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Abstract: A two-decade (1989–2008) time series of lake phyto- and zooplankton, water characteristics
and climate in 17 Danish lakes was analysed to examine the long term changes and the effects
of lake restoration efforts. The analyses of the pair-wise correlations across time series revealed
a strong synchrony in climatic variables among the lakes. A significant, but weak increase in air
temperature was observed and resulted in a corresponding increase in surface water temperature
only in summer. Lake physico-chemical variables had weaker synchrony than climatic variables.
Synchrony in water temperature and stratification was stronger than lake chemistry as the former is
mostly affected by atmospheric energy flux. Synchrony in the taxonomic richness of the plankton
groups and phytoplankton biomass was apparent, to a similar degree as observed for lake chemistry.
The synchrony and the temporal trends in lake chemistry and plankton were more pronounced for
the lakes with strong re-oligotrophication. Phytoplankton biomass decreased and plankton richness
increased in these lakes, with a shift from Chlorophyta dominance towards more heterogeneous
phytoplankton communities. Notably, a widespread significant positive trend in plankton richness
was observed not only in lakes with strong re-oligotrophication but across all lakes. The widespread
increase in plankton richness coincided with widespread decrease in phosphate and total nitrogen
concentrations, as well as with the trends in climate indicating a likely joint effect of nutrient reduction
and climate in driving lake plankton. However, temporal changes and synchrony as well as the
recovery of richness and composition of lake plankton more coherently corresponded with the
nutrient loading reduction across the Danish landscape, while the role of climate control of the lake
plankton was less pronounced.

Keywords: temporal coherence; zooplankton; phytoplankton; re-oligotrophication; lake recovery;
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1. Introduction

Eutrophication and climate change are the two major global stressors of freshwater lakes in
recent decades. Eutrophication has been widely recognised as a serious problem due to the resulting
notorious toxic algae blooms and low water clarity [1,2]. Consequently, various restoration measures
have been implemented in different parts of the world, especially after the 1970s and 1980s [3–5].
At the same time, climate change has also been widely acknowledged as an important factor affecting
freshwater ecosystems [6], especially due to the trends observed in lake physical characteristics [7].
Most importantly, climate warming is proposed to mimic and worsen the effects of eutrophication [8–10].
Therefore, understanding the extent and coherence of long-term ecosystem response to the changes in
climate and eutrophication/re-oligotrophication is fundamental for lake conservation, restoration and
management [11].

Effects of eutrophication have been widely documented in lakes. The most pronounced effects are
increased phytoplankton biomass and associated degradation of water quality, as well as decreased
diversity in lake plankton and changes in plankton community structure [12]. Reduction in nutrient
concentrations produced by lake restoration efforts has also created marked responses in plankton
biomass and community composition [5,13–16].

Long-term climate changes can also induce biotic and abiotic responses of lake ecosystems.
For example, in the last decades, trends towards warmer lake water [17–20], changes in thermocline
depth and delay in turnover [21] as well as alterations in lake-catchment interactions [22]
have been documented. Furthermore, changes in plankton richness [23], phenology [24–26],
community composition [27,28] and trophic interactions [29,30] have been recorded as a reaction
to long-term warming.

Some studies have shown that nutrient changes have a stronger influence on lake plankton
than long-term climatic alterations [31]. However, the response of plankton communities to nutrient
reduction has sometimes been found to be weak or inconsistent in phytoplankton [27,32,33] and
zooplankton [13,34,35]. Therefore, a joint effect of changes in nutrient concentrations and climate
is more likely [16,36]. Overall, the scarcity of long-term, multiple-lake data sets has limited our
understanding of the combined effects of a changing climate and nutrient concentrations on the
diversity of plankton and functioning of lake ecosystems [23,37,38].

Lake biotic and abiotic characteristics may have coherent temporal changes (i.e., synchrony)
in several lakes sharing the same landscape indicating the driving role of large scale factors like
climate or catchment-scale anthropogenic effects. Few studies have examined synchrony in temporal
environmental and ecological changes among lakes [7,39–41]. Climatic effects, especially in the form
of energy fluxes (i.e., temperature, irradiance), are uniform across large spatial scales and can induce
synchronous changes in physical characteristics of lake water as well as, albeit weaker, in chemical and
biological parameters [7,39,42]. Factors affecting the exchange of matter, especially mediated through
the landscape, have been recognised to weaken the synchrony in biotic and abiotic lake variables across
large spatial scales due to catchment-specific variations [39,40]. However, changes in matter exchange,
mostly of anthropogenic origin, like acidification [43], eutrophication and re-oligotrophication [23,27],
can also induce synchrony in lakes, even at large scales.

