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Abstract: Understanding the spatio-temporal variation and the potential source of water 

pollution could greatly improve our knowledge of human impacts on the environment.  

In this work, data of 11 water quality indices were collected during 2012–2014 at  

10 monitoring sites in the mainstream and major tributaries of the Danjiangkou Reservoir 

Basin, Central China. The fuzzy comprehensive assessment (FCA), the cluster analysis 

(CA) and the discriminant analysis (DA) were used to assess the water pollution status and 

analyze its spatio-temporal variation. Ten sites were classified by the high pollution (HP) 

region and the low pollution (LP) region, while 12 months were divided into the wet 

season and the dry season. It was found that the HP region was mainly in the small 

tributaries with small drainage areas and low average annual discharges, and it was also 

found that most of these rivers went through urban areas with industrial and domestic 

sewages input into the water body. Principal component analysis/factor analysis (PCA/FA) 

was applied to reveal potential pollution sources, whereas absolute principal component 

score-multiple linear regression (APCS-MLR) was used to identify their contributions to 

each water quality variable. The study area was found as being generally affected by 
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industrial and domestic sewage. Furthermore, the HP region was polluted by chemical 

industries, and the LP region was influenced by agricultural and livestock sewage. 

Keywords: water pollution; spatio-temporal variation; source apportionment; fuzzy 

comprehensive assessment; multivariate statistical analysis 

 

1. Introduction 

More and more attention has been paid to surface water quality, as it is strongly relevant to human 

lives and public health [1,2]. However, as surface water quality is controlled by both natural factors 

(hydrological and meteorological conditions) and human influences (urban, industrial and agricultural 

activities), decision makers are facing with significant difficulties the problem of how to manage surface 

water quality [3–5]. Although water quality monitoring has greatly improved over the last few decades, 

a representative and reliable estimation of surface water quality is still challenging [6]. Therefore, the 

study of spatio-temporal variations and source apportionment of water pollution is especially essential 

in ecological environment protection and water resources management [7,8]. 

Datasets of water quality are usually complex containing huge amounts of information with internal 

relationships among variables, which make it difficult to interpret and draw meaningful conclusions [9]. 

Thus, in recent years, there has been an increasing interest by researchers in analyzing such complex 

data using robust mathematics and statistical techniques, such as fuzzy comprehensive evaluation 

method (FCA), cluster analysis (CA), discriminant analysis (DA), and principal component 

analysis/factor analysis (PCA/FA), and absolute principal component score–multiple linear regression 

(APCS-MLR) [10–28]. A literature review of these methods is described below. 

FCA has been successfully applied to evaluate the pollution level of water quality since the 1990s [10]. 

For example, Lu et al. [11] developed a general methodology for fuzzy synthetic evaluation and 

studied the feasibility of the method by a case study of trophic status assessment for Fei-Tsui Reservoir 

in Taiwan. The result showed that the method could observe the long-term change of water quality and 

overturn phenomena, which would provide valuable information to decision makers and assist reservoir 

management. Similarly, Liou et al. [10] proposed a fuzzy index model for environmental quality 

evaluation, and proved that the model was flexible and adaptable for evaluating the eutrophic status of 

reservoir waters. A study conducted by Dahiya et al. [12] used FCA to assess the physico-chemical quality 

of groundwater for drinking purposes. The acceptability of the drinking water was determined based on the 

limit of different quality classes prescribed by regulatory bodies and the perception of the experts in the 

field. The results showed that 4, 23 and 15 samples were in “desirable,” “acceptable,” and “not acceptable” 

categories, respectively. Additionally, Huang et al. [13] applied the method to estimate water quality levels 

and group the monitoring sites in Qiantang River. The assessment criterion set of five levels in the study 

were derived based on national quality standards for surface waters in China. The river was classified into 

three major pollution zones (low, moderate, and high). 

The primary purpose of CA is to classify samples into clusters with similar characteristics in water 

environment research. A study conducted by Varol [14] grouped the 10 sampling sites into three 

clusters with similar characteristic features and natural background using the CA technology in the 
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Tigris River basin, Turkey. In a similar way, Yang et al. [15] used the method to detect temporal-spatial 

similarity and group the monitoring sites and periods in the Lake Dianchi watershed. A full 12 months 

were grouped into two periods: August–September and the remaining months, and the entire water 

area were divided into two clusters: site 1 and sites 2–8. The method can help to better understand 

spatial patterns and temporal variations of water quality by comparing among different groups,  

and to formulate an optimal sampling strategy on the basis of grouping information. For example,  

Gridharan et al. [16] applied CA to group stations in the River Cooum, South India, and suggested that 

the upper part of the river was classified into an unpolluted cluster, while the middle and lower parts of 

the river were grouped into a polluted cluster. Kazi et al. [9] grouped the monitoring sites in Manchar 

Lake (Pakistan) into three significant clusters—(sites 1 and 2), (site 4) and (sites 3 and 5) using the 

method, and suggested that only one station in each cluster was needed to represent a reasonably 

accurate spatial pattern of the water quality for the whole area. Hence, the number of sampling sites in 

the monitoring program would be reduced without losing any significant information.  

DA was commonly performed on the data set to confirm the clusters determined by means of CA 

based on the accuracy rate of discriminant functions. For example, Papaioannou et al. [17] used the 

method to construct the discriminant functions on two different modes, i.e., standard and stepwise.  

