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Abstract: Numerical modeling has become an indispensable tool for solving various 

physical problems. In this context, we present a model of pollutant dispersion in natural 

streams for the far field case where dispersion is considered longitudinal and  

one-dimensional in the flow direction. The Transmission Line Matrix (TLM), which has 

earned a reputation as powerful and efficient numerical method, is used. The presented  

one-dimensional TLM model requires a minimum input data and provides a significant gain 

in computing time. To validate our model, the results are compared with observations and 

experimental data from the river Severn (UK). The results show a good agreement with 

experimental data. The model can be used to predict the spatiotemporal evolution of a pollutant 

in natural streams for effective and rapid decision-making in a case of emergency, such as 

accidental discharges in a stream with a dynamic similar to that of the river Severn (UK). 

Keywords: TLM; pollutant; one-dimensional propagation; longitudinal dispersion;  

stream pollution 
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1. Introduction 

The evolution of a pollutant in both natural and artificial streams may be subject to different 

phenomena such as dispersion, diffusion, advection, sedimentation, adsorption, desorption, etc. 

Predicting its development and its spread is important for the environmental protection. In the field of 

water quality modeling, several researchers [1–5] presented different approaches to understand and 

interpret the basic concept of water quality problems. In a case of emergency, such as accidental 

discharges in a stream, the prediction of the pollutant evolution is crucial in effective and rapid  

decision-making. Such a help in decision-making must be simple and precise, needs a reduced 

computational time and a minimum input data. Taking into account most dispersion phenomena found 

in streams complicates the model by increasing the number of input data which makes simulations more 

difficult, slow, and inadequate for emergency decision-making, where simplicity and speed are the two 

critical parameters [6]. 

Dispersion is a combination of diffusion, advection, and shear. It is created by the non-uniformity of 

velocity fields related to the different characteristics of the stream such as geometry, roughness, and 

kinematics. The dispersion area is usually composed of three distinct zones: The initial mixing zone, the full 

mixing zone and the far field zone [6]. In this work, we focus on the third zone where dispersion is 

considered longitudinal and one-dimensional in the flow direction. The one-dimensional differential 

Advection-Dispersion Equation (ADE) describing the phenomenon is given by Equation (1) [6–11], where 

the following assumptions are considered: 

• Vertical and transversal dispersions are very small; 

• The pollutant is completely miscible in water; 

• Chemical reactions between the pollutant and its environment are absent; and 

• The overall mass of pollutant is maintained during transport. ߲ܿ(ݔ, ݐ߲(ݐ = −߲൫ܷܿ(ݔ, ݔ൯߲(ݐ + ݔ߲߲ ቈܦ௅ ,ݔ)߲ܿ ݔ߲(ݐ ቉ (1)

where: c is the concentration of pollutant (g/l), U is the flow velocity (m/s), DL is the longitudinal 

dispersion coefficient (m2/s), x is the distance (m), and t is the time (s). 

Since velocity and dispersion coefficient are constant, Equation (1) becomes Equation (2) or Equation (3). ߲ܿ(ݔ, ݐ߲(ݐ = −ܷ ,ݔ)߲ܿ ݔ߲(ݐ + ௅ܦ ߲ଶܿ(ݔ, ଶݔ߲(ݐ  (2)߲ଶܿ(ݔ, ଶݔ߲(ݐ − ௅ܦܷ ,ݔ)߲ܿ ݔ߲(ݐ = ௅ܦ1 ,ݔ)߲ܿ ݐ߲(ݐ  (3)

2. Methods 

The setup of the modeling method is made of the following steps: (1) get the best description of the 

physical phenomenon (pollutant dispersion in stream); (2) define the characteristic parameters of the 

profile temporal evolution of the pollutant dispersion; (3) find the experimental parameters of the 

pollutant dispersion; (4) set the hydraulic conditions corresponding to the phenomenon; (5) develop the 

TLM (Transmission Line Matrix) method and the TLM model to simulate the phenomenon;  
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(6) optimize the TLM parameters by comparing the obtained TLM results to the experimental data;  

(7) validate statistically and interpret physically the differences between the TLM results and the 

experimental data; and (8) deduce the final TLM dispersion model. 

2.1. Physical Phenomenon 

2.1.1. Physical Phenomenon Description 

To study the pollutant dispersion phenomenon in a channel, the experimental data of Atkinson and 

Davis [12] have been chosen. The experiment was conducted over a length of approximately 14 km on 

the river Severn in Wales (UK). A volume of 5 L of tracer (Rhodamine WT 40 g/l) is poured for 107 s 

while moving on Llanidloes Bridge. At this level, the water depth is equal to 0.30 m while the average 

width is about 24 m. Samples were taken along the test distance and analyzed by molecular fluorescence 

to find the temporal evolution of the pollutant concentration at seven locations (stations) along that 

distance. Table 1 shows the characteristic parameters of the temporal evolution that are the start time of 

pollution (t0), the maximum concentration (Cmax), the peak time (tp), and the end time  

of pollution (tf). 

