
Water 2015, 7, 2435-2450; doi:10.3390/w7052435 
 

water 
ISSN 2073-4441 

www.mdpi.com/journal/water 

Article 

A New Way for Incorporating GCM Information into Water 
Shortage Projections 

Seung Beom Seo 1,*, Young-Oh Kim 2 and Cho-Rong Kim 3 

1 Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 

Raleigh, NC 27606, USA 
2 Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, 

Gwanak-gu, Seoul 151-741, Korea; E-Mail: yokim05@snu.ac.kr 
3 Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsanseo-gu, 

Goyang-si, Gyeonggi-do 411-712, Korea; E-Mail: crkim13@kict.re.kr 

* Author to whom correspondence should be addressed; E-Mail: sseo@ncsu.edu;  

Tel.: +1-919-592-5701. 

Academic Editor: Athanasios Loukas 

Received: 18 March 2015 / Accepted: 13 May 2015 / Published: 21 May 2015 

 

Abstract: Climate change information is essential for water resources management 

planning, and the majority of research available uses the global circulation model (GCM) 

data to project future water balance. Despite the fact that the results of various GCMs are 

still heterogeneous, it is common to utilize GCM values directly in climate change impact 

assessment models. To mitigate these limitations, this study provides an alternative 

methodology, which uses GCM-based data to assign weights on historical scenarios rather 

than to directly input their values into the assessment models, thereby reducing the 

uncertainty involved in the direct use of GCMs. Therefore, the real innovation of this study 

is placed on the use of a new probability weighting scheme with multiple GCMs rather than 

on the direct input of GCM-driven data. Applied to make future projections of the water 

shortage in the Han River basin of Korea, the proposed methodology produced conservative 

but realistic projection results (15% increase) compared to the existing methodologies, which 

projected a dramatic increase (144%) in water shortage over 10 years. As a result, it was 

anticipated that the amount of water shortages in the Han River basin would gradually 

increase in the next 90 years, including a 57% increase in the 2080s. 
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1. Introduction 

An accurate water balance projection is essential to a successful water resources planning for an 

uncertain future, especially in a nonstationary world [1]. Water balance projections simply calculate the 

difference between the total water demand and the total supply capability for a basin. When the demand 

exceeds the supply, water shortage occurs. To be systematic, short- and medium-range water resource 

planning alternatives, which can reduce potential water shortages, should be established under a 

predefined long-range water resource plan encompassing at least 20 years. For such a long-range time 

scale, the impacts of climate change cannot be ignored.  

This study began with a broad review of studies that focused on water balance projection 

methodologies reflecting climate change impacts. Most studies utilized multiple general circulation 

model (GCM) climate change scenarios, and the average number of GCM scenarios used in these water 

balance projection studies ranges from four to five. For instance, some studies relied on only a single 

GCM scenario [2–4], whereas Islam et al. [5] applied the most number of GCM scenarios, which is  

12 in total. In terms of water shortage calculation, water balance analysis models have been commonly 

used with GCM-driven streamflow scenarios. Thus, most studies that project future water balance have 

been using GCM-driven runoff series as water supply scenarios. They also used multiple GCM scenarios 

to overcome the heterogeneity that arises from GCMs. Moreover, various water balance analysis models 

have been utilized, which include CalSim II [6], WEAP [7,8], CALVIN [3], WRAP [9], Mospa [10], 

Sibuc [11], IQQM [12], Riverware [13], and WSM [14]. In Korea, the K-WEAP and the K-MODSIM 

models have been popularly employed for water balance analysis, and there have been several efforts to 

incorporate GCM scenarios into water balance analysis to reflect future climate change impact [15–17]. 

Thus, most studies made use of different models for their own purposes.  

The assessment of future water resources using GCM-driven streamflow, which is the general 

analysis framework of most previous studies, would provide an evaluation of possible climate change 

impacts. However, there are two possible problems to be considered when GCM-driven streamflow 

scenarios are used for water balance analysis. First, Korea, for example, has established its own national 

water resource plan based on historical data. Although it is imperative that the impacts of climate change 

on long-range water resources be considered, an inconsistency in methodologies may occur if historical 

runoff data are suddenly substituted with GCM-driven runoff scenarios. Furthermore, it would be risky 

to establish water resource plans based on the results of GCM-driven scenarios when they are directly 

inputted into the water balance analysis models because of the heterogeneity and uncertainty that arise 

from GCMs. 