The discriminant functions of the two different modes yielded a classification matrix correctly assigning 

96.97% and 96.36% of the cases, respectively, which proved the reasonability of the classification. 

Besides, many studies have applied DA to bring out the most significant variables that result in water 

quality spatial and temporal variation, and to optimize the monitoring program by decreasing the 

number of parameters monitored. For example, Mustapha et al. [6] studied surface water quality 

variation using the DA method at the upper course of Kano River, Nigeria and suggested that seven 

variables were successfully separated among the 23 variables as the most statistically significant 

variables that brought spatial variation. A study conducted by Singh et al. [18] showed that DA offers 

an important data reduction by using only six variables discriminating spatial pattern and two variables 

for temporal variation in Gomti River, India. Similarly, Zhang et al. [19] applied the method to evaluate 

spatial-temporal variation of water quality in southwest new territories and Kowloon, Hong Kong, and 

revealed that four and eight parameters could afford 84.2% and 96.1% correct assignation in temporal 

and spatial analysis, respectively. Furthermore, they also suggested that the number of monitoring 

variables and the associated cost can be reduced, as the method afforded a considerable data reduction 

in the dimensionality of the large data set. 

PCA/FA is a dimension-reduction technique that provides information by the most significant 

factors with a simpler representation of the data. Therefore, it has been utilized by various researchers to 

explore the pollution sources of a water environment system. For example, the method was employed 

by Lim et al. [20] to identify latent factors or pollution sources in Langat River, Malaysia. Four 

components were extracted with a total variance of 85% in group 1, while six components were 

extracted with a total variance of 88% in group 2. Based on this information, they discovered that sea 

water intrusion, agricultural and industrial pollution, and geological weathering were responsible for 

the river pollution for both groups. In addition, Tanriverdi et al. [21] applied PCA/FA to analyze and 

assess the surface water quality of Ceyhan River and suggested that the stations near cities were 

strongly affected by household wastewater, while the other stations were influenced by agricultural 

facilities. Moreover, Jha et al. [22] identified major pollution sources influencing the physico-chemical 
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variables in Aerial Bay using the FA technique, which included rivulet influx into the bay, land  

run-off, prevailing biological processes and tidal flow. 

PCA/FA can just provide qualitative information about pollution sources, but cannot provide 

quantitative contributions of each source type to each variable [23]. However, a receptor-based model, 

such as APCS-MLR can solve the problem [18]. The method was firstly used for pollution source 

identification and apportionment in an atmospheric environment [24]. In recent years, there have been 

many researchers using this method to apportion the pollution sources in water environment research, 

as it is less dependent on the number of sources or their compositions. For example, Singh et al. [18] 

applied APCS-MLR for source apportionment in three different catchment regions of the Gomti River 

and analyzed the quantitative contributions of various pollution sources to different water quality 

variables (e.g., the contributions of municipal and industrial water, and soil runoff to BOD is 98.0% and 

2.0%, respectively, in upper catchment). Furthermore, this method was also used by Yang et al. [25] to 

quantitatively analyze the contribution of each pollution source in Wen-Rui-Tang (WRT) river 

watershed in China, and they suggested that 88.4% of NH4
+-N came from domestic sewage pollution 

and commercial/service pollution in the urban zone. Su et al. [26] studied the apportionment problem 

of pollution source for water quality in Qiantang River, China with this method (e.g., the effect of 

chemical pollution to CODMn is 73.2%). 

These studies provided invaluable insights into the applications of FCA, CA, DA, PCA/FA, and 

APCS-MLR methods in environmental research and how these methods can handle large datasets of 

water quality with a large number of parameters, which enable the accurate attainment of the 

multivariate features of the water environment system [27]. The combined use of these methods can 

help to make full use of the advantages of each method and get a comprehensive understanding of the 

spatio-temporal variations and potential sources of water pollution.  

Many papers have been published that investigate the spatial and temporal variations of surface 

water quality in reservoirs or lakes [1,9,11,15,28]. However, these studies have mainly focused on 

water quality variations within the reservoirs or lakes, and attentions have rarely been paid to the water 

pollution of the rivers that flow into the reservoirs or lakes. In this study, water quality variations in the 

mainstream and major tributaries of the Danjiangkou Reservoir Basin were studied based on FCA, CA, 

DA, PCA/FA, and APCS-MLR methods. The objectives of this study are (1) to analyze temporal and 

spatial variations of water quality in the study area; (2) to identify potential pollution sources; and  

(3) to estimate the contributions of the potential pollution sources to each water quality variable. 

2. Materials and Methods 

2.1. Study Area 

Danjiangkou Reservoir Basin (32°36′ N~33°48′ N; 110°59′ E~111°49′ E, Figure 1) is located in the 

upper reaches of the Han River in central China, including Danjiangkou Reservoir and its upstream 

areas. It encompassed a drainage area of 9.52 × 104 km2. The study area is affected by a north  

sub-tropical monsoon climate with rapid and severe climate transitions. Annual mean temperature is 

15–16 °C. Precipitation is subjected to large inter-annual variability, with 800–1000 mm·year−1, of 

which 80% is concentrated between May and September [29,30]. Danjiangkou Reservoir has an annual 
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water supply capacity of 2.91 × 1010 m3, a surface area of 1022.75 km2, and an annual average runoff of 

3.79 × 1010 m3. It is one of the main water sources of the South-to-North Water Transfer Project in 

China, and responsible for the water supply of Beijing, Tianjin and more than 130 other cities in 

northern China. Therefore, the water quality level is especially important to drinking water safety for 

these cities, and directly affects the feasibility of the water transfer project. 