We analysed long-term trends in phyto- and zooplankton as well as lake water physico-chemistry
and climate in 17 Danish lakes between 1989 and 2008. Many of the study lakes were recovering
from previous eutrophication during the monitoring period [44]. We first tested if temporal changes
in lake environmental and ecological characteristics were synchronous between lakes using mean
pair-wise Pearson correlations across time series of each variable. Second, we assessed if variables
demonstrated significant long-term trends during the study period using Kendall tests. In parallel,
we also examined plankton community composition using Non-Metric Multidimensional Scaling
(NMDS) and tested for directional temporal changes in plankton community composition during
the study period. To better elucidate the effects of re-oligotrophication and to disentangle the role of
climatic trends, we divided the lakes into three groups according to changes in their annual average
TP concentrations, reflecting the strength of re-oligotrophication: lakes with a strong decline (S), lakes
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with weak changes (W) and lakes with no change (N). The analyses were performed for all lakes
together and for each group separately as well as for the whole year (excluding winter) and each
season separately (spring: months 3–5, summer: months 6–8 and autumn: months 9–11). We expected
that strong re-oligotrophication indicated by a strong TP decrease would induce long-term trends and
strong synchrony in the S lakes. Consistent trends in all lakes, especially in the N and W lakes, would
indicate influence of other large-scale factors such as climatic effects.

2. Materials and Methods

Seventeen lakes were monitored (Figure A1) between 1989 and 2008 as part of the Danish
monitoring programme on the aquatic environment [45]. Winter samples (December–February) were
excluded due to varying sampling intensity across years. The remaining samples had an average
sampling interval of 14 days (Table A1). Phytoplankton was collected from mid-lake depth-integrated
samples covering the photic zone. Depth-integrated zooplankton samples were collected at three
stations placed randomly in areas representing 80% of maximum depth and subsequently pooled.
Phyto- and zooplankton were counted and their biomass was estimated based on size and shape.
Details on plankton sampling, identification and counting can be found in Özkan, et al. [46]. All taxa
were aggregated to genus level due to varying intensity of species-level identification between different
plankton groups and potential differences in the identification skills of the taxonomists. We screened
the plankton data for potential inconsistencies and made corrections with an inclusive approach [46].

Plankton biomass was calculated for the whole sample as well as for the main groups, i.e.,
Chlorophyta-CHL, Cyanobacteria-CYA, Bacillariophyceae-DIA, Cryptophyta-CRY, Chrysophyta-CHR
and Euglenophyta-EUG for phytoplankton and Cladocera-CLA, Copepoda-COP and Rotifera-ROT
for zooplankton. Additionally, the proportional biomass for all groups was calculated to estimate
their contribution to total biomass (dominance). The proportional biomass excluding the three most
dominant groups (CHL, CYA and DIA) was also calculated to examine the changes in the rare groups
together. Genera richness, rarefied richness (based on biovolume for phytoplankton and on counting
for zooplankton) and Pielou’s evenness [47] were calculated as surrogates of plankton diversity.
Richness of the main groups of plankton was also calculated.

Samples for the analysis of lake water chemistry were collected simultaneously with the
zooplankton samples and analysed for total phosphorus (TP), phosphate (PO4), total nitrogen (TN),
nitrate+nitrite (NO3-2), ammonia (NH4), silicate (SiO2), chlorophyll-a (Chl-a), suspended solids (SS),
pH and alkalinity [45,48]. Temperature in the water column was recorded at one-metre intervals at
the deepest point of the lake. Water column stratification was calculated from temperature profiles
as Schmidt stability index [49]. Matlab codes from Lake Analyser software [50] were adapted in
R environment for the Schmidt stability index calculations. Calculations were made only when
temperature was recorded at least to the mid-depth of the lake, and the temperature profile was forced
to be monotonic from bottom to top before calculations. When a lake variable was missing for a sample,
it was replaced by the most relevant available data: first, the mean of observations in a seven-day
temporal window; second (if a substitute sample was not available at the first step), the mean of
observations in a 15-day window or, third, linear interpolation of neighbouring samples if they were
less than 30 days apart (Table A1).

Mean air temperature, wind speed, solar irradiance (from daily averages interpolated to 20 km
grids) and precipitation (from daily averages interpolated to 10 km grids and corrected for wind and
altitude depending on the month of the year) were compiled from the Danish Meteorological Institute.
Main characteristics of the lakes are given in Table 1.

Table 1. Summary of lake morphology and nutrient concentrations in the study lakes.