This paper describes a new alternative approach that uses GCM climate information by assigning 

weights to historical runoff scenarios rather than directly inputting GCM-driven runoff into water 

balance models. By maintaining most of the existing water balance analysis framework, the proposed 

methodology is able to mitigate the risk created by the uncertainty of GCM-driven values.  
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The remainder of this paper is organized in the following manner. The first section demonstrates the 

previous methodology for water shortage projection. The next section describes the new water shortage 

projection methodology, which incorporates climate change impacts and compares it to the previous 

methodology. The application of this approach is described in the following section. The application 

results are analyzed by comparing them with the results of the previous methodology, and future water 

shortage projection results in each future period are presented. This paper concludes with a summary of 

the results and a discussion of possible avenues for further studies.  

2. Materials and Methods  

2.1. Previous Methodology 

2.1.1. Water Vision 2020: The National Water Resources Planning Report in Korea 

In general, most countries have established their own long-term water resources plans. In Korea, the 

long-term water resources plan is established every 20 years and updated every 5 years. The current plan 

entitled “Water Vision 2020” was established in 2001 and updated in 2011. Water balance analysis 

predicts possible water shortages by calculating the balance between water supplies—Such as surface 

runoff, reservoir storage, and groundwater—And multiple water demands, including municipal, 

agricultural, and industrial demands. In this regard, water balance analysis is one of the core parts of the 

long-term water resources plan. A rainfall-runoff model calculates the conversion of rainfall into runoff 

using the observed rainfall data. Afterward, a water balance model estimates the amount of water 

shortages using this calculated runoff data as fundamental water supply.  

In the case of Korea, the water shortage for each watershed is calculated every five days because 

agricultural water demands temporally vary during the farming season. When it comes to a model used in 

Water Vision 2020, the TANK model, a conceptual rainfall-runoff model that is composed of multiple 

tanks laid vertically, and the K-WEAP model (briefly introduced in Section 2.4) have been officially 

applied as the rainfall-runoff model and the water balance model, respectively. Water Vision 2020 [18] 

declared that the water shortage of the Korean Peninsula will amount to 862 million m3 in 2020 (Table 1). 

Table 1. Water shortage projection of previous studies in Korea. 

Report Water Vision 2020 a The Strategic Report b 

Target year 2020 2040s (2031 ~ 2060) 
Maximum water shortage (106 m3) 862 3300 

Notes: The same water demand scenario was applied to both reports. a “Water Vision 2020 (2006–2020)”, 

which is the national water resources plan in Korea, used the observation-driven flow in 1967–2003 as water 

supply scenarios [19]; b The Strategic Report, “Adaptation to Climate Change in Future Water Resources 

Management”, used a fine resolution RCM-driven runoff series in 2031–2060 as water supply scenarios. 

2.1.2. An Example of Water Balance Analysis Using Climate Change Information 

Studies on climate change impacts have sporadically been conducted in Korea since the mid-1990s. 

However, “The Strategic Report,” which is the first national report on water resources planning that 

considered climate change, was published based on the research [15]. The Strategic Report estimated 
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the future water balance of the Korean Peninsula, taking into consideration climate change information, 

as shown in Table 1, but there remained two issues to be resolved.  

First, the continuity of the existing water balance analysis methodology, that is, the methodology of 

the current national plan, was not considered. The Strategic Report utilized rainfall data from a single 

RCM, while the typical national water resources plans, Water Vision 2020, used the observed rainfall 

data as an input variable as mentioned above. Moreover, The Strategic Report suddenly changed the 

rainfall-runoff model from the TANK (used in Water Vision 2020) to the Semi-Distributed Land  

Use-Based Runoff Processes (SLURP) which has made the discrepancies in methodology larger. The 

TANK is a conceptual rainfall-runoff model, whereas the SLURP is a semi-distributed model that makes 

use of graphical data input and a graphical display of output. Both models simulate vertical water balance 

for runoff calculation, but the SLURP routes runoff from each element to the outlet. In this regard, the 

TANK is computationally less intensive, whereas the SLURP can produce spatial maps of runoff. 