 

Figure 1. Study area and monitoring sites. 

2.2. Water Samples 

Water samples were collected in monthly intervals between April 2012 and March 2014 at ten 

monitoring sites in the mainstream and major tributaries of Danjiangkou Reservoir Basin (Figure 1). 

Eleven water quality indexes were selected for analysis, including water temperature (Temp), pH, 

dissolved oxygen (DO), chemical O2 demand (CODMn), 5-day biochemical oxygen demand (BOD5), 

total phosphorus (TP), ammonium nitrogen (NH4
+-N), fluorine (F−), arsenic (As), volatile phenol  

(V-ArOH), and fecal coliform (F. coli). These variables represent physical properties, aggregate 

organic constituents, nutrient constituents, or biological properties of the river. The sampling, 

preservation, transportation and analysis of the water samples were performed according to the 

environmental quality standard for surface water of China (GB3838-2002). The specific analytical 

method used is shown in Table 1. The univariate statistics of the water quality parameters are 

presented in Table 2. 
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Table 1. Water quality parameters, units and analytical methods used during 2012–2014 

for the Danjiangkou Reservoir Basin. 

Parameter Unit Analytical method 

Temp °C Thermometer 
pH -- Glass electrode 
DO mg·L−1 Iodometric 

CODMn mg·L−1 Potassium permanganate method 
BOD5 mg·L−1 Dilution and inoculation test 

TP mg·L−1 Ammonium molybdate spectrophotometry 
NH4

+-N mg·L−1 N-reagent colorimetry 
F− mg·L−1 Ion chromatography 
As  mg·L−1 Silver diethyldithiocarbamate spectrophotography 

V-ArOH mg·L−1 Spectrophotometric Determination with 4-Amino-Antipyrin 
F. coli  num·L−1 Multi-tube zymolytic method\Membrane filter method 

Table 2. Univariate statistics of the water quality parameters. 

Parameters Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10 

N 24 24 24 24 24 24 24 24 24 24 

Temp (°C) 
Mean 17.55 17.43 18.87 20.04 17.83 17.82 19.08 17.61 17.90 16.72 

SD 6.38 6.75 7.72 6.27 7.60 7.91 8.62 8.71 7.95 8.12 

pH 
Mean 8.12 7.89 7.73 7.54 7.60 7.91 8.30 7.88 8.10 8.10 

SD 0.20 0.19 0.26 0.13 0.20 0.44 0.49 0.13 0.14 0.16 

DO (mg·L−1) 
Mean 9.77 8.72 8.24 3.96 5.02 8.84 12.03 7.93 10.72 9.82 

SD 1.68 3.27 2.79 2.97 2.20 3.68 3.71 3.36 1.84 1.85 

CODMn 

(mg·L−1) 

Mean 1.79 1.58 5.58 8.95 6.01 5.28 3.28 2.85 1.44 1.84 

SD 0.59 0.81 2.19 3.61 1.14 1.87 0.87 0.92 0.45 1.20 

BOD5 

(mg·L−1) 

Mean 0.85 1.36 3.98 14.59 5.05 3.25 2.00 1.97 1.02 0.92 

SD 0.29 1.08 2.15 17.23 2.95 1.60 1.13 1.63 0.44 0.37 

TP  

(mg·L−1) 

Mean 0.04 0.05 0.81 0.80 0.65 0.12 0.17 0.09 0.02 0.07 

SD 0.03 0.03 0.86 0.50 0.27 0.09 0.16 0.05 0.01 0.05 

NH4
+-N 

(mg·L−1) 

Mean 0.08 0.14 2.10 8.99 5.46 1.93 0.21 0.82 0.07 0.39 

SD 0.08 0.19 2.09 2.82 1.90 3.01 0.24 0.90 0.04 0.43 

F−  

(mg·L−1) 

Mean 0.16 0.21 0.31 0.60 0.40 0.24 0.16 0.25 0.20 0.28 

SD 0.04 0.04 0.08 0.17 0.08 0.05 0.06 0.05 0.04 0.05 

As  

(mg·L−1) 

Mean 0.001 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

SD 0.000 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 

V-ArOH 

(mg·L−1) 

Mean 0.001 0.001 0.002 0.003 0.002 0.001 0.001 0.001 0.001 0.001 

SD 0.001 0.000 0.002 0.004 0.004 0.001 0.001 0.000 0.001 0.001 

F. coli  

(num L−1) 

Mean 3702 7935 434,917 873,542 175,892 14,829 3463 10,445 1071 1421 

SD 2049 4193 604,229 914,210 332,154 36,347 5918 17,918 1758 3215 

Note: N number of samples, SD standard deviation. 
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2.3. Statistical Analysis and Data Treatments 

FCA is a process of evaluating water quality utilizing the fuzzy set theory. It assesses the 

significance of multiple pollutants according to weights and decreases the fuzziness by using 

membership functions [10]. The mathematical details of the FCA method can be found in the relevant 

literature [13]. The assessment criteria of five water quality grades were established according to the 

GB3838-2002 standard in the study (Table 3). 

