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Abstract: Robust risk assessment requires accurate flood intensity area mapping to allow 

for the identification of populations and elements at risk. However, available flood maps in 

West Africa lack spatial variability while global datasets have resolutions too coarse to be 

relevant for local scale risk assessment. Consequently, local disaster managers are forced to 

use traditional methods such as watermarks on buildings and media reports to identify flood 

hazard areas. In this study, remote sensing and Geographic Information System (GIS) 

techniques were combined with hydrological and statistical models to delineate the spatial 

limits of flood hazard zones in selected communities in Ghana, Burkina Faso and Benin. The 

approach involves estimating peak runoff concentrations at different elevations and then 

applying statistical methods to develop a Flood Hazard Index (FHI). Results show that about 

half of the study areas fall into high intensity flood zones. Empirical validation using 

statistical confusion matrix and the principles of Participatory GIS show that flood hazard 

areas could be mapped at an accuracy ranging from 77% to 81%. This was supported with 

local expert knowledge which accurately classified 79% of communities deemed to be highly 
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susceptible to flood hazard. The results will assist disaster managers to reduce the risk to 

flood disasters at the community level where risk outcomes are first materialized. 

Keywords: community; flood hazard index; GIS; mapping; West Africa; rational model; 

runoff 

 

1. Introduction 

West Africa is prone to frequent floods and droughts due to high variability in rainfall patterns [1].  

In the last three decades, the sub-region has witnessed a dramatic increase in flood events, with severe 

impacts on livelihoods, food security and ecological systems [2–4]. Above normal rainfall amounts at 

the peak of the rainy season in the Sudanian and Sahelian regions (i.e., July to September) frequently 

lead to severe floods, and cause many of the major rivers (e.g., Niger, Volta river systems, Senegal) to 

overflow their banks. In 2007, for example, a series of anomalous abundant rainfall events caused severe 

floods in West Africa (WA) and other parts of Sub-Saharan Africa (SSA) which affected more than  

1.5 million people and resulted in the destruction of farm lands, loss of personal effects, destruction of 

infrastructure, outbreak of epidemic diseases and the loss of human lives [2,4–7]. Similar floods in 2009 

affected an estimated 940,000 people across twelve countries in West Africa, killing about 193 people 

and destroying properties worth $152 million [8]. In northern Ghana, the impacts of these floods were 

exacerbated by the spillage of the Bagre dam in neighboring Burkina Faso [2,9]. In 2012, flooding along 

the river Niger, which is the principal river in West Africa, resulted in the death of 81 and 137 people in 

Niger and Nigeria, respectively, while displacing more than 600,000 people [10]. 

Considering the fact that in this region a temperature of 3–6 °C above the late 20th century baseline 

has a “very likely” prediction and the fact that the projection is expected to occur one or two decades 

earlier in West Africa than at the global time, West Africa has been described as a hotspot of climate 

change [11]. The frequency of occurrence of extreme events is expected to increase [12]. There is  

also medium confidence that projected increase in extreme rainfall will “contribute to increases in  

rain-generated local flooding” [13], p. 24. This situation will have dire consequences for the  

sub-region’s agricultural sector and food security [14]. 

Despite the major impact of floods on the livelihoods of the people living in this region, no attempt 

has been made to delineate the boundaries of flood intensity at the community level and to identify areas 

most at risk of flooding. Mapping flood hazard zones is an important first step in the proper management 

of future flooding events. Flood hazard maps depict areas (extent and depth) that may be at risk of 

flooding under extreme rainfall conditions (e.g., above normal rainfall). These maps have proven useful 

around the world, especially in the developed countries [15] and have: (a) assisted in the early 

identification of populations and elements at risk; (b) served as a guide in spatial planning in order to 

avoid development in flood prone areas [16,17]; (c) served as information base for implementation of  

a flood insurance scheme [18] and (d) raised awareness among the public concerning flood prone  

areas [15]. 

The use of flood hazard maps for managing disasters in West Africa is virtually non-existent. Disaster 

managers have for many years relied on traditional methods such as watermarks on buildings, local 
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knowledge and media reports to identify possible affected areas during flood events [19]. Lack of proper 

records on historical flood events, coupled with logistical and financial challenges have often resulted 

in a poor preparedness and response to flooding events. Consequently, fatalities have often been  

high [4,6]. 

In order to improve this situation, non-governmental organizations (NGOs) and other international 

bodies have, in recent years, introduced various initiatives, including flood hazard mapping, aimed at 

improving disaster management in the sub-region. For example, the World Health Organization (WHO) 

has produced flood hazard maps at national scale for most countries in SSA [20]. Other initiatives have 

also produced climate change hot spot maps at national, continental and global scales [21–24], that show 

regions that are particularly vulnerable to current and future climate change impacts. However, these 

products suffer the limitation that they are only useful at the national, continental or global scales, and, 

thus, are of limited use and applicability at the local scale (e.g., district or community level) where small 

settlements are mostly the worst affected flood areas. Some researchers have reported the use of seasonal 

climate forecasts by international bodies (e.g., Red Cross and Red Crescent Society) to manage disasters 

in the sub-region [3]. However, these forecasts are limited to specific years, and are unable to provide 

information on specific geographical locations that may be at risk of flooding. Other papers reviewed 

the vulnerability of some West African cities (e.g., Bobo-Dioulasso, Burkina Faso and Saint-Louis, 

Senegal) in the light of climate change [25], but made no efforts at mapping the spatial limits of the flood 

risk areas. 

Development of flood hazard maps at the local level/scale (e.g., sub-district and community) can 

achieve a better targeting of rural communities that are vulnerable to floods than the national/global 

maps that currently exist. Unfortunately, local level flood hazard maps are rare in the Sudanian Savanna 

of West Africa. Some of the few that exist also lack the needed spatial variability (i.e., within the unit of 

mapping) required for an effective management of flood events. For example, in Ghana, Forkuo, [9] 

integrated topographical, land cover and demographic data to derive a composite flood hazard index for 

all the districts (second administrative unit) in the Northern region of Ghana. The assignment of a 

composite flood index to each district greatly limits the use of these maps for identifying communities 

in the district that may be at risk of flooding. Recently, the Environmental Protection Agency (EPA) of 

Ghana, with the support of the United Nations Development Programs (UNDP) and the African 

Adaptation Program (AAP) have conducted flood risk mapping for five, out of the two hundred and 

sixteen, districts in Ghana [26]. They integrated GIS layers of elevation, soil, rainfall, land use and 

proximity to water bodies to map flood risk areas in the five districts. Although this initiative produced 

high resolution flood hazard maps for the selected districts, it is extremely limited in extent (i.e., number 

of districts considered). 

Moreover, many flood modeling approaches require complex calibration procedures and demand 

huge data as inputs, making them unsuitable in data scarce environments such as WA. There remains 

therefore an urgent need to explore appropriate methodologies that are able to provide the spatial 

variability at community level and yet yields accurate results with limited data availability.  

In this study, an innovative approach involving the use of a simple hydrological model suitable for 

data scarce environments and integrated with statistical procedures in a GIS environment is proposed to 

map the spatial limits of flood hazard zones at a high spatial resolution. A unique approach is also 

proposed to use a bottom-up participatory method based on the principles of Participatory Geographic 
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Information System (PGIS) [27–29] and coupled with robust empirical methods to evaluate the results 

of the modeling procedure. The main motivation was to develop community level flood hazard maps at 

a fine spatial resolution that could allow for accurate delineation of flood hot spots and flood safe havens 

at the sub district/community levels in Ghana, Burkina Faso and Benin. 

2. Contexts 

Within the framework of the WASCAL project, three study areas in three West African countries 

have been selected. These areas are (i) the Vea in the Upper East region of Ghana (ii) the Dano in the 

province of Sud-Ouest of Burkina Faso and (iii) the Dassari in the Commune of Materi in North West 

Benin. These study areas, which belong to the Sudanian Savanna ecological zone, have a similar climate 

and are under varying forms of agricultural systems. The areas are predominantly rural and have 

relatively high population density. In addition to differences in geopolitical contexts, the countries were 

selected because: (i) The entire area fall in the West Sudanian Savanna Ecological Zone, an area with a 

high agricultural production potential, but also noted for high climate variability and uncertainty;  

(ii) Relatively good records of existing long-term historical socio-economic data; and (iii) they have 

experienced more than one natural disaster over the last 10 to 15 years [30].  