Although the SLURP model has some advantages for spatial representation, this inconsistency in the use 

of a hydrologic model can mask a fair and effective comparison between different methodologies.  

The other issue was the lack of reflection of the uncertainty that arises from climate change scenarios. 

The Strategic Report used rainfall data from a single RCM called RegCM3 under an A2 emission 

scenario. However, the projected monthly rainfall series from various GCMs provided by the 

Intergovernmental Panel on Climate Change (IPCC) lead to highly heterogeneous results [19], as shown 

in Figure 1. Given that these uncertainties are rather noticeable, a national water resources plan based 

on a single GCM scenario seems unrealistic. Moreover, the direct use of GCM datasets through 

hydrologic and water balance models could be risky in practice because GCMs are still highly uncertain 

despite the fact that many climate change studies rely on their direct use. 

 

Figure 1. Time series plots of the observed and simulated monthly rainfall of four GCMs 

under the A2 scenario for the Korean Peninsula. 
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2.2. New Approach 

2.2.1. Overview 

This study has proposed a new alternative approach to solve these two problems, which are the 

discontinuity of the existing water balance analysis methodology for the current national water resources 

management plan and the direct use of GCM projection values, which involves a huge uncertainty. To 

ensure the continuity of the existing methodology, the TANK model which has been used for “Water 

Vision,” the national water resources management plan, was used as a rainfall-runoff model. Second, by 

considering the runoff series driven by observed rainfall time series (rather than GCM) as an input 

climate variable for the water balance model, the continuity of the methodology could be maintained. In 

addition, four GCM datasets under the AR4 A2 emission scenario were used to consider the uncertainty 

that arises from GCMs. Then, GCM information was incorporated to estimate the likelihood of 

observation-driven runoff scenarios to minimize the risks when GCM values are directly utilized. The 

proposed methodology assigns more probability to an observation-driven scenario, which is closer to a 

GCM scenario.  

2.2.2. Weighting Scheme  

In this study, a nonparametric K-nearest neighbor (K-nn) algorithm [20–22] was used as a weighting 

scheme for clustering/sampling objects based on the closest training samples. This algorithm has been 

widely applied because of its simple and useful scheme to weight the contribution of the neighbors so 

that the closer neighbors can contribute more to the expectation than the more distant ones [20]. 

2.2.3. Procedure 

The procedure is described as follows. Suppose that there are m years (e.g., 30 years of available 

GCM data in a target period) of the runoff series simulated by inputting GCM data (hereinafter  

GCM-driven flow) where the runoff series simulated by inputting historical observed rainfall data 

(hereinafter observation-driven flow) can be obtained. In the case of the ith year of the target period, this 

study selects K number of nearest neighbors to a given GCM-driven flow of the ith year among a whole 

annual series of observation-driven series, and inputs these K series into a water balance model to 

estimate the water shortage value of the ith target year. Here, the metric distance to be compared is the 

total sum of monthly flows for nine months (from October to the following June), that is, the non-flood 

season in Korea. Scenario selecting and weighting schemes are based on the K-nn algorithm. By 

calculating the weighted average value across the selected K series, the water shortage value (Si) of the 

ith year of the target period can be obtained. The weight of the jth nearest series (wj) can be estimated 

using the following equation (1):  

1
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w

j
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(1)

where j = 1 represents the nearest neighbor while j = k represents the kth nearest neighbor. 
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The aforementioned steps are repeated from the first year to the last year of the target period, and the 

whole procedure is carried out using all GCMs. 