Lake Area (ha) Average Depth (m) Max. Depth (m) TP (mg·L−1) TN (mg·L−1)

Min. 12 0.8 1.8 <0.001 0.100
Median 37 2.7 6.0 0.075 1.770

Max. 3954 15.1 32.6 2.700 19.000



Water 2016, 8, 427 4 of 23

Many of the study lakes have been subject to re-oligotrophication during the monitoring period
following earlier eutrophication. We expected that the strength of the nutrient decline is the prominent
determinant of the trends in plankton. Therefore, we classified the lakes into three groups according to
trends in TP concentration, reflecting the strength of re-oligotrophication (Figure 1): strong decline,
weak decline and no decline lakes. The trends were assessed using Mann-Kendall rank correlation [51].
Comparison of the analyses across these lake groups enabled us to better understand the effect of
re-oligotrophication and to disentangle the role of climatic trends. Six lakes experienced a significant
and substantial decrease in TP with overall high TP concentrations (Tau > 0.2, annual mean TP
0.59–0.14 mg·L−1) and were grouped as S (strong TP decrease) lakes. Six lakes had significant but
weak changes at moderate-high TP concentrations (Tau < ±0.2, annual mean TP 0.40–0.05 mg·L−1)
and were grouped as W lakes (weak TP decrease). Three lakes with low TP concentrations (annual
mean TP < 0.03 mg·L−1) exhibited no trend in TP and were grouped as N (no TP decrease) lakes.
The statistical analyses of synchrony in temporal changes, long-term temporal trends and community
changes were performed and reported for all lakes and each group separately. Two lakes also
experienced a significant decrease in TP with Tau > 0.2; however, the change occurred across a short
TP gradient with overall low concentrations (annual mean TP 0.03–0.02 mg·L−1). Therefore, these
two lakes were not assigned to any group, but included in the analyses when the lakes were analysed
or reported together.
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Figure 1. Annual mean total phosphorus (TP) change in lakes with no TP trend (N lakes, a), with
a weak decreasing TP trend (W lakes, b) and with a strong TP decrease (S lakes, c). Two lakes at
the bottom of the c plot were not included in the S lake category due to very low TP concentrations.
Note that the range of the y axes are different between the plots.

We assessed if temporal changes in climatic, lake physico-chemical and plankton variables
occurred synchronously across lakes, reflecting common large-scale driving factors (for example
climate). Annual and seasonal means were calculated for each climatic, physico-chemical and plankton
variable in each lake. This provided an annual time series for each variable in each lake. Each time
series was standardised to zero mean and unit standard deviation prior to the analyses. The synchrony
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of a variable was calculated as mean pair-wise Pearson correlation coefficient (r) for all pairs of time
series of that variable across lakes [7].

We quantified the strength and significance of long-term changes in each variable in each lake
by testing for monotonic trends in each variable over the two decades using Mann-Kendall rank
correlation [51]. The Kendall correlation coefficient (Tau) was taken as zero when the test was
insignificant. We expected a monotonic fit to be adequate as two main drivers of these ecosystems,
nutrient levels and climate, had monotonic changes during the study period. The majority of the lakes
had experienced nutrient reduction due to restoration [52], and no shift was observed in the decreasing
trend in the NAO index (Figure 2) during the study period.
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Figure 2. Two-decade trends in temperature (a, ◦C), solar irradiation (b, W·m−2), precipitation (c, mm)
and wind speed (d, m·s−1) averaged over 17 lakes, as well as the North Atlantic Oscillation Index (e).
Yearly means were calculated for the whole year excluding winter and separately for spring, summer
and autumn. Generalised additive model annual smoothers [53] were overlaid to each dataset to
summarise trends (P < 0.05 for all).
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We examined how phyto- and zooplankton community composition changed in the study lakes
during the study period using NMDS ordinations [54]. In each lake, the plankton community is
defined annually as pooled plankton communities. The pooling is performed as summed taxa
biomass. All plankton lake-years were ordinated together separately for phyto- and zooplankton.
These ordinations were examined to understand if there are any directional changes in a lake and if
these changes are similar across lakes, depicting the roles of nutrient reduction and climate change.
The analyses were also undertaken for seasonally pooled plankton communities. The number of
plankton samples in a lake for the whole year and each season varied during the study period.
To assemble a balanced dataset for ordinations, 14, 3, 4 and 3 plankton samples were pooled as annual,
and seasonal (spring, summer and autumn, respectively) plankton communities for each lake and year.
Lake years without sufficient samples were omitted from the analyses and a random selection was
made for lake years with an excess number of samples.

Ordinations were performed for two axes (as the plankton community space is to be represented
in two dimensions in the analyses) based on Bray-Curtis distances between pair-wise plankton
communities. The stress values were sub-optimal (0.27 and 0.24 for phytoplankton and zooplankton
ordinations, respectively) as we tried to ordinate in two dimensions. Most of the models did not
converge and we therefore used the best solution after 1000 trials. However, the conclusions were
identical for several different trials (visually checked).

Each lake was analysed to see if the plankton communities showed significant directional changes
in the ordination space. The axis scores were modelled against years using multivariate linear
modelling, and significance was tested using the ANOVA function. If a significant change emerged in
a lake, the direction of change was plotted with a vector. End points of the vector corresponds to the
predicted axis scores for the start and end years in that lake. If there is no significant change in a lake,
an ellipse centred on mean axis scores of sites is plotted with radiuses corresponding to the maximum
distance of sites from the mean for each axis.

