90	0.85	0.91	69	38	975
98	Sacramento R below Wilkins Slough near Grimes	0.84	0.85	0.83	0.91	0.92	0.90	-14	-15	-17
99	Sacramento R at Verona	0.94	0.92	0.94	0.95	0.93	0.95	-7	-4	-8
97	Sacramento R at Freeport	0.91	0.90	0.91	0.93	0.91	0.93	-8	-6	-9

Table S5. Daily flow statistics for the simulation period (All, 1958–2008), the calibration period (C, 1998–2008), and the validation period (V, 1980–1995). R² = coefficient of determination, ME% = mean error, in percent, NSE = Nash Sutcliffe efficiency. Bold rows indicate gages located on the Sacramento River.

Notes: 11958–1996, 21964–1998, 31959–1980, 41958–1975, 51958–1979.

Table S6. Sediment land parameters used in the Hydrological Simulation Program – FORTRAN (HSPF) model. Table modified from [9]. kg/ha/day = kilogram per hectare per day.

Name	Definition	Units	ts Range of Values		6	Function of	Range of Values	
			Тур	oical	Poss	sible		
			Min	Max	Min	Max		
		SED-	PARM2					
SMPF	Management practice factor from universal soil loss equation	none	0	1	0	1	Agricultural use and practices	0.5–1
KRER	Coefficient in the soil detachment equation	complex	0.15	0.45	0.05	0.75	Soil	0.17-0.46
JRER	Exponent in the soil detachment equation	none	1.5	2.5	1	3	Soil, climate	1.5-2.5
AFFIX	Daily reduction in detached sediment	per day	0.03	0.1	0.01	0.5	Soil, compaction, agricultural operations	0.03
COVER	Fraction land surface protected from rainfall	none	0	0.9	0	0.98	Vegetation cover, land use	0-0.9
NVSI	Atmospheric additions to sediment storage	kg/ha/day	0	3	none	none	Deposition, activities, etc.	0
		SED-	PARM3					
KSER	Coefficient in the sediment washoff equation	complex	0.5	5	0.1	10	Soil, surface conditions	0.015-4.3
JSER	Exponent in the sediment washoff equation	none	1.5	2.5	1	3	Soil, surface conditions	1.1-3.0
KGER	Coefficient in the soil matrix scour equation	complex	0	0.5	0	10	Soil, evidence of gullies	0–10
JGER	Exponent in the soil matrix scour equation	none	1	3	1	5	Soil, evidence of gullies	1–1.6
		SLD-	PARM2					
KEIM	Coefficient in the solids washoff equation	complex	0.5	5	0.1	10	Surface conditions, solids characteristics	0.5
JEIM	Exponent in the solids washoff equation	none	1	2	1	3	Surface conditions, solids characteristics	1.8
ACCSDP	Solids accumulation rate on the land surface	kg/ha/day	0	1	none	none	Land use, traffic, human activities	0.0044
REMSDP	Fraction of solids removed per day	per day	0.03	0.2	0.01	1	Street sweeping, wind, traffic	0.05