2.3. Study Basin 

The proposed methodology was applied to the Han River basin located at the center of the Korean 

Peninsula (Figure 2). The area of the Han River is approximately 26,200 km2, which is 23% of the 

national territory, and the total length of the basin is approximately 481 km. Prior to the construction of 

a number of major dams, the river was known for its huge coefficient of river regime, with a ratio 

between the maximum and the minimum amount of flow of 1:390. The annual mean precipitation and 

runoff based on a 30-year period from 1978 to 2007 are 1260 mm and 17.4 billion m3, respectively. 

Because of the monsoon climate, 62% of the annual precipitation occurs during the three-month flood 

season from late June to late September. The Han River basin is occupied by several types of land covers, 

such as urban, paddy fields, farms, forests, grassland, wetlands, barren, and water, but more than 70% 

of the basin is covered with forests. The major soil type in the basin (as of 2001) is lithosol, which 

typically has a shallow overburden and lacks horizon development because of the steep slopes. 

 

Figure 2. Han River basin, Korea. 

2.4. Water Balance Model 

The K-WEAP water resources management model was used to project potential water shortages for 

each sub-watershed of the Han River basin. The K-WEAP model was developed through a cooperation 

between the Korea Institute of Construction Technology (KICT) and the Stockholm Environment 
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Institute—Boston Center (SEI-B). Before becoming officially adopted in Water Vision 2020, the  

K-WEAP was tested by several studies to prove its applicability and efficiency [23]. A linear program, 

built in the model, is applied to solve water allocation problems at each time step by maximizing the 

satisfaction of water demands subject to supply priorities, demand site preferences, and other constraints 

(see [24] for details). Figure 3 presents a snapshot of the Han River basin’s water allocation network 

realized in the K-WEAP model. 

 

Figure 3. Schematic network of the Han River basin, the K-WEAP model. 

2.5. Climate Change Scenarios 

To take into account GCM uncertainty, this study utilized four GCM datasets under an A2 emission 

scenario from IPCC AR4: CSIRO, CNRM, CONS, and UKMO (Table 2). Although recent studies on 

climate change projection use RCP (representative concentration pathways) scenarios from IPCC AR5, 

which is up-to-date climate change information, we preferred to use the former dataset—A2 emission 

scenario from IPCC AR4—for an exhaustive comparison with the current national water resources 

management plan of Korea. The A2 emission scenario is used here under the assumption that there will be 

radical climate change due to the continuously increasing population and a very heterogeneous world. 

These four GCM datasets were selected based on the research that addresses a selection of principal GCM 

scenarios [25]. Lee [25] provided principal scenarios that reflects overall uncertainty across multiple GCM 

datasets. Thus, the selected GCM datasets can preserve most of the uncertainty even though all of the GCM 

datasets available are not used. According to Kim and Lee [20], those GCMs were known to more suitably 

represent the Korean rainfall patterns in the low-flow (non-flood) period (October to June), along with 

better performance on temperature. The GCM data on monthly temperature and precipitation were 

downloaded from the IPCC data distribution center [26]. Figure 4 illustrates the monthly precipitation and 

its standard deviation of both the observed data and the CSIRO: MK3.0 GCM hindcast precipitation data. 
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As shown in this figure, the GCM mean series follow well those of the observed data, while the GCM 

standard deviation series tend to underestimate those of the observed data.  

Table 2. GCMs used in this study. 

No. Model (Agency: Version) Abbreviation Country 
Resolution (km) 

Atmosphere Ocean 

1 CSIRO: MK3.0 CSR Australia 192 × 96 192 × 189 

2 CNRM: CM3 GNR France 128 × 64 182 × 152 

3 CONS: ECHO-G MIU Germany/Korea 96 × 48 128 × 117 

4 UKMO: HadCM3 UKC United Kingdom 192 × 144 360 × 216 

 

Figure 4. Mean monthly precipitation and standard deviation of observed and GCM-simulated 

series (1971–2000). 

However, these GCM data should be spatially downscaled to local scale and temporally disaggregated 

to daily series to be used as an input forcing data of the TANK model. Hence, these GCM data are 

spatially downscaled and temporally disaggregated by Bae et al. [27]. They spatially downscaled the 

GCM data using the cyclostationary empirical orthogonal function (CSEOF) and multi-linear regression 

analysis, and temporally disaggregated from monthly to daily series using a weather generator called 

WXGEN [27]. 