To be able to identify the spatial extent of high and low flood hazard zones, the three focal sites were 

delineated to sub-catchments in a GIS environment. There are a number of approaches used to delineate 

an area into sub- catchments based on a digital elevation model (DEM). In an urban landscape, artificial 

drainage channels may be used in addition to natural water bodies in delineating the boundaries of the 

various catchments in an area. This method works relatively well in drainage areas where the slope of 

the landscape is primarily responsible for the path taken by runoff [19,31]. However, very often in a 

highly urbanized setting, control structures such as culverts and detention basins can control the 

boundaries of various sub-catchments [32]. 

In this study, the delineation into sub-catchments was based on DEM, river channel systems, 

populations in the communities as well as the operational plans which are used by local disaster 

managers to segregate and demarcate the areas for effective disaster management. Using this approach, 

the Vea study area was delineated into 13 sub-catchments. The largest of this sub-catchment is the Kula 

River drain (Figure 1), named after the Kula river which is well known for causing many of the floods 

in the area. Other prominent sub-catchments are the Vea main drain and Kolgo/Anateem valley. These 

sub-catchments are located at the downstream of the Vea and Kolgo Rivers and are also significantly 

exposed to floods. Similarly, the Dano study area has further been delimited into thirteen sub-catchments 

in relation to population, contours and river network. The Yo, Bolembar, Gnikpiere and  

Loffing-Yabogane sub-catchments are prominent among them with extensive river system, smallholder 

agriculture and many scattered settlements and hamlets. The Dassari area in Benin was also delineated 

into twelve (12) sub-catchments to reflect population, river network and local administrative structure. 

The Setcheniga, Porga and Nagassega sub-catchments are most prominent as they are run through by a 

major river network that significantly exposes the area to flooding. The size of the sub-catchment largely 

influences the volume of runoff past the outlet hence the larger the catchment size, the greater the 

potential amount of rainfall that can be captured and directed towards the catchment’s outlet [33]. The 

sections below provide a brief overview of each of the study areas. 
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Figure 1. The Vea study area of Ghana. 

2.1. The Vea Study Area  

The Vea area (Figure 1) cuts across two districts in Ghana (second administrative units)—Bolgatanga 

and Bongo—and covers an area of 1037.8 km2. The city of Bolgatanga, the capital of Upper East region 

is found in this area. This study site is the most urbanized of the three study areas and has well developed 

road network, schools, market access, hospitals, irrigation dams and electricity. Consequently, it has a 

relatively higher population density of about 104 persons per km2. Hydrologically, it falls within the 

White Volta sub-basin, which extends from northern Ghana to mid Burkina Faso. 

The area ranks high amongst areas most exposed to risks from multiple natural hazards occasioned 

by climate variability. Similar to other parts of West Africa, studies have shown that this area experiences 

high variability in climate and hydrological flows [34,35]. According to Oduro-Afriyie [36], the area has 

frequently experienced floods in the past. Between 1991 and 2013, the area has experienced eight major 

floods; the largest number of people affected being in 1991 [37]. From 2007 to 2013, there have been 

consecutive flood events in the area. 

In 2007, floods followed immediately after a long period of drought and damaged the initial cereal 

harvest. During this flood disaster, at least 20 people died and an estimated 400,000 people were affected, 

over 90,000 people were displaced and nearly 20,000 homes were damaged [5]. The long-term and 

economic impacts on the northern regional economy are still not known but the World Bank [35] 

estimated the damage to be around US$130 million. Ghana’s National Disaster Management 

Organization (NADMO) reports that within a period of three years (2010 to 2012), a total of  

702,204 people have been affected by floods in Northern Ghana, of which 42% are in the Upper East 
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region where the Vea study area is located. Within this same period, floods have killed 145 people, 

destroyed 72,391 houses and inundated 31,263.84 hectares of cropland. Of the 20,403 people affected 

by floods in the Upper East region in 2011, more than 54% were from the Bolgatanga and Bongo districts 

and virtually all the 3428 houses that collapsed during this flood event were from the two districts that 

make up the study area. 

2.2. The Dano Study Area 

The Dano study area (Figure 2) is essentially the third sub- administrative level in the province  

of Ioba of Burkina Faso and has an area of 633.8 km2. Population density in this study area is about  

59 persons per km2. Hydrologically, it falls within the Black Volta sub-basin system, which forms the 

western part of the Volta basin. 

 

Figure 2. The Dano study area of Burkina Faso. 

Compared to the Vea study area, local scale data on flood hazards in this area is limited. However, 

available records suggest that in 2009 heavy rains in Burkina Faso caused flooding in many parts of the 
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country and forced officials to open the main gate of a hydroelectric dam (Bagre dam) which also caused 

flooding in downstream areas in northern Ghana [38]. During this flood, Burkina’s main hospital  

was closed down. Whereas annual rainfall in Burkina Faso has been averaging 1200 mm, as much as 

300 mm occurred within one hour on 1 September 2009 and the Burkinabe Government estimated that 

it was going to cost US$152 million to face the consequences of the flooding. The Dano study area has 

severely been affected by floods from torrential rains. In 2008, 410 people were affected, another  

720 inhabitants in 2012. The floods in 2010 in particular affected 12 other provinces where more than 

160,000 people were directly affected by floods and 14 people were reported dead. Villages were 

devastated with damage to shelters, livestock, properties, agricultural fields, roads and wells [39]. The 

occurrence of flood in the area has been increasing in recent years. Field observation show that most 

houses are easily damaged by flash floods caused by torrential rains. This phenomenon is a great source 

of worry for many households who already are faced with daunting climate variability issues, low coping 

and adaptive capacities and thus are highly vulnerable to extreme events. 

2.3. The Dassari Study Area 

The Dassari study area (Figure 3), which covers an area of 657.1 km2, falls in the third sub-national 

administrative level in Benin (known as the Arrondissement of Dassari) and has a population density of 

about 56 persons per km2. In terms of hydrology, the study area falls within the Oti sub-basin of the Volta 

basin. The north-eastern corner of the study area forms part of the Pendjari national park in West Africa. 

 

Figure 3. The Dassari study area of Benin. 
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At the national level, the worst flood in Benin since 1963 occurred in September 2010 when heavy 

downpour and influx from the Niger River flooded 55 out of the 77 municipalities in the country 

including the Materi commune where this study area is located. In this flood alone, over 680,000 people 

were affected, 800 cases of cholera were reported, 55,000 homes were destroyed and at least 56 people 

were killed [40]. 

Similar to Dano, there is limited local scale data available on flood hazards in this study area. 

However, available data suggest the area has also not been spared of the hydrological hazards that have 

plagued the other two study areas. Similar catastrophic events were reported in 2008, 2011 and 2012 in 

the Dassari study area. The 2011 floods in particular resulted in heavy damages to poultry and livestock 

and thousands of hectares of farmland. In 2013, the local agricultural department had to distribute seeds 

to over 3600 farmers in the study area to replant about 223 hectares which had been destroyed by floods 

in the previous farming season. 

3. Methods 

3.1. Overview of Flood Hazard Mapping 

Development of flood hazard maps has often been through the integration of spatial layers 

representing flood causal factors (e.g., elevation, runoff, land use, etc.) in a Geographic Information 

System (GIS) environment [15,19]. In recent years, and with the advancement of satellite technology, a 

number of studies have explored the use of satellite images and GIS in developing flood hazard  

maps [9,31,41]. Morjani, [20] reviewed four major techniques for developing flood maps. These 

techniques include hydrological frequency analysis, hydraulic modeling, hydrological models and 

statistical methods. 

• In Hydrologic frequency analysis, historical flood data is used to estimate the probability and 

spatial extent of future floods events for different time intervals [42,43]. The reliance of this 

method on historical data limits its usefulness because physical parameters that existed when the 

floods occurred will no longer remain the same for future floods [20]. 