Name	Definition	Units		Range of Values			Function of	Range of Values
			Турі	cal	Pos	sible		
			Min	Max	Min	Max		
			SANDFG					
SANDFG	Indicates method used for sandload simulation	none	1	3	1	3	Type of stream; user experience	1
			SED-GENPA	RM				
BEDWID	Width of cross-section over which HSPF will assume bed sediment is deposited	meters	3	152	0.3	none	Reach/waterbody morphology	3.1–6980
BEDWRN	Bed depth which, if exceeded will cause a warning message	meters	0.15	3	0.000 3	none	Reach/waterbody morphology, user needs	4.6–500
POR	Porosity of the bed (volume voids/total volume)	none	0.3	0.6	0.1	0.9	Reach/sediment bed characteristics	0.4
			SED-HYDPA	RM				
LEN	Length of the reach	km	0.16	1.6	0.016	none	Topography, stream morhpology	10.4–74.7
DEI TH	Drop in water elevation from upstream to	motors	15	25	0	none	Topography stream morphology	4 6-1755
DELIII	downstream extremities of the reach	meters	1.5	2.0	0	none	ropography, stream morphology	4.0-1755
DB50	Median diameter of bed sediment	mm	0.25	0.51	0.002	2500	Channel bed properties	0.25
	(assumed constant)		0.20	0.01	5	2000	chainer beu properties	0.20
			SAND-PM	1				
D	Effective diameter of the transported sand particles	mm	0.0508	2.03	0.025	2500	Sediment properties	0.15
W	Fall velocity of transported sand particles in still water	mm/sec	5.1	102	0.5	12,500	Particle diameter and density	5.8–228
RHO	Density of sand particles	g/cm ³	2.2	2.7	1	4	Sediment properties	2.6
KSAND	Coefficient in sandload power function formula	complex	0.01	0.5	0.001	none	Sand properties and hydraulics	2
EXPSAND	Exponent in sandload power function formula	complex	1.5	3.5	1	none	Sand properties and hydraulics	2

	SILT-CLAY-PM ¹											
D	Effective diameter of silt (clay) particles	mm	0.005 (0.00025)	0.064 (0.004)	0	0.07	Sediment properties	0.001–0.15				
W	Fall velocity of transported silt (clay) particles in still water	mm/sec	0.00254	0.254	0	5	Particle diameter and density	0.2–5				
RHO	Density of silt (clay) particles	g/cm ³	1.8	2.7	1.5	3	Sediment properties	2.8				
TAUCD	Critical bed shear stress for deposition	kg/m ²	0.0045	0.14	0	none	Silt/clay properties and hydraulics	0.002-0.16				
TAUCS	Critical bed shear stress for scour	kg/m ²	0.023	0.23	0	none	Silt/clay properties and hydraulics	0.002-0.6				
М	Erodibility coefficient	kg/m².day	0.0045	0.91	0	none	Silt/clay properties and hydraulics	0.002				

Note: ¹ Table used twice, once for silt and once for clay parameters.

Table S8. Daily sediment calibration statistics. Values in bold are located on the Sacramento River. R² = coefficient of determination, ME% = mean error.

Model Reach Number	SSC (mg/L) or Sediment Loads (Tons/Day)	Gage Name	Sample Size (n)	R ²	Modeled/Observed	ME%
1	Sediment loads	Cow C near Millville	212	0.12	1.5	194
14	SSC	Cottonwood C near Olinda	798	0.40	0.9	66
15	Sediment loads	Mf Cottonwood C near Ono	196	0.72	1.1	55
18	Sediment loads	Cottonwood C near Cottonwood	1864	0.70	1.3	476
18	SSC	Cottonwood C near Cottonwood	2335	0.31	0.9	173
22	Sediment loads	Sacramento R at Red Bluff	966	0.46	1.3	-7
40	Sediment loads	Thomes C at Paskenta Ca	4163	0.25	0.8	833
40	SSC	Thomes C at Paskenta Ca	4163	0.20	1.3	177
48	Sediment loads	Sacramento R near Hamilton City	733	0.72	0.5	-53
49	Sediment loads	Sacramento R near Butte City	697	0.83	0.8	-25
49	SSC	Sacramento R near Butte City	699	0.64	0.7	-41
53	Sediment loads	Feather R near Gridley	10,353	0.78	0.9	51
53	SSC	Feather R near Gridley	10,556	0.54	0.9	24
59	Sediment loads	Feather R at Yuba City	4383	0.66	0.9	-0.1
59	SSC	Feather R at Yuba City	4383	0.24	0.7	-22
61	Sediment loads	Sacramento R at Colusa	949	0.52	1.3	49
61	SSC	Sacramento R at Colusa	944	0.37	0.8	19
69	Sediment loads	Feather R near Nicolaus	425	0.82	1.0	48
69	SSC	Feather R near Nicolaus	425	0.49	1.2	46
74	Sediment loads	Cache C above Rumsey	9638	0.21	0.2	2605
74	SSC	Cache C above Rumsey	9638	0.31	0.6	723
78	Sediment loads	Sutter Bypass near Nicolaus	97	0.74	1.2	-61