2.6. Bias Correction 

The GCM-driven flows usually contain a systematic bias [28], which should be corrected before being 

applied to a water balance model. This study employed a quantile mapping (QM) technique, which has 

been frequently applied to correct the bias of flow series [10,29,30], and is based on a bias correction 

technique for the downscaled GCM output described by Wood et al. [31]. Unlike a simple bias correction 

method such as the delta method, which applies a constant correction factor for all events within a single 

duration (e.g., a month), the QM determines correction factors by mapping hindcast/historical  
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GCM-driven flows to observation-driven flows through the empirical distribution of variables, and same 

correction factors are applied to the projected future GCM-driven flows of the target period. In other 

words, the non-exceedance probability of the future GCM value is mapped in the empirical distribution 

of the GCM hindcast dataset with a duration that is similar to the observed dataset [28]. Then, future 

GCM values are corrected through the Equation (2) as follows. More details about the QM technique 

are described on Wiley [28].  

( )( )1 ˆ
i oi si iZ F F Y−=

 
(2)

where îY  is the projected future GCM value, iZ  is the bias-corrected value, ( )siF ⋅  is the empirical CDF 

of the GCM hindcast data set, and ( )oiF ⋅  is the empirical CDF of the observed dataset.  

3. Results  

3.1. Flow Projections 

The daily precipitation and potential evaporation projections in the basin scale were inputted into the 

TANK rainfall-runoff model, which was officially utilized in the development of Water Vision 2020 in 

Korea. The GCM-driven daily flow series for 130 years (1970–2099) were simulated by the TANK 

model using the downscaled precipitation and potential evaporation, and they were bias-corrected.  

A 100-year flow series (2000–2099) was corrected based on a 30-year control period (1970–1999).  

Figure 5 presents the annual flow series of observation-driven flow, the GCM-driven flow without bias 

correction (CSIRO MK3.0 GCM model), and the GCM-driven flow with bias correction. As shown in 

Figure 5, without bias correction, the annual mean value and the variation of the GCM-driven flow were 

somewhat underestimated than the observation-driven flow in the historical period. However, after the 

QM-based bias correction, both the annual mean value and the variation of the GCM-driven flow were 

reliably realized as to those of the observation-driven flow.  

Figure 6 shows the monthly pattern of the bias-corrected GCM-driven flow, averaged over the four 

GCMs, in the Han River basin in four time periods: the basis (1967–2003), 2020s (2010–2039), 2050s 

(2040–2069), and 2080s (2070–2099). In the 2020s, as shown in Figure 6, whereas a dramatic increase 

of flow is anticipated for the flood season, a moderate decrease is anticipated for the fall and winter 

seasons (October—January), which is in accordance with Figure 5b, which shows a decreasing trend for 

2020s. Moreover, this decreasing trend in the low-flow season lasts until the 2080s. Given that water 

shortage is mainly affected by the low-flow season, we only focused on this non-flood annual series of 

GCM-driven flow in this study.  

3.2. Water Shortage Projections  

A set of time series of observation-driven flows for 37 years from 1967 to 2003 was inputted into the 

K-WEAP water balance analysis model. Note that the GCM-driven flow projections were not directly 

inputted but rather utilized to assign a weight to each yearly scenario of the 37-year observation-driven 

flows. In other words, the closest seven observation-driven flow scenarios to the value of the given year 

of each GCM-driven flow are selected through the K-nn technique. Then, using Equation (1), the 
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corresponding weights of the selected seven scenarios were estimated, and these weights were used to 

calculate the weighted average of the seven water shortages values driven by the seven selected flows. 

Consequently, zero weight was assigned to each of the remaining 30 scenarios, that is, not used in the 

analysis of the given year. This procedure was repeated for the four GCMs, and the final water shortage 

projection in the projection year was calculated as the average of the four GCM results. In this study, it 

is assumed that the water demand for the year 2020, estimated by Water Vision 2020, remains constant 

throughout the entire projection period. Table 3 summarizes the average water shortage (AWS) in the 

Han River basin in three future periods, such as the 2020s, 2050s, and 2080s. Moreover, Figure 7 

presents a trend of water shortage projections, which is the AWS toward the end of the 21st century. It 

was anticipated that the amount of water shortages in the Han River basin would gradually increase over 

the next 90 years, and water shortages would increase up to 56% on average (ranging from 33% to 78%) 

in the 2080s compared to the current water shortage amounts projected by Water Vision 2020. 