• A hydraulic model such as the Engineering Center’s River Analysis System (HEC-RAS) 

developed by the Hydrologic Engineering Center (HEC) of the US Army Corps of Engineers 

(USACE) estimates inundation extent, duration and changes in water depth and velocity using 

river steady flow measurements [44,45]. This model produces highly accurate results for small 

catchments. However, it requires significant amounts of input such as high resolution Digital 

Elevation Models (DEMs), stream network model and detailed cross-sectional geometries of 

river channels. 

• In hydrological models, mathematical estimation procedures use a known or an assumed value 

for components of the hydrological cycle to model stream flow behavior in specific study areas. 

There are two derivates of hydrological models. These are deterministic models that are based 

on physical parameters and processes whilst stochastic model allow for the probabilistic 

variability in both parameters and processes [19,46–49]. 

• The last method used in determining flood prone areas is the statistical method which combines 

historical flood frequency and associated causal factors to estimate flooded areas. This method 
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allows for the derivation of Flood Hazard Index (FHI) as applied in Islam and Sado [41] and 

Morjani [20]. 

The first two of the flood modeling approaches reviewed above require complex calibration 

procedures and demand large data inputs, making them unsuitable in data scarce environments like West 

Africa. In this study, the last two approaches were integrated with GIS and remote sensing techniques to 

develop a Flood Hazard Index at the community level. 

3.2. Integration of Hydrological and Statistical Models in GIS 

In this study, two flood modeling approaches—hydrological model and statistical procedures—were 

combined to map the spatial extent of flood hazard areas at a high spatial resolution at sub district level. 

First, a modified version of the rational hydrological model [47,49] was used to estimate the runoff of 

the respective catchments based on rainfall intensity, the area of LULC type within catchments and a 

runoff coefficient. Thereafter, statistical procedures were adopted in a GIS environment to integrate the 

output of the hydrological model with other flood causal factors such as topography (DEM) to determine 

a flood hazard intensity map for the respective study areas. Flood hazard zones were eventually defined 

through a reclassification of the flood hazard intensity maps to derive the Flood Hazard Index (FHI) 

which determines the flood hazard zones of an area. 

Morjani [20] found that the use of statistical procedures in mapping flood hazards zones resulted in 

the following benefits: (a) there are reliable estimates of flood hazard zones because the integration of 

the statistical methods avoids the use of a purely empirical model; (b) There is ease of integration in 

Geographic Information System (GIS); (c) is able to consider both the susceptibility of each small area 

to be inundated and flood emergency management. This could allow for delineating flood hazard zones 

at community level which then helps local disaster managers to effectively manage local disasters;  

(d) allows the use of knowledge of flood causal factors which are readily available from local experts. 

The uniqueness of this present study is the integration of the statistical methods which then allows a 

simple hydrological model to be applied in this data scarce environment. Statistical procedures were 

used at two different stages. The first stage is where various standardization methods were applied to 

develop the flood hazard index. The second stage is where statistical procedures were combined with 

PGIS principles to evaluate the results of the flood maps. 

The methodological approach adopted has been diagrammatically summarized in Figure 4. 

As first step, the approach retrieves data values from all flood causal factors and then calculates peak 

runoff rates using the rational model. The causal factors for flood which have been elaborated in section 

3.4 are land cover/use, soil type and texture, slope, elevation, rainfall and drainage area [20]. It then uses 

the statistical procedures to determine the peak runoff rates at different elevations before applying 

standardization methods to determine flood hazard zones. 
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Figure 4. Integration of hydrological and statistical models with GIS. 

3.3. Determination of Peak Runoff Using the Rational Model 

The rational model [47,49] belongs to the group of lumped hydrological models which treats the unit 

of analysis (normally a catchment or sub-catchment) as a single element whose hydrological parameters 

(e.g., rainfall) are considered as average values [50]. The strength of this model lies in its simplicity  

and the ease of implementation. Consequently, it has been widely used to calculate peak surface runoff 

rate for the design of a variety of drainage structures [51], study area modeling and flood hazard  

mapping [19]. The rational model converts rainfall in a catchment into runoff by determining the product 

of the rainfall intensity in the catchment and its area, reduced by a runoff coefficient (C, between 0  

and 1), which is a function of the soil, land cover and slope in the study catchment. The runoff coefficient, 

which is the most critical parameter in the rational model [52], provides an estimation of how much 

water (rainfall) is lost due to infiltration (soil), interception and evapotranspiration (land cover). Thus, 

the runoff coefficient of a catchment can be considered as the fraction of rainfall that actually becomes 

storm water runoff [51]. Accurate determination of this parameter is, therefore, vital to the successful 

implementation of this method. The rational model operates on a number of assumptions including: 

• The entire unit of analysis is considered as a single unit, 

• Rainfall is uniformly distributed over the drainage area. 

• predicted peak runoff has the same probability of occurrence (return period) as the used rainfall 

intensity (I), 

• the runoff coefficient (C) is constant during the rain storm 
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The model is given by the equation: 

p 0.28 C I AQ = × × ×  (1)

where, 

Qp = Peak runoff rate (m3/sec) 

C = Runoff coefficient (-) 

I = Rainfall intensity (mm/hr) 

A = Drainage area (Km2) 

The factor “0.28” is required to convert the original units in North American system (i.e., cubic feet 

per second—cfs) to an international system such as cubic meters per second (m3/s). 

3.4. Flood Causal Factors and Retrieval Methodologies 

In this study, spatial layers of land use and land cover, soil and slope were analyzed to accurately 

determine the runoff co-efficient prior to the implementation of Equation (1). The sections below  

(3.4.1 to 3.4.4) details the source or the methodology used to derive each of the four datasets and the 

preliminary processing conducted on each. 

3.4.1. Land Use/Land Cover (LULC) 

The type of LULC in an area determines how much rainfall infiltrates the soil and how much becomes 

runoff. Impervious surfaces such as concretes have runoff coefficients approaching one while surfaces 

with vegetation to intercept rainfall and promote water infiltration have lower runoff coefficients [51,53]. 

There is a direct relationship between land cover and hydrological parameters of interception, 

infiltration, runoff and concentration which ultimately influence flooding [19,41,54–56]. 

In this study, LULC maps for the three study areas were generated by classifying high spatial 

resolution (5 m) multi-temporal RapidEye images acquired between April and November 2013 [57,58]. 

RapidEye provides data in five spectral channels (blue, green, red, red edge and near infrared). Table 1 

provides details of the images analyzed and their acquisition dates. 

Table 1. Satellite imagery used and their acquisition dates. 

Study Area Satellite Data Used Acquisition Dates (DD/MM/2013) 

Vea 
RapidEye 01/04; 02/05; 03/06; 19/09; 02/10; 03/11 

TerraSAR-X 25/09; 21/10 

Dano 
RapidEye 01/04; 03/05; 30/09; 13/10 

TerraSAR-X 30/07; 10/08; 12/09; 15/10 
Landsat 12/06; 14/07; 03/11 

Dassari 
RapidEye 04/04; 02/05; 13/06; 19/09; 12/10; 15/11 

TerraSAR-X 15/05; 17/06; 20/07; 22/08 

The images were atmospherically corrected with ENVI ATCOR2 [59] prior to analysis. Classification 

was conducted to reveal five broad LULC classes. These are: (1) croplands (all crop classes); (2) forest 

(trees with a crown canopy of greater than 70%); (3) grasslands; (4) mixed vegetation (combination of 

grassland, herbs and shrubs) and (5) artificial surfaces (buildings, bare areas, tarred roads, etc.). Training 
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and validation data for these classes were obtained from field campaigns conducted between July and 

October 2013. Training and validation samples for the classification were generated by overlaying the 

training and validation data (polygons) on the time-series satellite images and extracting the 

corresponding values. 

The Random Forest (RF) classification algorithm [60] as implemented in the R statistical software [61] 

was used to classify the images of the respective study areas. RF generates a large set of independent 

classification trees, each trained on a bootstrapped sample (randomly selected) of the training samples. 

The training samples consist of a matrix of rows and columns, where the columns (also called predictors 

or variables) represent the individual spectral bands of the underlying image, while each row represents 

the corresponding values of a pixel in the spectral bands. RF’s construction of a large number  

of classification trees overcomes the limitation of single decision trees, which often over fit the  

training data [62]. Each classification results were independently validated with the validation samples. 

Overall classification accuracies of 88%, 95% and 97% were obtained for the Dano, Vea and Dassari 

catchments respectively. 