Table 3. Environmental guideline of national quality standards for surface water, China 

(GB3838-2002). 

Parameter Units I II III IV V 

DO ≥ mg·L−1 7.5 6 5 3 2 

CODMn ≤ mg·L−1 2 4 6 10 15 

BOD5 ≤ mg·L−1 3 3 4 6 10 

TP ≤ mg·L−1 0.02 0.1 0.2 0.3 0.4 

NH4
+-N ≤ mg·L−1 0.15 0.5 1 1.5 2 

F− ≤ mg·L−1 1 1 1 1.5 1.5 

As ≤ mg·L−1 0.05 0.05 0.05 0.1 0.1 

V-ArOH ≤ mg·L−1 0.002 0.002 0.005 0.01 0.1 

F. coli ≤ num·L−1 200 2000 10,000 20,000 40,000 

Multivariate analysis of the water quality was performed using four techniques: CA, DA, PCA/FA 

and APCS–MLR. CA is an unsupervised pattern detection method with the primary purpose of 

assembling objects to different clusters based on the characteristics they possesses [31]. The most 

common approach of CA is hierarchical clustering (HCA), which can provide similarity relationships 

between any one sample and whole data set [7]. In this study, HCA was performed on the standardized 

dataset by the Ward’s method, and squared Euclidean distances were used as a measure of similarity. 

DA is a method to conform the groups found by CA and determines the most significant water quality 

variables. In this analysis, three different modes of DA, i.e., standard, forward stepwise and backward 

stepwise, were applied to evaluate both the spatial and temporal variations in water quality [32]. PCA 

is a powerful pattern recognition method, making use of a small set of independent variables to 

describe the variance of a relatively large dataset [33]. FA further reduces the contribution of these less 

significant variables through VARIMAX rotation, and produces new groups of variation called 

variance factors (VFs). VFs can include unobservable, hypothetical and latent variables [34]. The VFs 

are explained based on the factor loadings, which were classified as “strong,” “moderate,” and “weak,” 

corresponding to absolute loading values of >0.75, 0.75–0.50 and 0.50–0.30 [35]. To quantify the 

contribution of each pollution source to each measured variable, the APCS-MLR method is often used. 

The computation of APCS-MLR for each sample is followed by the regression of sample mass 

concentrations on these APCS to derive each identified source’s estimated mass contribution [36]. 

Most multivariate statistical techniques require the variables to be normally distributed [37], but the 

original data showed that most of the variables were far from normal with 95% confidence examined by 

the skewness and kurtosis statistical tests. Therefore, the original data were logarithmic transformed [38]. 

The skewness and kurtosis values for the log-transformed data were significantly reduced and 
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consistent to the normal distribution. All log-transformed variables were further z-scale standardized 

for CA, PCA/FA and APCS-MLR, whereas original data was used for DA. The CA and DA were 

made using STATISTICA 7.0, PCA/FA and APCS-MLR used SPSS 13.0, and FCA used Microsoft 

Excel 2010. 

3. Results and Discussion 

3.1. Water Quality Evaluation 

The water quality for all sampling sites and monitoring months was evaluated using FCA based on 

the GB3838-2002 standard; the results are shown in Table 4. According to the standard, water quality 

of class I and II was regarded as low pollution status, while water quality of class III, IV and V was 

regarded as high pollution status. Among the 10 sampling sites, water quality in site 1, site 2, site 9 and 

site 10 (Han River, Tian River, Tao river and Dan River) was very good (class I), while it was much 

worse (class V) in site 3, site 4 site 5 and site 6 (Jiang River, Shending River, Si River and Jian River) 

for almost the whole year. The water quality in site 7 and site 8 (Lang River and Laoguan River) was 

less satisfactory from April to August. 

Table 4. Results of water quality assessment. 

Time Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site10 

January I I V V V III I I I I 

February I III V V V V I I I I 

March I I V V V V I I I I 

April I I V V V V III III I I 

May I I V V V V II II I I 

June I I V V V V II III I I 

July I I V V V V III V I I 

August I I V V V V III II I I 

September I I V V V III III I I I 

October I I V V V III I I I I 

November I I V V V II I I I I 

December I I IV V V I I I I I 

3.2. Spatio-Temporal Similarity and Grouping 

Spatial CA classified the 10 sampling sites into two groups at (Dlink/Dmax) × 100 < 60 (Figure 2a). 

Group A was comprised of site 3 to site 6 (Jiang River, Shending River, Si River, and Jian River), and 

group B consisted of the remaining sites. Based on the results of water quality assessment by FCA, 

group A could be considered as high pollution (HP), and group B could be considered as moderate or 

low pollution (LP). Using temporal CA, the 12 months were also classified into two clusters at 

(Dlink/Dmax) × 100 < 60 (Figure 2b). Cluster 1 contained May to October, closely corresponding to the 

wet season, and cluster 2 included the remaining months, corresponding to the dry season. The CA 

technique was useful in offering liable classification of surface water quality in the view of space and 

time. The sites in the same groups had similar natural backgrounds and features that may be affected by 
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similar pollution sources. Therefore, the CA technique could reduce the need for numerous sampling 

stations and frequency, and could be used to design future spatio-temporal sampling strategies in an 

optimal manner [39]. 

 

Figure 2. Dendrograms showing (a) spatial clustering of sampling sites and (b) temporal 

clustering of monitoring periods. 