 
(a) 

 
(b) 

Figure 5. Annual flow comparison of observation-driven flow, GCM-driven flow (without 

bias correction), and GCM-driven flow after bias correction: (a) total annual flow;  

(b) non-flood season flow. 
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Figure 6. Monthly flow variations in the projections for the Han River basin, Korea. 

Table 3. The average water shortage projections in the Han River basin (unit: 106 m3). 

Water Vision 2020 a  
(Target Year: 2020) 

Future Projection 

GCM Models 2020s 2050s 2080s 

42.0 

CSIRO: MK3.0 42.3 49.6 55.8 

CNRM: CM3 47.1 55.7 72.8 

UKMO: HadCM3 52.9 70.9 74.6 

CONS: ECHO-G 51.6 59.8 60.6 

Average 48.5 59.0 65.4 

(increase ratio from the current) (15% ↑) (40% ↑) (56% ↑) 

Note: a Water Vision 2020 used the observation-driven flow in 1967 ~ 2003 as water supply scenarios [19]. 

 

Figure 7. Trend of water shortage projections in the Han River basin: 2020s (2010–2039), 

2050s (2040–2069), and 2080s (2070–2099). 

Figure 8 illustrates schematically the amount of water shortages in each sub-watershed, warning that 

the downstream areas where the capital city of Korea, Seoul, is located would be vulnerable to future 

water shortages. 
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(a) (b) (c)  

Figure 8. Average water shortage in each sub-watershed of the Han River basin (unit: 106 m3/year) 

(a) 2020s; (b) 2050s; (c) 2080s. 

3.3. Comparison with the Previous Methodology 

This study compared the proposed methodology with the previous methodology, the GCM value input 

method (described in Section 2.2), which directly inputs the values of GCM-driven flows into the  

K-WEAP model. For fair comparison, both methodologies began with the same GCM selections for 

consistency. Therefore, the only difference between the two methodologies is whether the GCM-driven 

data were directly inputted into the K-WEAP model while the other settings remained constant. Note 

that the Strategic Report, an example of the GCM value input method, used only a single RCM scenario. 

Thus, it is different from the GCM value input method described in this section.  

Table 4 reports a significant difference between the results from both methodologies. The GCM value 

input method anticipated an unrealistically huge increase (144%) in water shortage, while the proposed 

methodology produced a rather conservative result, that is, a 15% increase with an overall range of 1% 

to 26%. Whether or not the projection results of the proposed methodology are significantly different 

from those of the previous methodology was validated with a statistical hypothesis test: the two-tailed  

t-test was performed with the null hypothesis that there is no difference between the two population 

mean values. As a result, it turned out that the both methodologies have different mean values with all 

the four GCM scenarios (i.e., all the null hypotheses were rejected with significance level of 0.05). 

Furthermore, in Table 4, the results produced by the GCM value input method show a huge heterogeneity 

between the GCMs. Although it is impossible to prove which methodology produces a better prediction 

because the future is uncertain, a 144% increase in 10 years seems extremely unlikely.  

4. Conclusions  

This study proposed a new methodology for water shortage projection under climate change impacts, 

which is essential to national water resources planning, to overcome the limitations of the GCM value 

input method that inputs GCM-driven flow directly. The new methodology uses GCM-driven flow 

scenarios to assign different weights to each observation-driven flow scenario rather than directly 

inputting GCM-driven flow scenarios into a water balance analysis model. 
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Table 4. The average water shortage projections for 2020s in the Han River basin (unit: 106 m3). 