All analyses were performed for all lakes combined and separately for each group of lakes as
well as for time-series for the whole year (excluding winter) and separately for each season. Seasons
were defined as months 3–5, 6–8 and 9–11 for spring, summer and autumn, respectively. Statistical
analyses were made using R [55] with the vegan package [56] for NMDS ordination, the Kendall
package [57] for monotonic trend analyses in time series and the mgcv package [53] for Generalized
Additive Model smoothers.

3. Results

3.1. Synchrony in Temporal Changes

Climate variables exhibited strong synchrony in temporal trends (c. r > 0.7) for all lakes combined
(Figure 3). The patterns of synchrony in climatic variables were similar in each S, W and N lake groups
(Figure 3). The synchrony was less marked for wind and precipitation than for air temperature and
irradiance. Lake water variables had weaker synchrony than climatic variables; however, surface
water temperature demonstrated consistent moderate synchrony (c. r = 0.5) in all lakes and in the
different lake groups. Synchrony in water column stability was weaker than that of water temperature
and varied between lake groups, likely reflecting an uneven distribution of deep and shallow lakes
across lake groups. Lake chemistry variables with significant synchrony in all lakes mostly consisted
of nutrient variables (TN, NO3-2 TP, PO4), and their synchrony was three-fold weaker than that of
climate variables. The patterns of synchrony in water chemistry variables differed considerably among
lake groups. S lakes had significant synchrony for a large set of water chemistry variables dominated
by several nutrient variables, and the strength of the synchrony in TN and TP was as large as that
of the climatic variables (c. r > 0.6). Furthermore, SS and Secchi disk depth reflecting water clarity
also exhibited moderate synchrony in S lakes (r = 0.3–0.5). However, few variables showed a weak to
moderate synchrony in W and N lakes.
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Figure 3. Summary of the synchrony in climate, lake physico-chemistry and plankton variables
for the whole year excluding winter analysed for all lakes and for the S, W and N lakes separately.
Y axis represents synchrony calculated as mean pairwise correlation of each variable. Only variables
with r > 0.1 are given and main variable groups are divided by vertical lines as climate, lake water
characteristics and plankton variables. Results of separate analyses for each season are given in the
Figures A2–A4.

The pattern of synchrony in plankton variables largely reflected the pattern of synchrony in lake
chemistry in all lake groups. Notably, a moderate synchrony was observed for the richness of several
plankton groups in all lakes and in each lake group. There was also synchrony in the richness of all and
of the main groups of zooplankton as well as in the richness of all and some groups of phytoplankton
and in phytoplankton biomass.

A large number of plankton variables exhibited moderate synchrony in S lakes (<0.6), and
synchrony was generally stronger for phytoplankton biomass and richness variables than for other
plankton variables. N lakes also demonstrated moderate synchrony for a large number of plankton
variables; yet, in contrast to the S lakes, synchrony was stronger for variables related to zooplankton
richness than for other plankton variables. However, only a few plankton variables showed synchrony
in W lakes, and only weakly so.

The analyses of synchrony were repeated for each season (Figures A2–A4). The strength of
synchrony in climatic variables was similar across seasons. Synchrony in surface temperature and
water column stratification was stronger in summer than in the other seasons. Weaker synchrony
was observed in lake chemistry and plankton variables in summer and autumn than in spring in all
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lakes, this being true also for the W and N lakes. However, synchrony in lake chemistry and plankton
variables in S lakes was generally consistent across seasons.

3.2. Long-Term Trends in Environmental and Plankton Variables

Climatic parameters exhibited significant, but weak long-term monotonic trends over the
two decades (Table A2, Figure 2 and Figure A5). Air temperature had a significant positive trend for
the whole year (excluding winter) and for each season separately (r = 0.05–0.09, P < 0.01), with the
strongest trend observed in summer. Wind speed demonstrated a significant negative trend for the
whole year and for each season (r = −0.05–−0.10, P < 0.01); the strongest trend occurring in spring.
Precipitation showed a significant positive trend for the whole year and in summer (r = 0.02 and 0.05,
P < 0.05). Irradiance had a significant positive trend only in spring (r = 0.07, P < 0.001). These trends
coincided with a decrease in the NAO index (Figure 2). The trends in temperature, irradiance and
precipitation were uniform across lakes (Figure A5). Only the trends in wind speed exhibited variation
across lakes (Figure A5).