As indicated in the introductory section, this study explores appropriate methods to map flood hazard 

at community level in the face of a daunting challenge relating to limited data availability. One effect of 

scarce data is on the images analyzed. It did not spatially cover the studies areas, particularly the Dassari 

study area and to some extent the Vea study area. Consequently, a 500 m resolution global LULC map 

produced from Moderate Resolution Image Spectroradiometer (MODIS)—MCD12Q1 [63] was used to 

fill-in the areas that were not covered by the RapidEye and TerraSAR-X images. MCD12Q1 products 

are developed on an annual basis. Thus, to ensure consistency with the LULC map produced in this 

study, the 2013 version was downloaded and utilized. The MODIS product was resampled to the 

resolution of the RapidEye and TerraSAR-X images but some variations in spatial resolutions of the 

LULC can be seen at the affected areas (Figure 5). Figure 5 shows the final LULC maps of the  

respective watersheds. 

3.4.2. Digital Elevation Model (DEM)/Slope 

A study area with a greater slope will have more runoff and thus a higher runoff coefficient than a 

study area with a lower slope, Ceteris Paribus. The probability of a flood increases with decreasing 

elevation and hence is a strong indicator for flood susceptibility [41,46,64–67]. The slope angle and 

topography are important factors of runoff. Probability of flooding increases when slope angle is below 

a critical value and then decreases logarithmically [26]. In this study, the Advanced Space borne Thermal 

Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) developed 

jointly by the Japanese Ministry of Economy, Trade and Industry (METI) and the United States National 

Aeronautics and Space Administration (NASA) was used to derive the slope maps for the respective 

study areas. The ASTER GDEM was produced by applying automated procedures to process the entire 

1.5-million-scene ASTER archive, including stereo-correlation, cloud masking to remove cloudy pixels, 

stacking, removal of residuals and outliers, averaging and finally portioning into 1°-by-1° tiles. This 

ASTER GDEM which has spatial resolution of 1 arc second (approximately 30 m) grid was downloaded 

in GeoTIFF format from ASTER GDEM Page [68]. The data has a vertical accuracy of 20 m at 95% 

confidence level [69]. The downloaded DEM was converted to percent slope in a GIS application after 
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all the sinks had been filled to remove small imperfections. In accordance with standardized tables for 

calculating runoff coefficient, the slope map was reclassified into three classes; (1) areas with slope less 

than 2%; (2) areas with slope between 2% and 6% and (3) areas with slope greater 6%. Besides the slope 

map that was obtained, the filled DEM layer was maintained and used later in the integration of peak 

runoff and elevation to determine runoff concentration at different elevations. 

 

Figure 5. Land Use/Land Cover (LULC) maps of the study areas. MODIS—MCD12Q1 

product was used to fill in portions of the high resolution RapidEye and TerraSAR-X images 

for particularly the Dassari study area and to some extent the Vea study area. As can be seen, 

the southernmost and north eastern portions of the Vea study area and in the case of Dassari, 

the north and southeastern portions were the main areas affected. The MODIS product was 

resampled to the resolution of that of the RapidEye and TerraSAR-X images. 

3.4.3. Soil Type and Texture 

Soils that have a high clay content do not allow very much infiltration and thus have relatively high 

runoff coefficients, while soils with high sand content have higher infiltration rates and low runoff 

coefficients [51,53]. Nyarko [19], Todini et al. [54] found the important role played by soil type in 

influencing water infiltration, runoff and hence flood susceptibility. The texture of a soil influences its 

erodability, water retention capacity, crust formation and aggregate stability. The amount of water 

available for runoff is thus a function also of both soil texture and structure [26]. The Natural Resource 
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Conservation Service of the United States has classified four broad hydrological soil groups that provide 

useful information in determining study area runoff coefficients. Classification into any of these groups 

can either be on the basis of a description regarding soil texture or measured infiltration rates [51]. The 

study used the 1km resolution soil map from the Harmonized World Soil Database (HWSD) version 1.1 

produced in 2009 by the International Institute for Applied System Analysis (IIASA). The HWSD is an 

image file linked to a comprehensive attribute database in Microsoft Access. This attribute information 

includes soil mapping units, soil texture for top and sub soils and several other soil properties. Details 

about this database can be found in FAO [70]. Based on the soil texture attribute information, the 

extracted soil maps of the study areas were reclassified into the four main soil hydrological groups  

(A to D) defined by the United States Soil Conservation Service [71]. 

3.4.4. Rainfall 

The probability of a flood increases with increasing rainfall within a specified time period [19,20,54]. 

We obtained daily data of precipitation at a resolution of about 11 × 11 km based on the African Rainfall 

Climatology, version 2 (ARC2), subsetted to our period of analysis (2004–2013) and study area in West 

Africa. This period was chosen because of increased occurrence of flood events recorded in the areas as 

mentioned in Section 2. These data were then further aggregated to capture long-term precipitation 

magnitude (97.5th percentile, median, and 2.5th percentile) and extremes (97.5th percentile). To capture 

long-term precipitation magnitude (97.5th percentile, median, and 2.5th percentile) and extremes (97.5th 

percentile), the time-series of records per grid are statistically considered as a population (rainfall records 

per grid, 2004–2013). The extreme (97.th percentile) for each grid was retained as input to the calculation 

of Peak Storm Water Runoff Rate. The rational for this non-parametric aggregation is found in the 

stochasticity of rainfall; a parametric aggregator (i.e., maximum or mean) would be sensitive to outliers 

and data errors. 

Called the African Rainfall Climatology, version 2 (ARC2), the underlying dataset is a revision of 

the first version of the ARC [72] consistent with the operational Rainfall Estimation, version 2, algorithm 

(RFE2), ARC2 uses inputs from two sources: 

• Three-hourly geostationary infrared (IR) data centered over Africa from the European 

Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and 

• Quality-controlled Global Telecommunication System (GTS) gauge observations reporting 24-h 

rainfall accumulations over Africa. 

The main difference with ARC1 resides in the recalibration of all Meteosat First Generation (MFG) 

IR data (1983–2005). Results show that ARC2 is a major improvement over ARC1. It is consistent with 

other long-term datasets, such as the Global Precipitation Climatology Project (GPCP) and Climate 

Prediction Center (CPC) Merged Analysis of Precipitation (CMAP), with correlation coefficients of  

0.86 over a 27-year period. However, a marginal summery dry bias that occurs over West and East Africa 

is examined. Daily validation with independent gauge data shows RMSEs of 11.3, 13.4, and 14, 

respectively, for ARC2, Tropical Rainfall Measuring Mission Multi satellite Precipitation Analysis 

3B42, version 6 (3B42v6), and the CPC morphing technique (CMORPH) for the West African summer 

season. The reconstructed Africa Rainfall Climatology (ARC2) offers a number of advantages compared 
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to other long-term climatological rainfall datasets that are widely used. First, high resolution historical 

rainfall estimates on a daily basis would help not only to monitor precipitation associated with synoptic 

and mesoscale disturbances, but also to undertake studies of extreme events, wet and dry spells, number 

of rain days (i.e., rainfall frequency), and onset of the rainfall seasons. Second, a 0.1° (~11 km) spatial 

resolution allows users to see rainfall phenomenon on local scales that cannot be captured by coarser 

climate datasets [72]. 

3.5. Development of Peak Runoff Maps 

Within the study area, more than one land cover type, slope and soil group exists. In order to find 

representative runoff coefficients within a given land cover, sub-catchment runoff coefficient was 

determined using the areas of the different LULC type and then the hydrologic soil group, and slope 

complexes as weighting factors. The classical application of the rational model requires treating the 

entire sub-catchment as a single unit and thus, does not lead to spatial variability of the runoff and for 

that matter, flood risk within sub-catchments. In this study, however, a novel technique is introduced 

where the various classes of LULC types within the sub-catchments are used as the unit of analysis to 

ensure spatially explicit assessment of flood risk. This was required because the key purpose of this 

study is to explore methods to derive community level flood risk in a data scarce environment. Therefore, 

we sought to operationalize the rational model in a way that meets the objective of the study. It was 

realized that treating the whole sub-catchment as a single unit will not lead to a determination of the 

spatial variability of discharge within a sub-catchment which is required to understand community level 

flood risk. Therefore, instead of using the sub-catchment as the unit of analysis (which is the classic 

application of the rational model), the area of the different landuse units was used as the unit of analysis. 