In the study, the LP sites were located mainly in the main river channel (Han River) and the large 

tributaries (Tian River, Lang River, Laoguan River, Tao River and Dan River), whereas HP sites were 

in small tributaries (Jiang River, Shending River, Si River and Jian River). The drainage areas of the 

mainstream and large tributaries are all larger than 500 km2 and the mean annual discharges of them are 

all larger than 3.5 m3·s−1. Given the greater volume of flow in the mainstream, the river system has 

greater capacity to mitigate pollution loads than in the small tributaries [13]. Besides, most of the rivers 

in the HP region, such as Jiang River, Shending River and Si River, all went through the urban area of 

Shiyan City with more industrial effluent and domestic sewage entering the water body (Figure 1). 

Therefore, spatial distribution of water quality was determined by both natural factors and human activities. 

Similar distribution patterns were also found in other studies. For example, Gridharan et al. [16] found that 

in the River Cooum (South India), the upper part of the river was classified as an unpolluted cluster, 
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while the middle and lower parts of the river were grouped into a polluted cluster, where settlements 

along the river course were dense and domestic wastewater was directly discharged into the water body. 

Varol [14] found that in the Tigris River basin (Turkey), low-concentration sites were close to the dam 

reflecting the natural background levels, whereas the high-concentration sites were located at the 

entrance of the streams to the reservoirs due to the human influence. 

Previous results suggested that temporal variations of the water quality in Danjiangkou Reservoir 

Basin were greatly influenced by hydrological and meteorological conditions (wet season and dry 

season) in the area. However, 12 months could not be strictly divided into spring (March to May), 

summer (June to August), autumn (September to November) and winter (December to February), 

which indicated that temporal clustering of water quality did not present natural seasonal characteristic 

and hence it might be also affected by other reasons. One of the possible factors may be that effluent 

discharges of industrial wastewater and domestic wastewater discharge generally kept a relatively steady 

level throughout the year. 

3.3. Spatial-Temporal Variations in Water Quality 

To study the spatial variations of water quality, DA was applied on the raw data after dividing the 

whole data set into two groups (HP and LP). Discriminant functions (DFs) and classification matrixes 

(CMs) were shown in Tables 5 and 6. The accuracy of spatial classification using standard, forward 

stepwise, and backward stepwise mode were 91.3% (11 discriminant variables), 90.8% (6 discriminant 

variables), and 90.8% (5 discriminant variables), respectively. The results indicated that pH, CODMn, 

BOD5, NH4
+-N, and F− were the most significant parameters for discrimination between the two 

groups and accounted for most of the expected spatial variations in water quality. For temporal DA, 

both the standard and forward stepwise mode, using 11 and 4 discriminant variables, respectively, 

yielded the corresponding CMs assigning 95.8% of the cases correctly. However, in backward 

stepwise mode, DA produced a CM with 95.4% correct assignation using only 3 discriminant 

parameters. Thus, the temporal DA results suggested that Temp, DO, and CODMn were the most 

significant parameters for discriminating differences between the wet season and dry season, and could 

be used to explain most of the expected temporal variations in water quality. 

Table 5. Classification functions’ coefficients for discriminant analysis of spatial and 

temporal variations. 

Parameters Standard Mode Forward Stepwise Mode Backward Stepwise Mode 

Spatial groups HP LP HP LP HP LP 

Temp −0.99 −0.96     

pH 144.89 148.34 105.79 109.08 104.25 107.41 

DO −6.71 −6.74     

CODMn −1.69 −3.10 −0.81 −2.22 0.13 −1.19 

BOD5 −0.28 −0.07 −0.16 0.05 −0.35 −0.15 

TP 10.33 10.42     

NH4
+-N 3.86 3.64 5.71 5.48 5.38 5.13 
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Table 5. Cont. 

Parameters Standard Mode Forward Stepwise Mode Backward Stepwise Mode 

F− 14.48 17.32 18.20 20.77 23.75 26.79 

As  2873.55 3225.07 5038.76 5463.33   

V-ArOH −344.09 −387.76     

F. coli  −0.01 −0.01     

Constant −537.01 −559.56 −425.12 −446.42 −416.86 −436.70 

Temporal clusters Wet season Dry season Wet season Dry season Wet season Dry season 

Temp −0.96 −0.07 0.67 1.55 0.76 1.61 

pH 145.66 145.34     

DO −6.76 −7.04 1.67 1.38 1.64 1.36 

CODMn 0.93 0.49 1.28 0.77 1.31 0.8 

BOD5 −0.76 −0.78     

TP 13.49 13.54     

NH4
+-N 4.54 4.38     

F− 2.88 5.11     

As  3954.88 3200.47 1848.33 1262.71   

V-ArOH −367.72 −295.66     

F. coli −0.04 −0.03     

Constant −549.00 −557.85 −16.79 −27.35 −15.67 −26.82 

Table 6. Classification matrixes for discriminant analysis of spatial and temporal variations. 