No significant long-term trend was detected in water column stability and surface temperature
in the study lakes, when analysed for the whole year (Figure 4). However, strong long-term trends
were observed in the annual time series of several lake chemical variables, especially a widespread
decrease in N and P concentrations is observed (Figure 4). Notably, TN demonstrated a decreasing
trend in all, but two W lakes and PO4 generally had a decreasing trend except in three lakes (Figure 4).
NO3-2 decreased in all W, two N and two S lakes. NH4, SiO2 and pH showed no clear trend across the
different lake groups; however, pH decreased for three S lakes. Alkalinity and Secchi depth increased
and SS decreased in all S lakes. Overall, the decreasing trends in nutrient concentrations and the
increasing trends in water clarity were pronounced in the S lakes. In the analyses of seasonal time
series (Figures A6–A8), surface temperature exhibited a positive trend in 70% of the lakes in summer.
The main patterns were similar between seasons for the remaining lake chemistry variables, however,
the nutrient reduction was strongest in spring in all lakes. The negative trend in TP and PO4 was
slightly weaker, while the increase in Secchi disk and decrease in SS were stronger in the S lakes,
in summer than in the other lake groups.

The annual time series of plankton richness and biomass variables also exhibited strong long-term
trends that reflected the patterns in lake physico-chemical variables (Figure 4). Generally, the trends
in phytoplankton variables were more pronounced in the S lakes, whereas the zooplankton trends
were similar across all lakes. Total phytoplankton biomass and Chl-a strongly decreased in all S lakes
except for one, with only few inconsistent significant trends in the W and N lakes. Phytoplankton
richness increased for all S and N lakes, albeit more strongly in the former. Notwithstanding the
increases found in three S lakes, no clear patterns emerged for phytoplankton evenness. Zooplankton
biomass did not show clear differences among lake groups, whereas zooplankton richness increased
in all but two lakes, whilst evenness decreased in 65% of the lakes. Richness of all the main groups
of phytoplankton, except CYA and CHR, increased in the S lakes. CHL richness increased in all
N lakes, while CRY richness increased in all, but two W lakes and one N lake. Both CHL biomass
and dominance decreased in the S lakes, while the total contribution of all rare groups as well as
the biomass of DIN, CRY and EUG increased. In contrast, CYA dominance increased in four S lakes.
Richness of all the main groups of zooplankton increased in 90% of the lakes, without any pattern in
biomass. However, CLA dominance increased in six lakes, with a decrease in only one lake, while ROT
dominance decreased in all N lakes. Seasonally (Figures A6–A8), the negative trend in phytoplankton
biomass was strongest in spring, while the positive trend in phytoplankton richness and the negative
trend in Chl-a were strongest in summer in the S lakes.

The generally increasing trend in plankton richness also appeared in the annually pooled plankton
communities (Figure 5). Phyto- and zooplankton richness of pooled communities correlated positively
with year in 40% and 75% of the lakes, respectively.
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Figure 4. Summary of the monotonic long-term trends in lake physico-chemical and plankton variables.
Trends were analysed using Kendall correlations and the magnitude of the temporal correlation was
reported in Y axis in each panel. Lakes were grouped into S, W and N lakes. Plotting symbols represent
a unique lake in each lake group for different variables, and grey colour represents deep lakes (mean
depth < 3.5 m). The Kendall correlation is taken as 0 for the insignificant tests. R, richness; RR, rarefied
richness; E, evenness; B, biomass; PrB, proportional biomass; CHL, Chlorophyta; CYA, Cyanobacteria;
DIA, Bacillariophyceae; OTH, all phytoplankton groups excluding CHL, CYA, DIA; CRY, Cryptophyta;
CHR, Chrysophyta; EUG, Euglenophyta; CLA, Cladocera; COP, Copepoda; ROT, Rotifera. Results of
separate analyses for each season are given in the Figures A6–A8.
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3.3. Long-Term Trends in Plankton Community Composition

When analysed with NMDS, phytoplankton communities differed strongly between S, W and
N lakes (Figure 6), with a gradient from CHL and CYA dominance in the S lakes towards more
heterogeneous communities in the N lakes. Phytoplankton communities of most S lakes showed
a significant temporal trend in their community composition towards that of the N lakes, being
consistent across all seasons. Only a few W lakes had a significant directional temporal trend,
and the direction was not consistent. Zooplankton community composition also differed between
S, W and N lakes (Figure 7) with a gradient from ROT and COP dominance in S lakes towards
more heterogeneous communities with increasing CLA contribution in the N lakes. However,
the temporal change in zooplankton composition was weaker and less consistent in direction than that
of phytoplankton.
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Figure 6. Non-Metric Multidimensional Scaling (NMDS) ordination of annual and seasonal
phytoplankton assemblages. Following the ordinations taxa scores were aggregated for main groups,
and Voronoi polygons were plotted for each main group. The legend explaining which colour represents
which phytoplankton group was given below the figure. The colours in the background represent the
compositional surface of the phytoplankton assemblages in all lakes. Temporal change in assemblage
composition is displayed by an arrow for lakes with significant change between years. Compositional
variation in lakes without significant change is indicated with an ellipse. Blue, black and red are used
for N, W and S lakes, respectively, for the arrows and ellipses. Two lakes not included in any of the
groups are indicated with white. For details see Figure 4.
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4. Discussion

Analyses of two-decade time series of 17 Danish lakes revealed synchronous temporal changes in
biotic and abiotic lake characteristics and several significant long-term trends in lake plankton, which
were most consistently associated with a widespread decline in nutrient concentrations. The temporal
trends indicated that the restoration measures implemented in the Danish lakes have led to improved
water quality and recovery of plankton communities in most of the study lakes, potentially creating
a widespread increase in plankton richness.