Water Vision 2020 a  
(Target Year: 2020) 

Future Projection (Target Period: 2020s) 

GCM Models 
Proposed 

Methodology 
Previous 

Methodology b 

42.0 

CSIRO: MK3.0 42.3 63.5 

CNRM: CM3 47.1 17.4 

UKMO: HadCM3 52.9 137.6 

CONS: ECHO-G 51.6 192.2 

Average 48.5 102.7 

(increase ratio from the current) (15% ↑) (144% ↑) 

Notes: a Water Vision 2020 used the observation-driven flows in 1967 ~ 2003 as water supply scenarios [18]; 
b The previous methodology, the GCM value input method, inputted the GCM-driven flow directly into the  

K-WEAP model. 

The proposed methodology was applied to project future water shortages in the Han River basin in Korea. 

The K-nn scheme selected seven observation-driven flows, which were most similar to the GCM-driven 

flows in the low-flow season. By calculating the weighted average values of the simulation results of the 

selected seven observation-driven flows, the water shortages of each target period were projected. 

Compared to most previous studies, which assess climate change impacts on water resources by 

directly using GCM-driven flows, we have focused on how to provide reliable projection results for 

decision-makers in the water resources management field. As mentioned in the introduction, a radical 

change of methodology may confuse people with uncertain projection results. The comparison between 

the proposed method and the GCM value input method also showed a considerable difference in the 

projections. The results of the GCM value input method predicted a dramatic increase of 144% in the 

2020s, which seems unrealistic. On the other hand, the proposed methodology used GCM-driven flows 

to assign different weights to each historical scenario rather than directly inputting them into a model so 

that we could reflect a more conservative climate change impact in water shortage projections, a 15% 

increase in the 2020s. Thus, this study successfully utilized observation-driven flow series as water 

supply scenarios and also reflected climate change impacts by assigning different weights to those 

observation-driven flows in accordance with the given GCM. The proposed methodology projected that 

the water shortage in the next 90 years in the Han River basin would gradually increase by 15%, 41%, 

and 57% in the 2020s, 2050s, and 2080s, respectively. 

It is difficult to argue that the implementation of this conservative approach is the best way to assess 

climate change impacts. However, the blind use of GCM-driven flows should be reevaluated. Because 

the proposed methodology successfully reflected climate change impacts on water resources using 

GCM-driven flows, it may become one of the appropriate alternatives to be considered when addressing 

the impact of climate change. Nonetheless, as we proposed a rather conservative approach given that 

each annual water shortage value is projected within the limits of historical data, efforts to project 

extreme values beyond the observed record will be pursued in future studies. 

In the near future, the current results of this study should be updated with the AR5 RCP scenarios 

that have been presented to the public in 2014 and are, thus, consequently being tested in Korea. The 

primary reason that we used the A2 emission scenario from AR4 was because of a consistent comparison, 
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that is, because both Water Vision 2020 and the Strategic Report utilized the A2 emission scenario. 

Moreover, the QM technique was used to correct systematic bias on GCM datasets in this study. Other 

up-to-date bias correction schemes [32,33], however, can also be considered for future studies.  

The assumption of a constant water demand until 2100 made in this study because of a consistency 

with Water Vision 2020. Note that the choice of the demand scenario used in Water Vision 2020 was a 

very valuable product that results from a long negotiation process between the Korean government and 

non-governmental organizations. However, the suitability of this future demand scenario should be  

re-studied and updated to be more realistic as a future study. For instance, Koutroulis et al. [34] 

developed a simple future water demand storyline based on future irrigation extension plans, population 

trends, etc. Above all, however, it needs to be reiterated that the main purpose of this study is to alert 

decision makers of the risk of the direct use of GCM-driven data without thorough analysis. 

The proposed methodology is likely to be more useful for regions where the rainfall regime is highly 

variable and thus hard to find a consensus between GCMs. Korea, affected by the monsoon climate, 

belongs to this category. The proposed methodology may perform differently for other rainfall regimes 

such as semiarid regions. 

To conclude, this approach could provide decision makers a reliable and realistic alternative for future 

water resources management plans. In addition, various approaches that take into consideration multiple 

variables, such as weighting factors, and project extreme water shortage values should be pursued in 

future studies. 
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