Monitoring 

Sites 

Percent 

Correct, % 

Spatial Groups Monitoring 

Periods 

Percent 

Correct, % 

Temporal Clusters 

HP LP Wet Season Dry Season

Standard mode 

HP 81.25 78 18 Wet season 95.00 114 6 

LP 97.92 3 141 Dry season 96.67 4 116 

Total 91.25 81 159 Total 95.83 118 122 

Forward stepwise mode 

HP 80.21 77 19 Wet season 94.17 113 7 

LP 97.92 3 141 Dry season 97.50 3 117 

Total 90.83 80 160 Total 95.83 116 124 

Backward stepwise mode 

HP 80.21 77 19 Wet season 94.17 113 7 

LP 97.92 3 141 Dry season 96.67 4 116 

Total 90.83 80 160 Total 95.42 117 123 

Box and whisker plots of the discriminant parameters were constructed to evaluate different patterns 

associated with spatial and temporal variations in water quality (Figures 3 and 4). For spatial 

variations, the average pH value was slightly lower in the HP region, indicating that hydrolysis of the 

acidic material caused a decrease in pH value [31]. The natural background levels of pH values in 

these streams were greater than 7, owing to a Ca2+ and HCO3
− type of water which was related with 

limestone soil in the study area [30]. Besides, the HP region had higher average concentrations of 

CODMn and BOD5, which indicated that there was much more serious organic pollution. Furthermore, 

higher average value of NH4
+-N was found in the HP region, which suggested that the eutrophication 
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might be a serious water quality problem in the region. Finally, average concentration of F− was also 

higher in the HP region, indicating that the background values of fluoride were higher in the region, 

and groundwater inflow accounted for a significant proportion of river flow for these small tributaries. 

In summary, those spatial differences of the variables suggested that environment pollution problems 

in the HP region were worse than in the LP region and hence more attention should be paid to this 

region. For temporal variations, which are greatly affected by climatic conditions, the average 

temperature was higher in the wet season and lower in the dry. Furthermore, a clear inverse 

relationship between temperature and dissolved oxygen was observed. This could be explained that as 

water temperature increases in the river, biological activity of aquatic organism strengthens and 

therefore consumption of dissolved oxygen concentration increases. In addition, more oxygen also 

dissolves in cooler water. The average concentration of CODMn was slightly lower in the wet season 

than in the dry season, which was related to a greater volume of flow in the wet period. 

 

Figure 3. Spatial variations: (a) pH; (b) CODMn; (c) BOD5; (d) NH4
+-N; and (e) F− in 

Danjiangkou Reservoir Basin. 
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Figure 4. Temporal variations: (a) Temp; (b) DO, and (c) CODMn in Danjiangkou Reservoir Basin. 

3.4. Source Identification 

In order to identify the potential pollution sources, PCA/FA was applied to the normalized  

log-transformed data sets for the two regions. Three variance factors (VFs) were obtained for the HP 

region and four VFs for the LP region with eigenvalues greater than 1, summing almost 67.0% and 

71.2% of the total variance in the data set, respectively (Table 7). 

Table 7. Loadings of 11 water quality variables on significant variance factors (VFs) for 

the high pollution (HP) and low pollution (LP) regions in Danjiangkou Reservoir Basin. 

Parameters 
HP LP 

VF1 VF2 VF3 VF1 VF2 VF3 VF4 

Temp 0.16 0.40 −0.79 0.00 −0.16 0.81 −0.24 

pH −0.57 −0.09 −0.39 0.08 0.85 0.09 −0.11 

DO −0.70 −0.23 0.19 0.06 0.78 −0.34 −0.11 

CODMn 0.77 0.19 0.08 0.84 −0.09 0.26 −0.01 

BOD5 0.80 −0.18 0.12 0.80 0.06 −0.22 −0.09 

TP 0.73 0.46 0.26 0.80 −0.01 0.02 0.27 

NH4
+-N 0.81 0.16 0.31 0.49 −0.33 −0.20 0.52 

F− 0.20 0.15 0.80 −0.04 0.01 −0.15 0.88 

As −0.04 0.86 0.00 0.31 −0.06 0.55 0.48 

V-ArOH 0.33 0.65 −0.08 −0.06 −0.10 0.75 0.02 

F. coli 0.74 0.11 −0.18 0.30 −0.73 0.22 −0.15 

Eigenvalue 3.96 1.72 1.68 2.43 2.02 1.84 1.53 

Total variance /% 36.03 15.64 15.29 22.13 18.39 16.73 13.95 

Cumulative variance /% 36.03 51.67 66.96 22.13 40.52 57.25 71.20 

Note: Bold and italic values indicate strong and moderate loadings, respectively. 
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In the HP region, the first variance factor (VF1) accounted for 36.0% of the total variance, had 

strong positive loadings on CODMn, BOD5, and NH4
+-N, moderate negative loadings on pH and DO, 

and moderate positive loadings on TP and F. coli. Generally, CODMn is regarded as an organic pollution 

indicator from sources such as industrial wastewater and uncontrolled domestic sewage caused by 

rapid urbanization [18]. pH could regulate the concentrations of CODMn in the water, as it is one of the 

main reaction conditions in redox of organic matter [40,41]. High concentrations of nutrients (NH4
+-N, 

and TP) are usually from agricultural runoff, municipal effluents and fertilizer factory wastewater [15]. 