The temporal trends in the studied variables showed the strongest synchrony for climatic variables
and for the lake characteristics most influenced by these such as surface water temperature and water
column stability. The strong synchrony in climate variables across Danish lakes was to be expected
due to the lack of altitudinal differences and the spatial scale of the study (<300 km). Wind speed and
precipitation had weaker synchrony (c. 0.7) and more variability among lakes than temperature and
solar irradiance (c. 0.9), reflecting that wind and precipitation are more affected by local factors [7,40].
The synchrony in air temperature induced a corresponding synchrony in surface water temperature
and water column stratification, these having a direct link to climate and thus a stronger synchrony
than lake chemistry [7]. The positive albeit weak long-term trend in air temperature and negative trend
in wind speed did not translate into a long-term trend in surface water temperature and stratification
in the whole-year time series, and no clear effect of annual changes in climate on lake chemistry was
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identified. Only in summer, when the positive long-term trend in temperature was strongest, did
a corresponding significant positive trend in surface water temperature occur. This suggests that
either the climatic changes were not strong enough to induce a trend in lake water, except for summer,
or that the effect of these variables was confounded by catchment-specific factors. An analysis of
125 freshwater and marine phytoplankton time series demonstrated that climate-driven phytoplankton
biomass cycles were heavily obscured by other drivers of population variability, indicating the difficulty
of detecting climate-driven trends in plankton communities [58]. However, a long-term warming
trend has been documented for both North American [17,18] and European [19,20] deep lakes in
investigations covering a longer time period than in our study. Deep dimictic lakes with stable summer
stratification are known to better reflect long-term climatic trends, whereas frequently circulating
polymictic lakes are least influenced [59]. Therefore, the lack of a strong link between the long-term
trends in climate and lake physico-chemistry may reflect that most of the lakes in the present study
were polymictic shallow lakes and that only a weak change in annual mean air temperature occurred
in the period covered by our study. However, analyses at seasonal and short-term scales may also
demonstrate stronger climatic control, for instance, through extreme weather events [60], changes in
the duration, frequency and depth of stratification [61] and the spring phenology of plankton [24,36,62].
For example, in analyses of 20 Danish lakes some of which are included in the present study found
a decrease in the depth of the thermocline with a delay in autumn turnover in response to climate
change [21].

The annual means of water chemistry variables were also synchronous across lakes, though with
a three-fold decrease in strength in comparison with climate variables. Weaker synchrony in lake
chemistry than in climate reflects a confounding influence of catchment-scale local factors or internal
dynamics [7,40]. A more widespread and stronger synchrony in water chemistry and water clarity in
the S lakes indicated that the strong nutrient reduction in these lakes played an overriding role in the
temporal trends. This suggests that the steep environmental gradients had a stronger effect in lake
ecosystems than the climatic changes in the two-decades the study period. Furthermore, long-term
decreasing trends in PO4, TN and NO3-2 in most of the lakes (80%, 90% and 75%, respectively)
accompanied by a moderate synchrony in NO3-2, TN, TP and PO4, reflected marked nutrient reduction
in all studied Danish lakes, not only in S lakes [5]. The significant decrease in nutrients is consistent
with the fact that the Danish landscape is largely used for agricultural activities (c. 60%, [63]), and
a recent reduction in fertilizer use and changes in agricultural activities have resulted in decreased
nutrient loads from lake catchments [64,65]. The analysis of long-term trends in N:P ratio (Figure A9)
showed that N:P ratio increased in three S and two W lakes reflecting the decrease in TP concentrations.
Whereas, N:P ratio decreased in all N lakes and two W lakes probably indicating that the reduced
N input from the lake catchments resulted in a decrease in N:P ratio in the absence strong decline in
P concentrations. However, reduced phosphorus concentrations in lakes have been proposed to lead to
a decrease in N removal efficiency [66]. An analysis of long-term time series for 12 deep lakes showed
a marked increase in N concentrations following a sharp decrease in P concentrations, despite stable
or decreasing N inputs [66]. In the present study, however, both N and P concentrations exhibited
a widespread long-term decrease. The co-decrease in N and P was most likely due to successful
management of both point and non-point nutrient sources in Danish catchments [64,65] rather than
internal dynamics subsequently resulting in potential N accumulation [66]. Furthermore, the majority
of the lakes in the present study were shallow and small with short residence times, which might have
facilitated stronger N removal [5,67].