In other words, the area of the various LULC classes were computed and peak runoff estimated for each 

cover type. Although this approach has some limitation especially regarding catchment boundaries 

where a land use/cover type crosses the boundaries, it was found to be conceptually and operationally 

better than implementing the rational model in its raw form which can only give single peak runoff for 

each sub-catchment based on many averages (i.e., average coefficient, rainfall and total area). 

A runoff coefficient map was first generated by vectoring the reclassified layers of LULC, slope and 

soil layers and overlaying them in a GIS. The overlay resulted in multiple polygons each having a unique 

LULC, soil and slope class. Based on Table 2, which specifies a runoff coefficient for a combination of 

LULC, soil type and slope, the attribute table of the resultant overlay layer was populated with the 

corresponding runoff coefficient number. This layer was eventually rasterized (30 m resolution) for 

subsequent analysis. 

In order to allow for integration with the generated runoff coefficient map, the rainfall intensity map 

was resampled to a cell resolution of 30 m to correspond to the spatial resolution of the ASTER GDEM 

layer. A vector layer of the sub-catchment map containing the areas (in km2) of each LULC type within 

each sub-catchment was also rasterized into a 30 m resolution raster. Once the raster layers of the runoff 

coefficient (C), rainfall intensity (I) and sub-catchment areas (A) was ready, the runoff peak layer was 

calculated by implementing Equation (1) in a GIS using raster algebra. 
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Table 2. Rational method runoff coefficients. 

LULC 
Runoff Coefficient 

Soil Group A Soil Group B Soil Group C Soil Group D 

Slope <2% 2%–6% >6% <2% 2%–6% >6% <2% 2%–6% >6% <2% 2%–6% >6% 

Cropland 0.14 0.18 0.22 0.16 0.21 0.28 0.20 0.25 0.34 0.24 0.29 0.41 

Forest 0.08 0.11 0.14 0.10 0.14 0.18 0.12 0.16 0.20 0.15 0.20 0.25 

Grassland 0.15 0.25 0.37 0.23 0.34 0.45 0.30 0.42 0.52 0.37 0.50 0.62 

Mixed vegetation 0.14 0.22 0.30 0.20 0.28 0.37 0.26 0.35 0.44 0.30 0.40 0.50 

Artificial Surfaces 0.33 0.37 0.40 0.35 0.39 0.44 0.38 0.42 0.49 0.41 0.45 0.54 

Note: Source: Knox County Tennessee [73]. 

3.6. Statistical Modeling 

The generated peak runoff map was combined with the elevation layer to produce the flood hazard 

intensity map. However, prior to that, the two layers (peak runoff and elevation) were standardized. Due 

to the dissimilar units (i.e., m3/s for peak runoff and m for elevation), standardization was necessary to 

make any combination of the two layers meaningful. The fuzzy set theory [74] was used to standardize 

the layers into comparable scales prior to combining them. Compared to other methods (e.g., Boolean 

sets) that allow only binary membership functions (i.e., true (1) or false (0)—membership or no 

membership), the fuzzy set theory admit the possibility of a partial membership [75]. This means that 

the transition between membership (1) and non-membership (0) of a location in the set is gradual, 

compared to sharp boundaries, in for example, Boolean sets [74]. Fuzzy sets are, therefore, characterized 

by a membership grade that ranges from “0” to “1”, indicating a continuous increase from non-membership 

(0) to complete membership (1). 

The fuzzy membership function implemented in ESRI’s ArcGIS was used to standardize the peak 

runoff and elevation layers. Due to the positive linear relationship between peak runoff and probability 

of flooding, the peak runoff layer was linearly rescaled between the minimum and maximum values 

using a linear membership type. This means the lowest peak runoff value in each study area was assigned 

a value of “0” (i.e., no membership or low probability of flooding) while the highest peak runoff value 

was assigned a value of “1” (full membership or high probability of flooding), with all other values  

in-between the two extremes rescaled between “0” and “1”. Thus, the lowest likelihood for a flood to 

occur in a given sub-catchment was rescaled as 0 with 1 for categories with the highest likelihood.  

The reverse, however, was done for the elevation layer. Theoretical principle underlying the relationship 

between elevation and probability of flooding indicate a negative relationship. In other words, areas with 

low elevation have a higher probability of flooding than areas with high elevation values. Therefore in 

rescaling the respective elevation layers, the lowest value was assigned a membership of “1” (i.e., high 

probability of flooding) while the highest value was assigned a membership of ‘0’ (low probability), will 

all other values in-between rescaled between “0” and “1”. 

3.7. Developing Intensity Level of Flood Hazard Distribution Map 

The standardized peak runoff and elevation layers were combined using the weighted linear 

combination method [76] to produce the flood hazard intensity map at different elevations. Equation (2) 
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was implemented in a GIS to achieve this. The method permits the assignment of weights, which 

indicates the relative importance of a layer. The weights must add up to one. In this study, the two 

standardized layers were considered equally important, thereby assigning a weight of 0.5 each to the 

layers in Equation (2). 


=

=
n

i
ii xwFHI

1

 Or more simply as 
1

0.5 ( ) 0.5 (peak runoff )
n

i

FHI X DEM X
=

= +  (2)

where “FHI” is the flood hazard intensity, xi is the ith standardized layer, wi is the weight of the ith 

standardized layer and “n” is the number of standardized layers to be combined. 

Since the weights of the respective layers sum up to one, the output from Equation (2) has the same 

value range (0 to 1) as the standardized layers, where “0” signifies areas with low flood risk while areas 

with high flood risk are given a value of “1”. For each pixel, this method multiplies the standardized 

peak runoff score with the score of the standardized DEM to produce the distribution of runoff at 

different elevations which is indicative of flood hazard. In order to make the map easily understandable, 

a reclassification was performed to define five flood hazard intensity levels/categories—very low, low, 

medium, high and very high. The natural breaks reclassification method in ESRI’s ArcGIS was used for 

this purpose. The natural breaks (jenks) classification algorithm finds data break points between classes 

depending on the natural patterns in which the data are clustered. Class break points are set where there 

are relatively huge jumps in the data values. 

4 Results and Discussion 

4.1. Peak Runoff Rates 

Maps of the peak runoff rates in cubic meters per second (M3/s) have been produced for the three 

study areas and show the distribution of runoff within all the catchments in the three areas studied. These 

maps are presented in Figure 6. 

Table 3 presents the total amount of peak runoff generated within the various sub-catchments.  

In the Vea study area, the Kula river sub-catchment generates the highest amount of runoff in excess of 

713.0 M3/s whilst the lowest amount was generated in the Balungu sub-catchment with an amount of 

26.0 M3/s. In the Dano study area in Burkina Faso, the Yo sub-catchment recorded the highest peak 

runoff rate of 119.6 M3/s whilst the Meba Pari segment generates a meager 25.5 M3/s. In the Dassari 

study area in Benin, the Sétchindiga sub-catchment generates the highest amount of 290.5 M3/s as against 

the lowest amount of 13.6 M3/s generated in the Tetonga sub-catchment. 

Comparing the three study areas in the three countries, the Vea study area in Ghana generates  

an average of 155.7 M3/s per sub-catchment. This amount is higher than the average sub-catchment 

runoff of 113.11 M3/s in the Dassari study area and 69.0 M3/s in the Dano study area. High runoff is 

positively correlated with increased susceptibility of flood hazards. As reported in Islam and Sado, [41]; 

Todini et al. [54]; Bapalu and Sinha [56], there is a direct relationship between hydrological parameters 

of interception, infiltration, runoff concentration and flooding. Although there is limited data available 

at the community level in Dano and Dassari study areas, available data collected during the field work 

shows that the Vea study area record more flood events and more people suffer from flood impacts than 

both Dano and Dassari study areas. Records from local authorities also show that the Dassari study area 
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also reports more flood events than the Dano study area in conformity with the average runoff figures 

shown in this study. For instance, between the periods 2008 to 2012, over 294,000 people have been 

affected by floods in the Vea study area [77] whilst 3600 were affected in the Dassari study area with 

Dano recording only 1130 people as affected. In addition, whilst the Dassari and Dano study areas have 

experienced three flood events between 2008 and 2012, there has been consecutive flood event in the 

Vea study area of Ghana over the same period. 