F. coli is mainly related to municipal wastes and animal husbandry [42]. Therefore, this factor could be 

interpreted as one typical kind of mixed pollution, which includes point source pollution, such as 

industrial effluent and domestic sewage, and non-point source pollution associated with agricultural 

activities [13]. VF1 could also represent an oxide-related process associated with negative DO and 

positive BOD5. When organic matter in the river was oxidized at the expense of dissolved oxygen, the 

BOD5 concentrations increased with decreasing DO [43]. VF2, accounting for 15.6% of the total 

variance, had strong positive loadings on As, and moderate positive loadings on V-ArOH. The element 

As is mainly from glass, paint, paper production and the coal combustion process [44]. V-ArOH is 

attributed to paper-making and chemical industries. This factor can be explained as chemical pollution, 

which resulted from industrial wastewater discharged into the river. Field work found that there were 

several paper mills in this region, e.g., the First Mill in Danjiangkou City and Yuyang Paper Mill in 

Yunxian County. However, some of them will be shut down or moved away due to water pollution 

problems. VF3 (15.3% of the total variance) had strong negative loadings on Temp and strong positive 

loadings on F−. F− is usually from cement plants, fluorine chemical factories, and smelters [13]. 

However, in the region F− levels at almost all monitoring sites were below 1.0 mg/L, which meant that 

there was almost no pollution. Such a small amount of fluoride may be influenced by local soils 

entering the river together with the runoff [13]. 

In the LP region, VF1, occupying about 22.1% of the total variance, had strong positive loadings on 

CODMn, BOD5, and TP. This factor included organic pollution and nutrient pollution, and could be 

attributed to industrial effluent and domestic sewage. VF2 (18.4% of the total variance) had strong 

positive loadings on pH and DO. This factor represented physicochemical condition and biological 

state, and could be regarded as oxygen-consuming organic pollution [45]. Positive correction between 

pH and DO can be explained that as such: the amount of available DO decreases, an aerobic 

fermentation process happens, organic acids are produced, and then pH value decreases [42]. 

Moreover, the factor also had moderate negative loadings on F. coli, which may be caused by the 

effects of local livestock farm and domestic wastewater [45]. VF3, accounting for 16.7% of the total 

variance, had strong positive loadings on Temp and V-ArOH, moderate positive loadings on As. 

Concentration of As and V-ArOH at all monitoring sites were below 0.05 and 0.002 mg/L, 

respectively, basically representing natural factors. VF4 (14.0% of the total variance) had strong 

positive loadings on F−, and moderate positive loadings on NH4
+-N. In general, pollutions of NH4

+-N 

can be interpreted as nutrient pollution related to agricultural runoff and domestic wastewater [18]. 

Low concentrations of fluoride at all monitoring sites may also come from local soils entering the 

river, just like VF3 in the HP region. 

Four types of pollution, including organic, nutrient, chemical and natural, were identified from the 

aspect of pollution composition in the previous analysis. Pollution sources could then be further 
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identified based on this information. Firstly, organic pollution was mainly from point sources such as 

industrial effluent, domestic sewage and wastewater of local livestock farm. Secondly, nutrient 

pollution was generally from non-point source related with agricultural activities and point sources 

such as municipal effluents and fertilizer plant wastewater. Thirdly, chemical pollution was from 

wastewater of chemical industries. Finally, natural pollution was influenced by the changes of 

meteorological conditions such as the variation of water temperature. Two regions (HP and LP) were 

both mainly affected by industrial effluent and domestic sewage. In addition, a chemical pollution 

factor was also extracted from the HP region; independent oxygen-consuming organic pollution factor 

and nutrient pollution (N) factor were found in the LP region. This suggested that the HP region was 

also subjected to the influence of chemical industrial activities, while the LP region was also affected 

by livestock farming and agriculture activities. The identified pollution sources were different from 

those in other studies. For example, water quality in Langat River (Malaysia) was mainly influenced 

by the intrusion of saltine water, agricultural and industrial pollution, and geological weathering [20]. 

Major pollution sources in Aerial Bay consisted of rivulet flux, surface run-off, prevailing biological 

processes and tidal flow [22]. It was found that the type of source was mainly determined by the 

selected variables of water quality. Therefore, to better represent the pollution characteristics, the variables 

to be analyzed should be chosen appropriately. 

To analyze the temporal variations of potential pollution sources, PCA/FA was also applied on the 

data set of each period for the two regions (Table 8). The results showed that temporal difference was 

significant in the HP region, which was associated with the smaller volume of flow in these rivers. A 

nutrient pollution factor, related with non-point pollution from agricultural activities, was distinguished 

from the mixed pollution in wet season. As crops grow mainly in this period, this phenomenon is partly 

because more nutrient pollutions were discharged into the river due to agricultural irrigation. However, 

in the LP region, the temporal difference of pollution sources was much smaller. As industrial and 

domestic pollution was relatively small, agricultural non-point source pollution could be distinguished in 

both periods. 

Table 8. Results of source identification at wet season and dry season in high pollution 

(HP) region and low pollution (LP) region. 