Previous studies suggest that lake biotic variables are less synchronous than abiotic
variables [7,39,40,68,69]. Here plankton displayed a weaker annual synchrony than climate. However,
the strength of the synchrony in plankton was at a similar level as that of lake chemistry, probably
indicating primary control of the temporal changes in lake plankton by lake chemistry. The strong
re-oligotrophication in the S lakes resulted in high levels of synchrony in lake water chemistry and
plankton. The re-oligotrophication in S lakes also resulted in strong and consistent long-term water
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quality improvements with a decrease in phytoplankton biomass and a shift from Chlorophyta
dominance towards more heterogeneous and richer phytoplankton communities. The weaker
synchrony and less consistent long-term trends in the W and N lakes indicate that confounding
catchment-scale processes or internal lake dynamics weaken the synchrony in temporal changes
in lake chemistry and plankton when loading reduction is not substantial [7,39,40]. Overall, the
variation across lake groups indicated that the synchrony and long-term trends in lake plankton
were predominantly controlled by the strength of re-oligotrophication. Analyses conducted in the
earlier phase of the monitoring programme revealed that 10 lakes, experiencing nutrient reduction
prior to 1999, responded immediately in the form of decreasing Chl-a concentrations [52]. A decrease
in phytoplankton biomass and a shift towards a phytoplankton community more associated with
oligotrophic conditions in response to nutrient reduction have been widely documented [5,13,14].
However, a weak or inconsistent response of phytoplankton biomass and community composition
to nutrient reduction has also been observed [27,32,33]. Although a strong decline in TP and
phytoplankton biomass is expected to lead to a corresponding decline in zooplankton biomass [13,34],
no such response was observed in the S lakes, which corroborates previous observations [35]. Earlier
analyses of Danish lakes in recovery from eutrophication have also revealed a weak or insignificant
response of zooplankton biomass to re-oligotrophication, suggesting changes also in top-down
effects [52,70,71]. Furthermore, a paleolimnological study conducted in Switzerland in three deep
lakes covering the past 70–150 years of climate change found that the response of zooplankton to
climate change was largely regulated by local changes in nutrient inputs and fisheries [72]. Specifically,
the analyses showed that climate had a very limited effect on the cladoceran community in Lake
Annecy, the most nutrient limited lake, whereas Lakes Geneva and Bourget with higher nutrient
concentrations were more sensitive to climate warming in the past 70–150 years [72].

Notably, the richness of phyto- and zooplankton, as well as that of many of their main groups,
exhibited synchrony and increasing long-term trends in all lakes. Furthermore, the richness of
annually-pooled phyto- and zooplankton communities increased across years for most of the lakes.
The widespread and synchronous increase in plankton richness coincided with the synchronous
negative trends in PO4, TN and NO3-2 revealed in most of the lakes as well as the positive trends in
temperature and precipitation, and the negative trend for wind speed. As the trends in climate and
nutrients co-occurred and were mostly monotonic without a shift during the study period, it was not
possible to perform a conclusive hypothesis test to elucidate which of these trends was responsible
for the widespread increase in plankton. However, the overall patterns in long-term temporal trends
and synchrony in the lake chemistry and plankton variables provided more consistent support for the
dominant role of nutrient reduction in driving the plankton richness increase.

The widespread nutrient reduction [73] in most of the lakes included in the Danish monitoring
programme may potentially have a positive effect on plankton richness. N and P have been recognised
as co-limiting factors of plankton abundance in shallow lake ecosystems [74–76] and they are thus
significantly related to the diversity of phytoplankton [77] and submerged macrophytes [76]. Therefore,
the observed nutrient reduction in the study lakes might have increased phytoplankton richness by
releasing the competitive pressure [78]; this, in turn, may have enhanced the zooplankton richness by
allowing niche partitioning [46,79–81]. Analyses of 30 years’ data on Lake Zurich also demonstrated
a strong association of phytoplankton and zooplankton richness, pointing at the role of food web
interactions in sustaining diversity across trophic levels [23]. Chl-a declined and Secchi depth increased
in several lakes (most pronounced in the S lakes) with a widespread long-term decrease in SS.
This was probably indicative of water quality improvements, which might have promoted submerged
macrophyte growth. The potential recovery of submerged macrophytes may also contributed to the
increase in planktonic diversity [82–85].