Table 1. Characteristic parameters of pollutant concentration temporal evolution. 

Station Nomenclature x (m) t0(s) Cmax(μg/l) tp(s) tf(s) 

A Llanidloes Meadow 210 60 1050 300 900 
B Dol-llys 1175 1320 225 1560 8580 
C Morfodion Ford 2875 3480 110 4140 16,560 
D Dolwen 5275 6480 58 8880 16,440 
E Rickety Bridge 7775 10,440 34.5 13,440 25,980 
F Llandinam 10,275 14,220 21 18,720 27,120 
G Carnedd 13,775 17,713 20 23,533 33,433 

Note: x: Distance from dumping point. 

The most freely-meandering part of the test channel is downstream of the station E where the flood 

plain broadens. The channel width increases in the downstream direction, averaging 24 m. Upstream of 

the station E, the channel is narrower, with an average width of 21.4 m (standard deviation: 4.7 m), 

whereas downstream it is wider with a greater variability of 28.3 m (standard deviation: 7.5 m).  

The channel depth varies considerably because the long profile of the riverbed consists of a series of 

riffles and pools (topography), the average depth is 0.5 m (standard deviation: 0.18 m).  

Between 6.5 km from the injection point and station E, the channel is mostly much deeper. There is a 

relatively sudden increase in average section at about 6.5 km downstream of the injection point, upstream 

of this distance, the average section is 10.7 m2 (standard deviation: 2.8 m2) while below this, it is  

13.8 m2 (standard deviation: 4.1 m2) [12]. 
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2.1.2. Moment Method and Experimental Parameters Determination 

The method of moments (Equation (4)) [13–15] is used to determine, experimentally, the longitudinal 

dispersion coefficient DL:  ܦ௅ ௜ = 12 ௜ܷଶ σ௧ ௜ଶ − σ௧ (௜ିଵ)ଶݐ௜̅ − ௜̅ିଵݐ  (4)

where, σ௧ଶ(sଶ) is the temporal variance given by Equation (5) [16]; ̅ݐ	(s) is the time to the centroid of 

the concentration distribution, determined by Equation (6) [15] and U(m/s) is the mean flow speed 

upstream of each station i, calculated by Equation (7) [13,15,17]. In analyzing tracer dispersion data, 

some models may require upstream average values for velocity which is, indeed, more real [12]. 

σ௧	௜ଶ	 = ׬ ݐ) − ௜̅)ଶݐ ା∞଴ݐ݀(ݐ)ܿ ׬ ା∞଴ݐ݀(ݐ)ܿ  (5)

௜̅ݐ = ׬ ݐ ׬ା∞଴ݐ݀(ݐ)ܿ ା∞଴ݐ݀(ݐ)ܿ  (6)

௜ܷ = ௜ݔ − ௜̅ݐ௜ିଵݔ − ௜̅ିଵݐ  (7)

where, xi is the distance between station i and dumping point (m). 

In the case study, at each station, the concentration is a discrete series of N values sampled at a certain 

time interval, so the equivalent expressions to Equation (5) and Equation (6) are respectively: 

σ௧ ௜ଶ = ∑ ௝ே௝ୀଵܥ ൫ݐ௝ − ∑௜̅൯ଶݐ ௝ɴ௝ܥ ୀ ଵ  (8)

௜̅ݐ = ∑ ௝ே௝ୀଵܥ ∑௝ݐ ௝ே௝ܥ ୀ ଵ  (9)

Thus, DL and U are essentially the two experimental parameters of the pollutant dispersion. 

2.1.3. General Assumptions and Hydraulic Conditions 

This study assumed that the tracer is conservative and miscible in water without chemical reactions 

with the medium and that the test channel is divided into seven reaches, each one of them is regular, 

uniform, and is characterized by a stable flow with a constant velocity and a constant dispersion 

coefficient. It focuses on the channel far field where dispersion is considered longitudinal and  

one-dimensional in the flow direction. The effect of dead zones, skewness, roughness, expansions, and 

contractions are neglected. 