78	SSC	Sutter Bypass near Nicolaus	97	0.59	0.4	-79
84	Sediment loads	Cache C near Brooks	637	0.42	0.7	816
84	SSC	Cache C near Brooks	637	0.54	1.1	220
88	Sediment loads	Cache C at Yolo	573	0.38	1.0	2213
88	SSC	Cache C at Yolo	685	0.54	1.2	5539
94	Sediment loads	Yolo Bypass near Woodland	78	0.07	1.1	187
94	SSC	Yolo Bypass near Woodland	78	0.009	1.9	195
99	Sediment loads	Sacramento R at Verona	212	0.21	0.4	151
99	SSC	Sacramento R at Verona	212	0.21	1.5	250
97	Sediment loads	Sacramento R at Freeport	10,593	0.38	1.1	10
97	SSC	Sacramento R at Freeport	10,593	0.25	0.7	-7

References

- 1. USGS Water Data for the Nation. Available online: waterdata.usgs.gov/nwis (accessed on 3 March 2013).
- 2. California Data Exchange Center. Available online: cdec.water.ca.gov/index.html (accessed on 3 March 2013).
- 3. U.S. Army Corps of Engineers National Inventory of Dams. Available online: nid.usace.army.mil/ (accessed on 12 June 2014).
- 4. United States Army Corps of Engineers (USACE). National Inventory of Dams. Available online: http://www.agc.army.mil/Media/FactSheets/FactSheetArticleView/tabid/11913/Article/480923/nationalinventory-of-dams.aspx (accessed on 10 December 2012).
- 5. Brown, C.B. Discussion of sedimentation in reservoirs. In *Proceedings of the American Society of Civil Engineers*; Transactions American Society of Civil Engineer: New York, NY, USA, 1944; Volume 69, 1493–1500.
- 6. U.S. Bureau of Reclamation. *Shasta Lake Water Resources Investigation, California: Draft Environmental Impact Statement;* U.S. Department of the Interior: Sacramento, CA, USA, 2013.
- Lahlou, M.; Shoemaker, L.; Choundhury, S.; Elmer, R.; Hu, A.; Manguerra, H.; Parker, A. Better Assessment Science Integrating Point and Nonpoint Sources – BASINS version 2.0; Users manual. No. PB--99-121295/XAB; Tetra Tech, Inc.: Fairfax, VA, USA; EarthInfo, Inc.: Boulder, CO, USA; Environmental Protection Agency, Standards and Applied Science Div.: Washington, DC, USA, 1998.
- 8. U.S. Environmental Protection Agency. *Estimating Hydrology and Hydraulic Parameters for HSPF*; EPA BASINS Technical Note 6; Office of Water: Washington, DC, USA, 2000; pp. 1–32.
- 9. U.S. Environmental Protection Agency. *Sediment Parameter and Calibration Guidance for HSPF*; EPA BASINS Technical Note 8; Office of Water: Washington, DC, USA, 2006; pp. 1–43.
- Bicknell, B.R.; Imhoff, J.C.; Kittle, J.L., Jr.; Donigian, A.S., Jr.; Johanson, R.C. *Hydrologic Simulation Program – FORTRAN, User's Manual for Version 12*; AQUA TERRA Consultants: Mountain View, CA, USA, 2001; pp. 1–845.
- 11. Colby, B.R.; Scott, C.H. *Effects of Water Temperature on the Discharge of Bed Material*; U.S. Government Printing Office: Washington, DC, USA, 1965.
- 12. Water Quality Samples for California. Available online: nwis.waterdata.usgs.gov/ca/nwis/qwdata (accessed on 15 April 2014).
- 13. California Irrigation Management Information System. Available online: cimis.water.ca.gov (accessed on 31 January 2014).
- 14. Dietrich, W.E. Settling velocity of natural particles. Water Resour. Res. 1982, 18, 1615–1626.

© 2016 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).