 

Figure 6. Peak runoff maps of the three study areas. 

Table 3. Results of total amount of peak-runoff generated within the various sub-catchments. 

Vea Study Area (Ghana) Dano Study Area (Burkina Faso) Dassari Study Area (Benin) 

Sub Catchment Runoff (m3/s) Sub Catchment Runoff (m3/s) Sub Catchment Runoff (m3/s) 

Balungu 26.0 Tambalan 100.3 Dassari 236.8 

Beo Adaboya 191.0 Bolembar 86.1 Firihoun 25.8 

Bongo zone 68.0 Dano sector 1,2&4 57.0 Nagassega 100.2 

Anfobissi 82.4 Batiara 80.8 Ouriyori 27.5 

Apatanga 128.6 Gnipiere 88.3 Porga 204.4 

Kolgo/Anateem 107.7 Sarba 42.9 Pouri 71.5 

Kula river channel 713.2 Kpeleganie 32.6 Sétchindiga Tankouri 290.5 

Samboligo 60.3 Lare 34.2 Tetonga 32.1 

Soe 201.6 Loffing-Yabogane 112.0 Tigniga 13.6 

Valley zone 138.0 Meba Pari 25.5 Tihoun 63.7 

Vea main drain 178.0 Dano sector 7 65.1 Koulou 34.0 

Tarongo 54.2 Complan 52.2  257.3 
Kanga 75.2 Yo 119.6   



Water 2015, 7 3549 

 

 

4.2. Digital Elevation Model (DEM) 

The map presented in Figure 7 show the DEM of the three study areas. In the Vea study area,  

high elevations values are concentrated in the Apatanga, Soe, Beo Adaboya and parts of Samboligo  

sub-catchments whilst the Kula River, Vea main drain and Kolga Anateem valley records very low 

elevation. Indeed in the southernmost part of the Kula River, a low elevation of 89 m is found. From the 

peak runoff map, the Kula river sub-catchment simultaneously records high runoff generation. 

 

Figure 7. Digital Elevation Model (DEM) of the study areas. 

This area is therefore expected to fall in the category of high flood intensity zone) in the Flood hazard 

Index (FHI). 

In the Dano study area, high elevations values are found in Dano, Sarba and parts of Yo sub-catchments. 

In this study area, low elevation areas are found in the north-eastern part and largely correspond to the 

river networks in the area. These areas also generate significant amounts of runoff as can be seen in the 

maps. In the Dassari study area, high elevation values are found in the southern parts of Tigniga, Tihoun, 

Koulou, parts of Dassari and Ouriyori sub-catchments. Similar to the Vea study area and Dano study 

areas, areas in Dassari with low elevation values and hence high risk areas for flooding also correspond 

to areas generating the largest amounts of runoff. These areas are the Sétchindiga and Porga  

sub-catchments and are thus expected to result in high flood risk zone. 

Comparing the elevation maps of the three study areas, the Vea and Dassari study areas are generally 

more low-lying than the Dano study area in Burkina Faso. Average elevation in Vea is 196 m as against 

379 m in Dano and 197.5 m in Dassari. This fact coupled with relatively high amounts of runoff 

generation will thus make the Vea more prone to flooding than the other two study areas. 
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4.3. Flood Hazard Intensity Levels and Flood Hazard Index 

By combining the standardized peak runoff maps with the standardized DEM, the flood hazard 

intensity map was produced. This map was then classified using the Natural Break (Jenks) method into 

five classes to produce the Flood Hazard Index (FHI). The index ranges from 1 (very low flood hazard 

intensity) to 5 (very high flood hazard intensity). In Figure 8 below, the final Flood Hazard Index is 

represented in a graduated colour map. 

 

Figure 8. Flood hazard index. 

Figure 8 presents the flood hazard intensity maps of the respective study areas. In the Vea study area 

of Ghana, the very high flood hazard intensity zone is concentrated in the Kula river sub-catchment.  

As indicated in Sections 4.1 and 4.2, this sub-catchment has the highest runoff of 330 M3/s and also has 

the lowest elevation of 89 m. Consequently, more than half of the sub-catchment falls into the very high 

flood hazard zone. This sub-catchment has the highest population density. The capital of the Upper East 

region, Bolgatanga, is found in this sub-catchment and it is the most urbanized and with good 

infrastructure. Records from the National Disaster Management Organization (NADMO) show that of 

the 702,000 people affected by floods in northern Ghana between 2010 and 2012, as much as 42% were 

from the Bolgatanga municipality [77]. This result of the Kula river sub-catchment having the highest 

flood risk correlates with the modeling result of Ghana’s Water Research Institute [78] when it was 

found that up to 75 cm of runoff is added to the maximum water level at Pwalugu, an area at the 

southernmost part of the sub-catchment.  
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In addition, the Kolga Anateem valley and Vea main drain sub-catchments are found in the high flood 

hazard intensity zones. With the exception of the valley sub-catchment in Bongo district, none of the 

sub-catchments in Bongo are located in the very high flood intensity zone. However, there are pockets 

of high flood hazard intensity zones in the Soe sub-catchment. Almost all of Balungu and parts of 

Samboligo and Beo Adaboya sub-catchments fall in the very low flood intensity zone and are thus 

expected to pose no flood risk. 

In the Dano study area, very high and high intensity flood hazard zones are distributed throughout the 

study area. However, the sub-catchments of Yo, Bolembar, Gnipiere, Loffing-Yabogana and Tambalan 

have significant areas classified as very high flood risk zones. Contrary to the Vea study area, the most 

populous area in this study area fall into the very low to medium flood hazard intensity zones. Therefore, 

the Dano township, the capital of the province with a projected population of 20,786 in 2010 [79] largely 

falls into low flood risk zone. 

In the Dassari study area, two sub-catchments stand out in terms of flood risk. The Porga and 

Sétchindiga sub-catchments have very high flood hazard intensity. This is as a result of low elevation 

values coinciding with high runoff generation as explained in Sections 4.1 and 4.2. In addition, in this 

study area, significant parts of Koulou and Dassari fall in the high flood intensity zone. There are also 

pockets of high flood intensity zones in Nagessega, Ouriyori, Firihoun and Tetonga sub-catchments. 

From Table 4, more than half of the Dano study area (52.1%) falls in the two high flood hazard 

intensity zones of very high and high. In addition, in the Vea and Dassari study areas, almost half of the 

entire study areas fall into the very high and high flood risk zone. It must be noted that, the data ranges 

for the FHI differ among all the study areas but they can all be translated into the five qualitative 

classification scheme of very high (5), high (4), medium (3), low (2) and very low (1). This is the same 

procedure adopted by Beck et al. [80] and Birkmann et al. [22] in the World Risk Reports. In addition, 

important to note is that an area classified as very low flood hazard intensity in the Vea study area could 

be rendered a high risk due to cross scale interactions. Flood risks from outside the sub-catchment area 

could lead to cascading hazards. For example, some of the flood events recorded in the Vea study area 

is as a result of the opening of the Bagre dam in nearby Burkina Faso. 

Table 4. Proportions of areas under various flood intensity zones. 

Flood Hazard Intensity Number Flood Hazard Intensity Zone/Class 
Percent of Study Area 

Vea Dano Dassari

1 Very low 15.2 16.4 23.2 
2 Low 18.8 11.2 13.3 
3 Medium 19.5 20.3 16.7 
4 High 28.2 18.1 22.1 
5 Very high 18.42 34.0 24.7 

Total High and Very High Risk Zone 46.6 52.1 46.8 

These cascaded flood events are independent or partially independent of local rainfall in the Vea area 

and conditions of other flood causal factors. The implication is that an area classified as low or medium 

flood intensity zone in the Vea as a result of the interactions of the factors considered in this paper could 

still experience significant flood episodes whenever overflow upstream in the Bagre dam is allowed to 

pass. At the same time, however, whenever this cross scale influence coincides with high episodes of 
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local rainfall anomalies, sub-catchments such as the Kula River which is already classified as very high 

flood intensity could experience catastrophic flood event. This is absolutely important for local disaster 

managers in the Vea area to constantly monitor the operations of dams upstream so as to prevent or 

minimize the impacts of this knock-on effect. 