To determine the far field area where longitudinal dispersion is predominant, Fischer proposed 

Equation (10) to calculate the length of the mixture, which was found to be 880 m [6,18]. Thus, station 

A is not considered since its distance from dumping point is below this value. ܮ௠ = ଶܭ ௬ܧଶܤܷ  (10)



Water 2015, 7 4936 

 

 

where, Lm is the length of the mixture (m), K2 is the constant depends on the manner of tracer pouring,  

U is the flow speed (m/s), B is the average width between the dumping and the sampling points (m), and 

EY is the lateral dispersion coefficient (m2/s). 

As initial conditions, this study supposed that all the tracer quantity is poured at the injection point: If	ݔ = 0, ݐ = 0, ,ݔ)ܿ (ݐ = ଴ܥ , and ∀ݔ ≠ 0, ,ݔ)ܿ 0) = 0  where, C0 is the dumped tracer initial 

concentration (g/l). Concerning the boundary conditions, the tracer disperses only downstream from the 

injection point in the flow direction: ∀ݔ < 0, ݐ∀ > 0, ,ݔ)ܿ (ݐ = 0 and the tracer concentration is null at 

x = ℓ, if	ݔ = ℓ, ݐ∀ > 0, ,ݔ)ܿ (ݐ = 0, where ℓ is the test distance (m). 

2.2. Modeling Method 

The study of propagation, diffusion, and dispersion phenomena by analytical methods is possible only 

for few cases. Therefore, several researchers have proposed new approaches to better represent these 

phenomena. For several decades, a great number of numerical methods were initiated but found real use 

only in recent years with the rapid evolution of computing. Thus, numerical modeling has become an 

indispensable tool for a wide range of applications. Among these methods, Transmission Line Matrix 

(TLM) method is being increasingly used since seventies [11], and its application field continues  

to expand [19–21]. 

2.2.1. Transmission Line Matrix Method 

TLM is a spatiotemporal numerical technique, explicit and stable, based on electrical networks [19–22]. 

It is introduced by Professors Peter Johns and Raymond Beurle [23] at the electrical engineering 

department of Nottingham University (UK). This technique uses Huygens’ principle and is based on 

Maxwell’s equations [11,22,24,25]. It operates on a mesh structure where each element is represented 

by a transmission line that acts as an analogy between the physical quantity and an electrical equivalent 

(voltage or current) [20,24–26]. 

In TLM, each transmission line is excited with a pulse which will be monitored throughout the 

network. The injected pulse propagates along the line until it reaches a discontinuity (node) where it 

disperses [27]. Each reflected pulse moves back along the line and becomes incident on the adjacent 

node after a time step Δt(s), and so on [19,21] (Figure 1). At each iteration k (Equation (11)), the TLM 

routine calculates the incoming pulses to determine the evolution of the physical quantity at a given 

point, then the reflected pulses in preparation for the next iteration [26,28] TLM can be  

one-dimensional, two-dimensional, or three-dimensional [11,28]. ݇ = (11) ݐ∆ݐ

TLM has been compared with various other numerical methods such as the Finite Difference method 

(FDTD) [22,26,29]. These comparisons define the power of this method to the studied case. 
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Figure 1. Dispersion of an injected pulse. (a) pulse reflection; (b) the first iteration result; 

and (c) the second iteration result. 

2.2.2. TLM Model for Pollutant Dispersion Phenomenon 

Early TLM models for dispersion of a physical quantity, proposed the study of both phenomena 

(advection and diffusion) separately [30,31]. They were based on the concept that transfers the physical 

content of each node to the node adjacent downstream along the flow direction. According to the results 

obtained by de Cogan and Henini [11,31], this approach is poor. An alternative method is proposed [11,32] 

where the TLM model of dispersion is identical to the TLM model for diffusion with an added current 

generator Im(A) at each node. Hence, a TLM model of a pollutant dispersion phenomenon is a perfectly 

insulated transmission line (conductance G(Ω) null) of length Δx(m), that is electrically represented by two 

resistors R(Ω), two inductors L(H), and a capacitor C(F) (Figure 2). The TLM node is given on Figure 3, 

where I(x), V(x), and Z are, respectively, the intensity of current (A), the voltage (Volt), and the characteristic 

impedance (Ω) of the line. The latter is defined by the relation from Equation (12). ܼ = ݐ∆ ⁄ܥ  (12)

 

Figure 2. Electrical representation of TLM dispersion model. 