Periods VF1 VF2 VF3 VF4 VF5 

HP 

Wet season nutrient pollution organic pollution natural pollution chemical pollution  

Dry season 
nutrient pollution + organic 

pollution 
chemical pollution natural pollution   

LP 

Wet season 
organic pollution + nutrient 

pollution (P) 
organic pollution (O) natural pollution 

nutrient  

pollution (N) 

natural 

pollution 

Dry season 
organic pollution+ nutrient 

pollution (P) 
organic pollution (O) nutrient pollution (N) natural pollution  
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3.5. Source Contributions 

After identifying possible pollution sources, the contributions of each source to water quality 

variables were then calculated using APCS-MLR. As shown in Table 9, the multiple regressions 

exhibited relatively good agreement between observed and predicted values for most parameters, 

which suggested goodness of the method to the source apportionment of river water [33]. The percent 

contributions were obtained based on the results of the APCS-MLR method (Figure 5). Most sites in 

the HP zone were primarily influenced by mixed pollution from industrial effluent, domestic sewage, 

and agricultural activities (CODMn, 63.1%; BOD5, 92.0%; TP, 51.9%; NH4
+-N, 72.7%), chemical 

industrial activities (As, 71.8%; V-ArOH, 86.3%), and natural factors. In the LP zone, most sampling 

sites were subjected to pollution from industrial effluent and domestic sewage (CODMn, 59.1%; BOD5, 

73.6%; TP, 67.8%), local livestock farm (F. coli, 60.1%), agricultural runoff (NH4
+-N, 44.5%), and 

natural factors. As the unexplained sources in two regions also contributed to the water quality 

variations for most of the water quality variables (0%–17.8% in the HP region and 0%–14.2% in the 

LP region), field work was essential to further identify the sources of the pollution. 

Table 9. Results of the APCS-MLR method in high pollution (HP) region and low 

pollution (LP) region. 

Parameters Unexplained Source 1 Source 2 Source 3 Source 4 R2 

High pollution (HP) region * 

Temp (°C) 2.16 – – 16.18  0.82 

pH 1.03 4.01 0.11 2.67  0.49 

DO (mg·L−1) – 5.82 1.68 –  0.58 

CODMn (mg·L−1) 0.05 3.43 1.46 0.50  0.64 

BOD5 (mg·L−1) 0.06 3.33 – 0.23  0.69 

TP (mg·L−1) 0.03 0.24 0.14 0.05  0.8 

NH4
+-N (mg·L−1) 0.01 1.47 0.10 0.44  0.79 

F− (mg·L−1) – – 0.06 0.29  0.7 

As (mg·L−1) 0.00037 0.00022 0.00152 0.00001  0.74 

V-ArOH (mg·L−1) – 0.00029 0.00181 –  0.55 

F. coli (num·L−1) 40,027 159,435 25,411 –  0.59 

Low pollution (LP) region ** 

Temp Temp (°C) 0.23 – – 17.55 – 0.75 

pH – – 7.38 0.77 – 0.75 

DO (mg·L−1) 0.75 1.44 8.34 – – 0.74 

CODMn (mg·L−1) 0.23 1.36 – 0.35 0.36 0.77 

BOD5 (mg·L−1) – 0.93 0.33 – – 0.7 

TP (mg·L−1) 0.01 0.06 – – 0.02 0.72 

NH4
+-N (mg·L−1) 0.03 0.10 – – 0.10 0.67 

F− (mg·L−1) – – 0.05 – 0.19 0.8 

As (mg·L−1) – 0.00051 – 0.00064 0.00056 0.67 

V-ArOH (mg·L−1) 0.00003 – – 0.00069 0.00007 0.58 

F. coli (num·L−1) 701 – 2968 – 1269 0.7 

Notes: *: Source 1 = pollution from industrial effluent, domestic sewage, and agricultural activities, source  

2 = pollution from chemical industrial activities, source 3 = natural factors; **: Source 1 = pollution from 
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industrial effluent and domestic sewage, source 2 = pollution from local livestock farm, source 3 = natural 

factors, source 4 = pollution from agricultural runoff. 

 

 

Figure 5. (a) Source contribution (%) to each variable in the high pollution (HP) region:  

Un = unexplained sources; S1 = pollution from industrial effluent, domestic sewage, and 

agricultural activities; S2 = pollution from chemical industrial activities; S3 = natural factors; 

(b) Source contribution (%) to each variable in the low pollution (LP) region:  

Un = unexplained sources; S1 = pollution from industrial effluent and domestic sewage;  

S2 = pollution from local livestock farm; S3 = natural factors; S4 = pollution from 

agricultural runoff. 

4. Conclusions 

In this study, spatio-temporal variations of water quality and potential pollution sources in 

Danjiangkou Reservoir Basin were analyzed based on FCA, CA, DA, PCA/FA and APCS-MLR 
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methods. FCA showed that water quality in Jiang River, Shending River, Si River and Jian River has 

deteriorated, while in other rivers water quality was good. CA divided the ten monitoring sites into two 

groups (high pollution region and low pollution region) and grouped 12 months into two periods (wet 

season and dry season). DA showed that pH, CODMn, BOD5, NH4
+-N, and F− were the most significant 

parameters responsible for spatial variations, and Temp, DO, and CODMn were the most significant 

parameters responsible for temporal variations. PCA/FA and APCS-MLR identified four potential 

pollution types: organic pollution, nutrient pollution, chemical pollution, and natural pollution, and 

revealed that the study area was primarily influenced by industrial effluent and domestic sewage. 

Furthermore, the HP region was also influenced by chemical industrial activities and the LP region 

was also polluted by the sewage from livestock and agriculture. Temporal difference of potential 

pollution sources in the HP region was significant due to smaller volume of flow in the rivers. 

Additionally, pollution from agricultural activities was found during the wet season when more 

nutrient pollutions were discharged into the rivers during irrigation period. This study showed the 

feasibility and reliability of the combined use of these methods in water environment research. 

Furthermore, the conclusion would be beneficial to water environment protection and water resources 

management in the future. 
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