The study found most of the high flood hazard risk areas close to the major rivers in the area. This 

was the case in Kula River sub-catchment in Vea, Porga and Sétchindiga in Dassari as well as Yo, 

Gnikpiere etc. in the Dano study area. This finding is contrary to the assertion by Forkuo [9] that high 

hazard zones are not necessarily located very near to river bodies. 

4.4. Quantitative Validation of the Flood Hazard Index with PGIS and Confusion Matrix 

The study introduced an innovative method of applying the principles of Participatory GIS (PGIS) to 

evaluate the flood map. The approach involves using local disaster managers, community leaders and 

local disaster volunteers to undertake field evaluation of the five flood categories. The team randomly 

visited known locations over 5 days in the Vea study area and 3 days in the Dano study area. At each 

location visited, the local experts were asked to classify the spot into the five flood hazard classes based 

on their knowledge of flood intensity at that particular location. A GPS receiver was then used to record 

the geographic coordinates of the location and its attributes. The objective was to construct a confusion 

matrix which will then allow for the quantitative validation of the flood map using statistical procedures. 

Typically, the confusion matrix [81–83] is used to display class membership of observations 

according to the map and according to field observations. The diagonal of the confusion matrix lists the 

correct classifications while off diagonal cells list errors. The overall accuracy quantifies the proportion 

of correctly classified pixels. Using this approach, the flood hazard of the Vea and Dano study areas 

have an overall accuracy of 77.62% and 81.41% respectively (Table 5 andTable 6). 

Table 5. Confusion matrix in the Vea study area. 

 Very High High Medium Low Very Low Total Accuracy (%) 

very high 17 0 2 8 0 27 62.96 
high 0 12 0 0 0 12 100.00 

medium 0 0 15 0 3 18 83.33 
low 1 1 0 9 0 11 81.81 

very low 3 2 1 0 9 15 60.00 
Total 21 15 18 17 12 83 77.62 

Table 6. Confusion matrix in the Dano study area. 

 Very High High Medium Low Very Low Total Accuracy (%) 

very high 34 0 3 3 1 41 82.93 
high 0 15 0 0 0 15 100.00 

medium 0 0 16 0 1 17 94.12 
low 2 1 0 12 0 15 80.00 

very low 4 4 5 0 13 26 50.00 
Total  40 20 24 15 15 114 81.41 
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An in-depth look at the errors in Table 5 and Table 6 (off-diagonals) show that some classes are 

frequently confused. For example in the Vea study area, there are eight sites classified as very high 

intensity flood zones but in reality there are low intensity flood zones. 

The study applied the chi-square statistic to test the assumption that the errors associated with the 

flood modeling are coincidence or that the modeling procedure makes errors randomly. A null hypothesis 

stating that the frequency in the confusion matrix results from a random process assigning pixels to the 

five categories of flood hazard. The alternative hypothesis was then formulated that the frequencies are 

not random and that there is a systematic error in the confusion matrix. Based on this, we expect that 

77.62% of ground truth observations in the Vea study area and 81.41% in the Dano study area in every 

class to be accurately classified while 22.38% (Vea) and 18.59% (Dano) would be randomly assigned 

to erroneous pixels in the column belonging to this class. 

To predict the expected outcomes for the correct observations in the Vea study area, we expect that 

77.62% of the 27 “Very high” intensity flood zones (20.96 records) to be classified as very high  

intensity zones.  

Table 7 shows in bold the expected number of accurately classified observations. The marginal values 

indicate the residual observations or errors for every row and column which are not yet distributed over 

the remaining pixels. 

Table 7 show that there are 5.69 observations which were “High” intensity zone in reality which 

remain to be classified. The proportion of this assigned to “very low” intensity zone would be 5.69 

multiplied by the row total of 3.36 divided by the grand total of 18.57 less the row total for “High” 

intensity zone of 2.69. This is expressed as (5.69 × 3.36)/(18.57 − 2.69) = 1.20. Using this approach, 

Table 8 is filled completely assuming that the errors are randomly distributed.  

Table 7. Expected number of correct classifiers and total error margins in the Vea study area. 

 Very High High Medium Low Very Low Column Error 

very high 20.96      6.04  
high  9.31     2.69 

medium   13.97    4.03 
low    8.54  2.46 

very low     11.64 3.36 
row error 0.04 5.69 4.03 8.46 0.36 18.57 

Table 8. Expected number of misclassified observations based on random error assumption. 

 Very High High Medium Low Very Low 

very high  2.16 1.67 3.17 0.14 
high 0.01  0.74 1.41 0.06 

medium 0.01 1.44  2.12 0.09 
low 0.01 0.88 0.68  0.06 

very low 0.01 1.20 0.93 1.76  
Total 0.04 5.69 4.03 8.46 0.36 
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Applying the Chi square, x2 statistics given as  ݔଶ =෎൬ ௜ܱ − ௜ܧ௜ܧ ൰ଶ௡
௜ୀଵ  (3)

where Oi indicates the observed frequency and Ei is expected frequency in pixel i. 

The difference between the observed and expected frequency in every pixel was squared and divided 

by the expected frequency. This was finally summed up as showed in the Equation (3) to calculate the  

chi-square statistic. 

In the Vea study area, the results showed that the observed chi square statistics of 1025.25 with  

12 degrees of freedom (df) is much higher than the expected chi square at 5% significant level of 21.03. 

However, in the Dano study area, the observed x2 was estimated to be 9.46 which is much lower than 

the expected x2 of 21.03 with 12 df at 5% significant level.  

Following these results and in the case of the Vea study area, we rejected the null hypothesis which 

stated that the frequencies in the table were the result of a random process assigning pixels to the five 

flood hazard classes. A conclusion was therefore made that the frequency of observed errors differs 

significantly from the frequency of errors expected under the randomness hypothesis and that the 

observed frequencies are unlikely to have resulted from a random process indicating a systematic error 

in the confusion matrix. However, in the case of the Dano study area, we fail to reject the null hypothesis 

stating that the errors are random and conclude that there is no systematic error or bias in the five hazard 

intensity zones as predicted by the modeling procedures introduced in this study (Chi square, x2 = 9.46, 

df = 12, α = 5%, x2(critical) = 21.03). 

An in-depth look at Table 9 will explain which combinations of flood hazard categories contribute to 

the bias or systematic error in the confusion matrix for the Vea study area. In Table 9, the squared 

differences for “very high” intensity zone and “very low” intensity were quite large compared to the 

squared differences for the same combination of categories in the Dano study area (Table 10). There 

could be several reasons why the confusion matrix of the Vea study area showed a systematic error. 

Besides the rapid rate of land use change as a result of high population density and intensive agricultural 

activities [34,36], the subjective nature of classifying the various locations visited into the five hazard 

categories could also contribute to the element of bias. During the field evaluation in the Vea area, the 

relatively large number of local experts involved led to some instances where the local experts argued 

among themselves regarding the proper classification of a particular spot. Lessons learnt from the field 

evaluation in the Vea study was used to improve the Dano field evaluation and this serves as important 

lesson for PGIS techniques. There was therefore improved selection of local stakeholder participation 

as well as improved sampling of locations to be evaluated. The lesson here is, in using local experts to 

evaluate geographic information, it is important that the participation of community members is limited 

to few opinion leaders and local elders whose expertise, knowledge and day to day activities have a 

direct bearing on the topic under study. Expanding the list to include many interested parties could lead 

to unnecessary arguments and introduced some elements of subjectivity in the results. 
  



Water 2015, 7 3555 

 

 

Table 9. Squared deviances estimated based on observed and expected frequencies—Vea 

study area. 

 Very High High Medium Low Very Low 

very high  2.16 0.06 7.34 0.14 
high 0.01  0.74 1.41 0.06 

medium 0.01 1.44  2.12 89.45 
low 119.75 0.02 0.68  0.06 

very low 797.49 0.53 0.01 1.76  
Total 917.26 4.15 1.49 2.63 89.71 

Table 10. Squared deviances estimated based on observed and expected frequencies —Dano 

study area. 