 

Figure 3. TLM dispersion node. 
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Rd, Cd, and Ld are, respectively, distributed resistance, capacitance, and inductance over the entire 

length Δx of the transmission line and are given by the following relationships: ܴௗ = ௗܥ(13) ݔ∆/2ܴ = ௗܮ(14) ݔ∆/ܥ = (15) ݔ∆/ܮ2

The variation of the voltage on a piece of transmission line is equal to the sum of the voltage variation 

due to the inductance and the voltage drop across the resistor as shown in Equation (16): ߲ܸ(ݔ, ݔ߲(ݐ = −ܴௗݔ)ܫ, (ݐ − ௗܮ ,ݔ)ܫ߲ ݐ߲(ݐ  (16)

The current intensity variation flowing through this piece of transmission line is equal to the current 

flowing through the capacitor to which we add a current generator Im at the node (n) as indicated  

by Equation (17): ߲ݔ)ܫ, ݔ߲(ݐ = ,ݔ)௠ܫ ݔ∆(ݐ − ௗܥ ,ݔ)ܸ߲ ݐ߲(ݐ  (17)

where,  ܫ௠(ݔ, (ݐ = ݃௠∆ܸ(ݔ,  .௠: Transconductance (Ω)݃(18) (ݐ

If ∆x→0, Equation (17) becomes: ߲ݔ)ܫ, ݔ߲(ݐ = ݃௠ ,ݔ)ܸ߲ ݔ߲(ݐ − ௗܥ ,ݔ)ܸ߲ ݐ߲(ݐ  (19)

If we neglect the influence of the inductance by taking a small enough time step, the combination of 

Equation (16) and Equation (19) gives: ߲ଶܸ(ݔ, ଶݔ߲(ݐ + ݃௠ܴௗ ,ݔ)ܸ߲ ݔ߲(ݐ = ௗܴௗܥ ,ݔ)ܸ߲ ݐ߲(ݐ  (20)

This equation is similar to Equation 3 and, therefore, we can model a phenomenon of pollutant 

dispersion by an electrical equivalent. 

The addition of a current generator produces an additional voltage ቂܫ௠ ோା௓ଶ ቃ at node (n). Hence, the 

total pulse at iteration k, ܸ௞ (n)	becomes: ܸ௞ (݊) = ൫ ଵܸ௜(݊)௞ + ଶܸ௜(݊)௞ ൯ + ܴ(݊)௠ܫ + ܼ2  (21)

(݊)௠ܫ = ݃௠ ቈ ܸ௞ିଵ (݊ + 1) − ܸ௞ିଵ (݊ − 1)2 ቉ (22)

ଵܸ௜௞ (݊) and 	 ଶܸ௜௞ (݊)	are, respectively, the incident pulses on left and right of node (n) at iteration k. ܸ௞ିଵ (݊ + 1) and ܸ௞ିଵ (݊ − 1)	are the pulses at nodes adjacent (n+1) and (n–1) at iteration k–1. 

Pulses reflected on left and right of node (n) at iteration k: 	 ଵܸ௥௞ (݊)  and ଶܸ௥௞ (݊)  are given by 

Equation (23) and Equation (24): 
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ଵܸ௥௞ (݊) = ܼܴ + ܼ ܸ௞ (݊) + ܴ − ܼܴ + ܼ ଵܸ௜௞ (݊) (23)

ଶܸ௥௞ (݊) = ܼܴ + ܼ ܸ௞ (݊) + ܴ − ܼܴ + ܼ ଶܸ௜௞ (݊) (24)

The reflected pulses become incident on adjacent nodes at next iteration. ଵܸ௜௞ାଵ (݊)  and ଶܸ௜௞ାଵ (݊)	are incident pulses on left and right of node (n) at iteration k+1 and are given by Equation (25) 

and Equation (26): 

ଵܸ௜௞ାଵ (݊) = ଶܸ௥௞ (݊ − 1) (25)

ଶܸ௜௞ାଵ (݊) = ଵܸ௥௞ (݊ + 1) (26)

ଶܸ௥௞ (݊ − 1)	and ଵܸ௥௞ (݊ + 1)	are respectively reflected pulses on right of node (n–1) and left of  

node (n+1). 

Equations (21) to (26) form the TLM algorithm used to solve a wide variety of dispersion problems, 

such as chromatographic processes, heat exchanges, heat flow and diffusion of electric species in 

semiconductors [32,33]. Analogy between Equation (3) and Equation (20) gives: ܦ௅ = ܷௗܴௗ (27)ܥ/1 = −݃୫/ܥௗ ,ݔ)ܿ(28) (ݐ = ,ݔ)ܸ (ݐ ,ݔ)߲ܿ(29) (ݐ ⁄ݔ߲ = ,ݔ)ܫ− ௗܴ(ݐ (30)