Changes in the identification efficiency of taxonomists over time may potentially confound the
suggested increase in plankton richness, especially in long-term datasets [33,86]. Yet, the increasing
trend for most of the plankton groups included in the present study was consistent, including Cladocera
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for genus level identification presents no difficulty. Climatic trends, especially changes in temperature
and wind may also affect plankton richness [23], phytoplankton phenology [24–26] and community
composition [27,28]. The effects of extreme climate events on plankton ecology have also been
recorded [23]. However, the direct effect of air temperature on surface water temperature was limited
and only significant in summer. Also, no trend in stratification and no clear and consistent effect
of climatic trends on plankton were found in the present study. In addition, previous studies have
shown that nutrient changes may have a stronger influence on lake plankton than long-term climatic
trends [31]. Nonetheless, a joint effect of nutrient reduction and climate in driving an increase in both
the taxonomic and the functional richness of phytoplankton is perhaps more likely [16,23]. Overall,
although a conclusive test was not possible, the widespread nutrient reduction in Danish lakes were
most consistently associated with the trends in plankton, and thus it might have been the dominant
factor behind the temporal increase in plankton richness.

The pattern in synchrony and long-term trends varied when the analyses were conducted
separately for each season. Synchrony in water chemistry as well as long-term nutrient reduction,
Secchi depth improvement and phytoplankton biomass decrease were strongest in spring, while the
increase in plankton richness was strongest in summer in all the lakes. In the S lakes, synchrony was
consistent across seasons, reflecting the overriding effect of strong re-oligotrophication. The negative
trends in TP and PO4 in the S lakes were slightly weaker in summer, which has also been observed
in previous analyses of Danish [87,88], British and German lakes [13,34] and may be attributed to
internal P loading from the sediment in summer [87,88]. Nevertheless, the long-term increase in Secchi
depth and the decrease in SS and Chl-a were strongest in summer in the S lakes, indicating significant
water clarity improvements in summer despite the fact that the strongest decrease in phytoplankton
biomass occurred in spring. However, eight Danish lakes (five included in the present study) showed
no significant decline in phytoplankton biomass in either summer or autumn between 1989 and 2001.
This probably reflects that the internal loading was stronger in the earlier period of nutrient reduction
in the study lakes [70].

Overall, the widespread nutrient reduction in Danish lakes during the study period led to
moderate synchrony of the temporal changes in lake chemistry and plankton, including a notable
long-term increase in plankton richness in 17 lakes. The synchrony was strongest and the trends
most consistent in lakes recovering from eutrophication, demonstrating the prominent role of
re-oligotrophication in driving the increases in plankton diversity and changes in plankton composition.
The analyses of plankton composition suggested that lake restoration efforts resulted in recovery of the
plankton community composition. The potential effect of climate on synchrony and long-term trends
in lake chemistry and plankton was modest, even in summer when the climate signal was strongest,
probably being confounded by the more dominant effects of nutrient reduction. The present study
indicates that anthropogenic changes in the agricultural landscape may act as a large-scale forcing
mechanism and induce synchrony in ecosystems.
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Appendix A

Table A1. Summary of data treatment for missing values in environmental variables. Frequencies
of concurrent plankton and environmental samplings (original) and replacement with different
averages are given. The lakes included in the analyses are: Bryrup Langsø, Søholm Sø, Hinge Sø,
Arreskov Sø, Ravnsø, Vesterborg Sø, Arresø, Søby Sø Midtjylland, Maglesø V. Brorfelde, Hornum Sø,
Østrup-Gundsømagle Sø, Norssø, Store Søgård Sø, Søgård Sø Jylland, Tissø, Holm Sø, Utterslev Mose.

Original One Week Two Weeks One Month Missing

TP 0.97 0.015 0.005 0.005 0.005
PO4 0.968 0.015 0.005 0.005 0.006
TN 0.969 0.015 0.005 0.006 0.006

NO3-2 0.966 0.015 0.005 0.004 0.01
NH4 0.968 0.015 0.005 0.006 0.006
pH 0.97 0.015 0.004 0.005 0.005

Alkalinity 0.956 0.015 0.005 0.007 0.018
Chl-a 0.964 0.015 0.005 0.007 0.009

SS 0.949 0.013 0.005 0.007 0.026
Secchi 0.963 0.006 0.004 0.005 0.021
SiO2 0.967 0.015 0.005 0.007 0.007

Water
Temperature 0.956 0.006 0.005 0.009 0.024

Schmidt 0.884 0.006 0.004 0.01 0.096

Table A2. Monotonic long-term trends using Kendall correlations in climate averaged for all lakes.

Air Temperature Irradiance Precipitation Wind Speed

Whole 0.05 *** 0.01 ns 0.02 * −0.07 ***
Spring 0.05 *** 0.07 *** −0.01 ns −0.10 ***

Summer 0.09 *** −0.00 ns 0.05 *** −0.08 ***
Autumn 0.04 ** 0.01 ns 0.00 ns −0.05 **

Notes: * denotes for statistical significance (* P < 0.05; ** P < 0.01; *** P < 0.001); ns: denotes for not significant.
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corner shows Bornholm. S, W, N denote lake types (strong, weak and no TP decrease) and E denotes
lakes not included in any of the groups.
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lakes and for S, W and N lakes separately. For details see Figure 3.
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