 Very High High Medium Low Very Low 

very high  3.23 0.39 2.95 −5.22 
high 1.36  1.57 0.42 −1.05 

medium 1.54 1.34  0.48 −4.03 
low 0.30 0.03 1.57  −1.05 

very low 1.14 1.87 1.90 0.73  
Total 4.35 6.46 5.44 4.58 −11.35 

4.5. Qualitative Validation of the Flood Hazard Index with Historical Flood Events 

The resulting FHI was also subjected to qualitative validation procedures to assess how the modeling 

outcome conforms to generally held knowledge and local opinion of flood hazard occurrence in the study 

areas. A similar approach has been successfully used in the region to validate the results of flood 

modeling. For example, EPA [26] engaged beneficiary communities and local experts in a series of 

validation workshops to assess the results of a multi-criteria flood mapping approach.  

In addition to statistical validation procedure, the present study also relied on local expert knowledge 

and four-year historical records of flood events in the Vea study area where significant historical data is 

available. In this study area, 19 communities showed in Table 11 are generally known by local disaster 

managers, agriculture development officers and local people as highly prone to flood hazards. 

Consecutive flood events have been recorded in these communities since 2007 when local disaster 

managers started to systematically record flood events. In the qualitative validation process, these 

communities were plotted and then overlaid on the FHI map as shown in Figure 9. 

The results (Figure 9) show that, of the communities listed as “flood prone” in Table 11, only 21% 

fall in the medium flood hazard intensity zone. The remaining 79% were all correctly classified by the 

flood modeling procedure used in this study as high flood prone communities. Of the communities that 

are classified as flood prone, 37% fall in the very high intensity whilst 42% fall in the high intensity 

zones. This suggests that the developed flood hazard index reasonably predicts areas likely to be flooded. 

It is interesting to note the result from the qualitative validation closely approximates the results achieved 

from the empirical validation process. In the Vea study area, the confusion matrix recorded a mapping 

accuracy of 77% and this is quite close to the 79% achieved with the qualitative validation with historical 

flood events. 
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Table 11. List of flood prone communities as listed by local agricultural authority. Source: 

District MoFA office, Bolgatanga. 

Stretch of 
Valley 

Communities Operational Area AEA Name 

Kula River 
Tindonshiew, Kumbosigo, Danwei, 
Tindonomolgo, Tindongsobiligo  
and Kalbeo 

Zuarungu, Bolga 
Central and Kalbeo 

Lambert, Maxwel  
and Iddrisu 

Vea Main 
Drain 

Nyariga, Yorogo, Zaare, Yikene, 
Sumbrungu Azoribisi, Zobgo, Sherigu 
Kumbelingo, Yebongo, Kulbia 

Nyanga, Zaare/Yorogo, 
Sumbrungu East 

Adongo Victoria, Thomas 
Anobiga, John Asigre and 
Hamza Akurubila 

Kolgo/Anatem 
Valley 

Kolgo, Dazongo, Anateem, Kulbia 
Sumbrungu East and 
Sumbrungu West 

Thomas Anobiga and 
John Asigre 

 

Figure 9. Qualitative validation of FHI with local expert knowledge. 

4.6. Determining Flood Safe Havens 

The 30 m spatial resolution of the final flood hazard map could be one ingredient to allow for accurate 

determination of areas normally safe from floods at the community level. Such areas are critical in 

periods of severe hazard occurrence. They are needed for evacuation plans, temporal shelters and 

provision of general relief efforts. However, accurate derivation of evacuation plans requires access 

routes to and from the flood zones [9], which was not investigated in this study. 
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The results obtained in this study can contribute to the development of community-based sustainable 

flood risk management plans that can ensure prevention, protection and preparedness for flood events. 

For example, effective community based education could help community members to identify 

agricultural areas on the map that fall within the high flood hazard zones and to avoid cultivating such 

areas during certain periods of the year. This will translate into a reduction in the socio-economic and 

environmental related losses that are mostly associated with the occurrence of floods and enhance efforts 

at achieving sustainable development in West Africa. 

In Figure 10 for example, all the areas marked in green shades and classified as very low flood 

intensity zones could be considered as flood safe havens. In combination with field inspections with 

local people, these flood safe havens can be verified and marked as flood safe havens for the purpose of 

effective emergency management. Additionally, policy makers and development planners can, through 

an assessment of the flood hazard zones, develop appropriate policies and rules that will limit 

development in flood hot spots and consequently reduce the effects of flooding on the livelihoods of 

rural small holder farmers in the study watersheds.  

 

Figure 10. Flood safe havens in Vea study area. 
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5. Conclusions 

The study has applied flood modeling approaches to demonstrate the feasibility of flood modeling in 

data scarce environments and limited resources. This study has drawn on the strengths of a simple 

hydrological model and statistical methods integrated in GIS to develop a Flood Hazard Index to an 

acceptable accuracy level. The flood hazard index shows that almost half of the study areas in Ghana 

and Benin falls into the “very high and high flood intensity zones” whilst more than half of the study 

area in Burkina Faso fall in high intensity flood zones.  

The study also introduced an innovative flood modeling validation procedure using statistical and 

PGIS principles to evaluate the robustness of the methods used. Using the remote sensing technique of 

a confusion matrix, the overall accuracy of the flood hazard index was estimated at 77.62% in the Vea 

study area and 81.41% in the Dano study area. 

The study also conducted qualitative validation of the results obtained for the Ghana site with local 

expert knowledge and found that the flood modeling methods accurately classified 79% of communities 

deemed to be highly susceptible to flood hazard and classified the remaining 21% into medium risk zone. 

The close similarity in the accuracy levels of the Vea flood Hazard index between the statistical-PGIS 

validation and qualitative assessment showed the robustness of the methods employed in mapping 

community flood hotspots. 

Integration of the two approaches (hydrological and statistical) and combined with GIS and remote 

sensing techniques have shown the potential for diverse applications of the Flood Hazard Index. With 

this approach, flood risk of various land uses can be determined with a higher spatial resolution of 30 m. 

Such a high mapping scale could allow for accurate estimation of most flood risk elements and 

identification of flood safe havens. 

However, although this approach has yielded an acceptable accurate Flood Hazard Index, it must be 

pointed out that under increased flood intensity occasioned by climate change, areas originally classified 

as flood safe havens under this model could offer protection, albeit only within the limits of the model 

inputs. For instance, an increase in rainfall intensity far beyond the anomalous (extreme) rainfall values 

used in this study could lead to the reclassification of these safe havens into another flood hazard 

intensity zone. This study also used a hydrological model which relied on globally available runoff 

coefficients to estimate the peak runoff values. These coefficients may not necessarily be exactly the 

same as those determined from field measurements in the study areas. In addition, the study did not 

investigate the contribution of flood inundation statistics such as flood depth, velocity, and progression 

as well as physical infrastructure which could also influence the intensity level of flooding. Again, lack 

of adequate data especially high resolution remote sensing imagery which necessitated the merging of 

courser resolution imagery for limited portions of the Dassari and Vea study areas should be taken into 

account in interpreting the results of the affected areas. 

Flood risk is projected to increase with increasing exposure of populations and therefore effective 

flood management must include changes in the landscape that impacts the response to floods, locations 

of people and elements at risk [13]. Using this community level flood hazard map could contribute to 

effective disaster management operations as recommended by Kundzewics et al. [13] including 

prevention. For instance, in combination with high resolution satellite imagery, the FHI could help in 
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rapid post-disaster assessments to estimate the economic impacts of flood disasters. This could be done 

by overlaying the maps of critical infrastructure in addition to detail land use maps. 

Availability of “non-structural measures such as flood risk maps help in reducing flood risk in the 

area with relatively little investment” ([78], p. 5). In addition, the output from this approach will be very 

useful in the retrieval of socio-ecological indicators such as those identified in Asare-Kyei et al. [30] 

crucial for the assessment of risk and vulnerability in a coupled socio-ecological system in subsequent 

studies. The result of this study can be used by local disaster managers in Disaster Risk Reduction (DRR) 

and Health Emergency Preparedness and Response Programmes (HEPRP) and serve, among other 

things, “to build safer” public infrastructure, improve mass movement of “casualties during 

emergencies” ([20], p. 7) and help build more climate resilient rural communities. 
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