According to the Courant-Friedrichs-Lewy stability criterion [11,34], TLM Dispersion models are 

stable if: 	1 ≥ ݎ2 ≥ ଶݏ , where s is the convection number (Equation (31)) and r is the diffusion  

number (Equation (32)). ݏ = ܷ ݔ∆2ݐ∆ (31)

ݎ = ܦ ଶݔ∆ݐ∆ (32)

2.2.3. TLM Initial and Boundary Conditions 

In the TLM method, the conditions cited in paragraph (2.1.3) are equivalent to: 

ଵܸ௜(1) = ଶܸ௜(1) = ଴ܥ 2⁄ (33)ܸ(1) = ଴ (34)ܥ

The first node (n = 1) is the tracer dumping point (x = 0) with the boundary condition: 

ଵܸ௜(1) = − ଵܸ௥(1) (35)

At the last node (n), the boundary condition is: 

ଶܸ௜(݊) = − ଶܸ௥(݊) (36)
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The incident pulse returns with the same magnitude but opposite sign. In TLM, this boundary 

corresponds to a short circuit where the reflection coefficient Γ is equal to −1 [11,20,21]. 

2.2.4. TLM parameters Optimization 

The TLM dispersion model is applied on experimental data of Atkinson and Davis [12] and uses the 

input data of Table 2. The injected total tension is equivalent to initial concentration at dumping point 

(Equation (29)). The tracer is poured into an elementary volume of the river ∆v = ∆x∆y∆z, where ∆y and 

∆z are, respectively, the width (m) and depth (m) of the river at the dumping point. This dilution leads 

to an initial concentration of the tracer of 1110 μg/L at dumping point. 

Table 2. TLM input data. 

Input Data Parameter/Unit Value 

Experiment duration t (s) 35,000 
Time step ∆t (s) 10 

Test distance ℓ (m) 14,000 
Distance step ∆x (m) 25 

Characteristic impedance Z (Ω) 10 
Injected total tension V(1) (Volt) 1110 

The TLM parameters Rd, gm, and initial total tension V0 have been optimized to keep the modeling 

simple. In TLM technique, the time step ∆t must be less than the time constant (RC) leading to a choice 

of Rd > 0.8. The conductance is the resistance inverse, so gm < 1.25. The initial total tension at each node 

must be inferior to the injected total tension (first node), so V0 (n ≠ 1) < 1110. 

The TLM model, with the input data of Table 2 and the above TLM parameters, is run. The obtained 

TLM results V = f(k) are compared to the experimental data of Atkinson and Davis C = f(t), i.e., the TLM 

characteristic parameters (k0, Vmax, kp, kf) are compared to the electrical equivalents of experimental 

characteristic parameters (t0, Cmax, tp, tf) (Table 1). The electrical equivalents (k'0, V'max, k'p, k'f) are 

deduced from Equation (11) and Equation (29). The optimized TLM parameters (Rd, gm, and V0) 

correspond to the minimal values (∆k0, ∆Vmax, ∆kp, ∆kf). 

This optimization is acceptable if we can validate, statistically, and interpret, physically, the 

differences between the experimental parameters and the physical equivalents of TLM parameters which 

are calculated using Equation (27), Equation (28), and Equation (29). 

2.3. Statistical Tests for TLM Model Validation 

The model performance is analyzed by comparing, for each station, observed data (experimental data 

of Atkinson and Davis (Table 3)) with TLM model predictions (physical equivalents of optimal TLM 

results (Table 4)) for the following parameters: flow velocity (Utlm and U), longitudinal dispersion 

coefficient (Dtlm and DL), maximum concentration (Cmaxtlm and Cmax), peak time (tptlm  

and tp), start time of pollution (t0tlm and t0), and end time of pollution (tftlm and tf). 

The statistical indices are the basic tools for analyzing the model quality [6,14,35–37]. The following 

tests have been chosen: The coefficient of divergence Rdiv with Rdiv >1 (Rdiv < 1) indicates an  

over-prediction (under-prediction) of a value; the mean percentage error E(%) representing a convenient 
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model when it is small; the Mean Relative Square Error MRSE indicating a successful model if it is 

close to 0; the Factor Of EXcedence FOEX(%), signifying an overestimation (underestimation and/or 

correct estimation) of all values when it is equal to 100% (0%); the factor of two FA2(%) representing a 

reliable model if it is close to 100% and finally the scatter diagram indicating a situation of 

overestimation (underestimation) when the point is above (below) “y = x” line. 

3. Results and Discussion 

3.1. Determination of Experimental Parameters 

The experimental concentration data of Atkinson and Davis [12] have been considered to calculate at 

each station: ̅ݐ by Equation (9), σ௧ଶ	by Equation (8), and U by Equation (7). DL is determined using 

Equation (4). The results are presented in Table 3: 

Table 3. Experimental values of flow velocities and longitudinal dispersion coefficients. 

Station U (m/s) DL (m2/s) 

B 0.71 18.76 
C 0.68 23.39 
D 0.45 11.47 
E 0.55 62.62 
F 0.50 22.97 
G 0.72 −101.48 

The flow velocity varies from one station to another, and so does the longitudinal dispersion 

coefficient with distance x. These two parameters depend on the roughness and the variable geometry of 

the river. The value of longitudinal dispersion coefficient of station E is very high because of an obvious 

change in geometry of the river. The value of longitudinal dispersion coefficient of station G is negative. 

According to Atkinson and Davis [12], the time was insufficient to carry out all the necessary 

measurements at station G; thus, the dispersion monitoring was incomplete. The following day, 

measurements were remade only at two stations: station F, to compare the results of the two experiments 

and describe the dispersive behavior of the test channel, and station G, to complete the concentration 

recording according to time. The comparison of results showed that the dispersive behavior of the test 

channel is reproducible. Finally, all the results were compiled by taking measurements of the first 

experiment at the stations A to F and adjusted measurements of the second experiment at the station G. 

Since the longitudinal dispersion coefficient value depends essentially on the spatio-temporal monitoring 

of concentrations, the lack of reliable experimental data at station G led to obtain a negative coefficient 

of longitudinal dispersion. Thus, station G will be ignored from our comparative study. 
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3.2. Determination of TLM Parameters 

Figure 4 shows the optimized TLM results and Table 4 their physical equivalents. 

 

Figure 4. TLM modeling and experimental data of Atkinson and Davis. The total tension  

(tracer concentration) is traced according to the iteration number k at stations B, C, D, E, and F. 

Globally, there is a good agreement between the TLM results and experimental data. For stations E 

and F, the TLM curve is slightly shifted from the experimental curve; this means that the TLM model 

underestimates the beginning and end of pollution and gives a polluting trail shorter than that observed 

with an overestimation of flow velocity. This is certainly due to the sudden and obvious change of the 

channel geometry at 6.5 km from the injection point (upstream of the station E); downstream from this 

distance, the channel section is bigger, and downstream from the station E, the channel is wider and 

more sinusoidal, but the TLM model does not take into account the channel geometry which strongly 

influences the dispersion evolution [10,17,38,39]. Furthermore, between 6.5 km from the injection point 

and the station E, the channel is much deeper because its bed is composed of a series of riffles and pools 

storage areas or dead zones [9], which retain pollutant then release it after some time, with such effect 

stretching, longitudinally, the pollution slick leading to the slight difference between the experimental 

and modeling curves; but the TLM model does not take into consideration the channel topography which 

strongly influences the dispersive behavior of the channel [7,9,16,40]. 

Table 4. Optimized TLM parameters and their physical equivalents. 

Station 
TLM Parameters Physical Equivalents 

−gm (Ω) Rd (Ω) V0(Volt) Utlm (m/s) Dtlm(m2/s) C0tlm (μg/L) 

B 0.03 1.33 990 0.76 18.76 990 
C 0.03 0.89 863.5 0.70 28.2 863.5 
D 0.02 1.04 690 0.59 24 690 
E 0.02 0.83 522 0.576 30 522 
F 0.02 0.89 370 0.56 28 370 
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It’s important to remark that Utlm, Dtlm, and C0tlm are, respectively, the flow velocity, the longitudinal 

dispersion coefficient, and the initial concentration predicted by the TLM model. 

Our model does not take into account the variable geometry and topography of the channel in order to 

reduce the model input data, since a model is just required to be able to provide useful predictions in case 

of emergencies. Actually, the study of complex geomorphologic flows requires specific computational 

methods [10,41] that take into account: Geometry, curvature, meandering, flooding conditions, bed 

topography, riparian vegetation, and secondary flows that influence the meandering evolution [42]. 

3.3. TLM Model Performance 

The statistical tests results are given in Table 5 and shown in Figure 5.  

Table 5. Statistical tests for flow velocity, longitudinal dispersion coefficient and  

maximum concentration. 

Parameters Indices B C D E F Average

Flow velocity (Utlm, U) 

Rdiv 1.07 1.03 1.31 1.05 1.12 1.12 

E (%) 7.00 2.90 31.10 4.70 12.0 11.60 

MRSE 0.02 

FOEX (%) 100 

Fa2 (%) 100 

Longitudinal dispersion coefficient (Dtlm, DL) 

Rdiv 1.00 1.21 2.09 0.48 1.22 1.20 

E (%) 0.00 20.60 109.20 52.10 21.90 40.80 

MRSE 0.21 

FOEX (%) 60 

Fa2 (%) 60 

Maximum concentration (Cmaxtlm, Cmax) 

Rdiv 1.00 1.00 1.00 1.00 1.00 1.00 

E (%) 0.00 0.00 0.10 0.00 0.00 0.00 

MRSE 0.00 

FOEX (%) 0 

Fa2 (%) 100 

Figure 5a presents the comparison between the predicted and experimental values of flow velocity. 

According to Figure 5a and Table 5, the scatter diagram and FOEX indicate that all the experimental 

values are over-predicted with a mean percentage error equal to 11.6%. The model seems to be able to 

simulate the observed values of flow velocity well at stations C and E, with a weak over-estimation at 

stations B and F, and with a significant over-prediction at station D. This may indicate that at station D, 

the predicted tracer cloud disperses more quickly than the observed one. The experimental flow velocity 

at station D is the smallest (Table 3) so the passage of the tracer could is slow. It can be slowed down by 

the different river morphologies: sinuosity, topography, dead zones, expansions and contractions; these 

aspects are known to affect the distribution profiles of velocity. Thus, the difference between TLM and 

experimental values can be attributed to the fact that the 1D-TLM model does not take into account these 

aspects. The values of Fa2, MRSE, and E indicate that the model representation of the experimental flow 

velocity is acceptable. 
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Figure 5. Scatter diagrams for (a): flow velocity; (b): longitudinal dispersion coefficient;  

(c): maximum concentration; (d): peak time; (e): pollution start time; and (f): pollution end time. 

On Figure 5b, the predicted longitudinal dispersion coefficients are plotted against the observed ones. 

According to Figure 5b and Table 5, the scatter diagram and FOEX indicate that there are situations of 

over and under-estimation with a mean percentage error of 40.78%. The model gives a good estimate of 

the longitudinal dispersion coefficient for station B, but slightly over-predicts the coefficients of  

stations C and F, over-predicts the coefficient for station D, and under-predicts that of station E.  

The differences between the predicted and observed values are remarkable for the two stations D and E. 

The comparison of these two stations to the others shows that station D has the smallest coefficient, 

while station E is characterized by the highest coefficient (Table 3). Looking at station D, its smallest 

flow velocity has led to a smaller coefficient since DL decreases with U. The overestimation of the flow 
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velocity explains the overestimation of the longitudinal dispersion coefficient at this station. For station 

E, its coefficient is the highest because of an obvious and sudden change in river geometry upstream of 

the station E at 6.5 km from the injection point. In this region, the channel is much deeper and starts to 

widen; station E has the biggest section. The longitudinal dispersion coefficient depends on the width 

and depth of the channel; thus, it is strongly related to the channel geometry. Therefore, the difference 

between the predicted and observed longitudinal dispersion coefficients at station E is due to our model 

not taking into account the channel geometry. The values of Fa2, MRSE, and E indicate that the model 

representation of the experimental longitudinal dispersion coefficients is fairly acceptable. Moreover, 

the numerical estimation of this coefficient is very difficult; in the literature [7–9,14,17,38,43–46]  

for natural rivers, there is a great disparity between the values of longitudinal dispersion coefficients 

calculated by different methods and empirical formulas. This shows that such a coefficient is difficult to 

estimate, its experimental determination is the fairest approach because it is based on spatio-temporal 

monitoring of pollutant concentrations in streams with the real effect of skewness, topography, and water 

storage areas. 

Figure 5c shows the predicted maximum concentrations compared to the experimental ones and 

Figure 5d presents the comparison between predicted and experimental values of the maximum 

concentration time (peak time). The scatter diagram of Figure 5c and the statistical indices of Table 5 

show that the TLM model correctly predicted all maximum concentrations with a null mean percentage 

error. The scatter diagram on Figure 5d shows that the maximum concentration time predicted by TLM 

model is in good agreement with that obtained experimentally. E is equal to 0.8%, MRSE is zero, FOEX 

is null, indicating that there is no overestimation, and Fa2 factor is equal to 100%. All the statistical tests 

indicate that the model provides a very well representation for the experimental maximum concentrations 

and their peak times. The principal role of a pollutant model is to correctly give the pollution degree 

(maximum concentration and its peak time) at a given distance; the hereby-presented original model 

satisfies this requirement. 

Figure 5e,f present the comparison between predicted and experimental time values of the pollution 

start and pollution end, respectively. The scatter diagrams show that the model slightly underestimates 

the pollution start time and considerably underestimates the pollution end time. This may indicate that 

the predicted cloud passage across each sampling station is earlier than the observed cloud passage and 

the model predicts a trail of pollutant shorter than that observed experimentally. This can be explained 

by the fact that the long profile of the riverbed consists of a series of storage areas (dead zones and pools) 

which retained the tracer and released it after a certain duration; this retarded the cloud passage at each 

station and longitudinally stretched the pollutant slick. Thus, the difference between the TLM and the 

experimental values is due to the fact that the TLM model does not take into account the phenomena of 

roughness and dead zones. For the pollution start time, E is equal to 13.8%, MRSE is 0.04, FOEX is null, 

confirming that all the experimental values are under-predicted, and Fa2 factor is equal to 100%. For the 

pollution end time, E is equal to 36%, MRSE is 0.32, FOEX is null, and Fa2 factor is equal to 60%. These 

statistical tests show that the model provides a good estimate of pollution start time but less of an estimate 

of the pollution end time. It is preferable for a pollution model to predict early tracer cloud passage so 

one can react as quickly as possible to preserve the environment. The hereby-presented original model 

fulfills this demand. 
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3.4. TLM Model Stability 

In the considered case study, the condition of the Courant-Friedrichs-Lewy stability criterion [29] is 

respected for every station (Table 6). 

Table 6. Convection and diffusion numbers. 

Stations s r 
B 0.15 0.30 
C 0.14 0.45 
D 0.12 0.38 
E 0.12 0.48 
F 0.11 0.45 

3.5. Final TLM Model 

Differences between TLM parameters and experimental parameters are statistically validated and 

physically interpreted as due to neglecting some minor phenomena characterizing pollutant dispersion 

in a river. Therefore, we defined α, β, and γ as factors representing ones of these neglected phenomena 

with α = DL/Dtlm, β = U/Utlm, and γ = C0/C0tlm. These factors (Table 7) are different because of the channel 

geometry and topology variation from a station to another. 

Table 7. Factors α, β and γ. 

Station α β γ 

B 1 0.93 1.12 
C 0.83 0.97 1.29 
D 0.48 0.76 1.61 
E 2.09 0.95 2.13 
F 0.82 0.89 3.00 

Considering these factors, the TLM model equations become: ܸ௞ (݊) = ൫ ଵܸ௜(݊)௞ + ଶܸ௜(݊)௞ ൯ + ∝(݊)௠ܫ ܴ + ܼ2  (37)

(݊)௠ܫ = βିଵ g௠ ቈ ܸ௞ିଵ (݊ + 1) − ܸ௞ିଵ (݊ − 1)2 ቉ (38)

ଵܸ௥௞ (݊) = ܼ∝ ܴ + ܼ ܸ௞ (݊) + ∝ ܴ − ܼ∝ ܴ + ܼ ଵܸ௜௞ (݊) (39)

ଶܸ௥௞ (݊) = ܼ∝ ܴ + ܼ ܸ௞ (݊) + ∝ ܴ − ܼ∝ ܴ + ܼ ଶܸ௜௞ (݊) (40)

The initial conditions become: 

ଵܸ௜(1) = ଶܸ௜(1) = ଴ܥ 2⁄ ߛ → ܸ(1) = (41) ߛ/଴ܥ

The boundary conditions are: 

ଵܸ௜(1) = − ଵܸ௥(1) (42)
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ଶܸ௜(݊) = − ଶܸ௥(݊) (43)

This new model can present the pollution evolution at each station by knowing only the channel 

length, poured pollutant quantity, longitudinal dispersion coefficient, and flow velocity. 

4. Conclusions 

The proposed one-dimensional TLM model provides a good estimate of pollutant longitudinal 

dispersion in the far field zone of a river, such as the river Severn (UK). Usually, this model 

overestimates flow velocities and longitudinal dispersion coefficients but describes quite well the 

evolution of maximum concentrations over time. It underestimates time of start and end of pollution. 

This overestimation or underestimation may be related to the natural aspects of the river such as 

roughness, topography, geometry, and dead zones that longitudinally stretch the pollutant slick. 

Statistical tests indicate that the model is quite efficient and reliable. Generally, a model representing a 

phenomenon of pollution should preferably underestimate pollution start time and peak time, and not 

the other way, so to stress the situation and, hence, respond as quickly as possible. According to the 

Courant-Friedrichs-Lewy stability criterion, our TLM Dispersion model is stable. Therefore, the  

hereby-presented original model with few input data can be used to predict the spatiotemporal evolution 

of a pollutant slick in natural streams with a dynamic similar to that of the river Severn (that is, the first 

considered case study). 
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