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Abstract: Groundwater is an important source of water. Since the control and removal of 

pollution are expensive, it is essential to identify the possible sources of contamination and 

to correctly classify groundwater on the basis of its intrinsic and integrated vulnerability. In 

the last years, many fuzzy models have been developed. There is a lack, however, of studies 

concerning the application of fuzzy logic for the assessment of the susceptibility of 

groundwater quality to anthropogenic activities and comparing these methods with 

traditional methods. The fuzzy model described in this paper assesses the aquifer integrated 

environmental vulnerability connected to the presence of illegal dumpsites and allows us to 

hierarchically classify them within a hazard scale. The results allowed us to carry out a 

comparison of the proposed fuzzy method with a traditional method. The fuzzy method 

proved to be a useful and objective tool for environmental planning. 

Keywords: fuzzy logic; groundwater intrinsic vulnerability; groundwater integrated 

vulnerability; illegal open dumpsites 
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1. Introduction 

In arid and semi-arid regions, groundwater is an important source of water. Since the control and 

removal of pollution are expensive, it is essential to identify the possible sources of contamination and 

to correctly classify groundwater on the basis of its intrinsic and integrated vulnerability. Sources of 

groundwater pollution are basically of two types: diffuse and point sources. Examples of this type of 

pollution are found everywhere. Groundwater pollution, in almost all cases, is due to human activities. 

The sources of groundwater pollution are in fact associated with a wide range of industrial, agricultural, 

commercial and domestic activities (such as industrial installations, landfills of waste, mining and 

quarrying activities, urban centres, lines of communication and infrastructure links, agricultural 

activities, livestock activities, and other activities that involve water systems). In the literature, two types 

of vulnerability are described: intrinsic and integrated (or specific) vulnerability. The latter differs from 

the first one, because it takes into account the sources of pollutants [1]. The assessment of aquifer 

pollution hazard should combine the vulnerability of the element at risk, i.e., the aquifer, with the 

hypothetical contaminating element, i.e., illegal dumpsites as in this study. 

Methods of hierarchical classification of aquifer vulnerability can be used for a rapid assessment and 

mitigation of aquifer pollution hazard. These methods allow us to identify which sites immediately 

require remediation activities. In fact, integrated vulnerability ranking aims at developing policies and 

guidelines for the sustainable management of water and groundwater resources [1]. 

The intrinsic or natural vulnerability of aquifers is the specific susceptibility to pollution of the aquifer 

systems, in their different components and in different geometric and hydrodynamic situations. 

Vulnerability is the capacity to interact, disseminate and also to mitigate the effects of a pollutant that 

creates an impact on the quality of groundwater, in space and time. 

In the last decades, groundwater vulnerability assessment has been the subject of many studies. 

Developed methods can be divided into three categories: statistical methods, process-oriented simulation 

models and index methods [1,2]. Process-oriented numerical models are used for site-specific studies 

and not for mapping vulnerability on a large scale. The main disadvantage of numerical models is not 

related to the mathematical complexity, but to the fact that most of them were made for soils of medium 

to high porosity. Numerical models, suitable for small portions of land, are numerous, such as  

MACRO 4.3 (dual-permeability model; [3,4]), RZWQM98 (dual-permeability model, [5]), Hydrus-1D 

(dual-porosity and dual permeability model [6,7]), and LEACHM [8]. Statistical methods used for 

aquifer vulnerability assessment comprise: descriptive statistics, multivariate regression analysis, and 

complex statistical analysis [2]. 

A number of index methods have been developed for the evaluation and mapping of the intrinsic 

aquifer vulnerability on a large scale. The most widely applied method to assess environmental 

vulnerability of groundwater is the DRASTIC method, adopted by the United States Environmental 

Protection Agency. The DRASTIC method is a parametric method, based on the allocation of scores and 

weights to different factors that influence the vulnerability of an aquifer [9,10]. 

In addition to the previously described methods, one of the methods of vulnerability assessment 

mostly used throughout the world is the geological approach. This method assesses the vulnerability by 

using a set of protocols for situations of varying complexity. This assessment is not influenced by the 

number and quality of data available but by the experience of the users. In the case of very large areas 
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to be analysed, Civita M. [11,12] proposes the GNDCI-CNR method (National Group for the Defence 

from Hydrogeological Disasters-National Research Council) to assess the aquifer vulnerability. This 

method is suitable for large areas with different geological, hydrogeological and morphological 

conditions, in which data and information do not have a homogeneous distribution in the area. 

In the last decade, a number of researchers started to develop and apply fuzzy and neuro-fuzzy models 

aiming at assessing groundwater intrinsic and integrated vulnerability [1,13–18]. In particular, a number 

of recent studies applied fuzzy methods for environmental risk analysis and management, whenever the 

availability and reliability of data are not enough for quantitative methods [19]. However, there is a lack, 

in literature, of studies proving the real advantage of fuzzy methods if compared with traditional 

methods. Moreover, there is a lack of studies concerning the application of fuzzy logic for the assessment 

of the specific vulnerability of groundwater connected to the presence of different pollution sources, and 

for hierarchically classifying these pollution sources within a hazard scale and thus understanding which 

one requires attention more urgently. 

The objective of this study is to evaluate the pollution risk of the illegal dumpsites that are located in 

the Basilicata region (Southern Italy). In this study, the hydrogeological intrinsic vulnerability was 

evaluated with a method of zoning for homogeneous areas (GNDC-CNR method). While, fuzzy logic 

analysis was used to overcome the major drawbacks of conventional overlay analyses (i.e., the subjective 

weightings and discrete ratings) in developing the integrated vulnerability index [14]. Fuzzy logic, 

associated with a sensitivity analysis, was applied to: identify the difference between fuzzy and 

conventional methods for the assessment of integrated groundwater vulnerability, determine a ranking 

of the pollution risk of each illegal dumpsite, and carry out a validation of the developed fuzzy method. 

2. Materials and Methods 

2.1. Intrinsic and Integrated Groundwater Vulnerability 

In general terms, risk can be defined as a combination of hazard and vulnerability: 

Risk = Vulnerability × Hazard 

where “vulnerability” indicates the degree of intrinsic weakness of the investigated natural system 

(intrinsic vulnerability) and “hazard” represents the probability that a detrimental event will occur in a 

given area in a period of time [18]. 

In this study, the considered sources of pollution are illegal dumpsites (Figure 1). 

Since the study in question concerns the entire territory of the Basilicata region (Southern Italy), 

which has an area of about 10,000 km2, the hydrogeological intrinsic vulnerability was evaluated with a 

method of zoning for homogeneous areas, the GNDC-CNR method (see Section 2.2.1). 

A statistical approach can be used to evaluate the degree of hazard, in order to analyse the probability 

that a dangerous event may occur. In our case, the conditional probability is the probability that the 

concentration of a given pollutant is greater than a given threshold [18]. The major limits of this approach 

are the difficulty in finding detailed data, collected by monitoring a process, to evaluate the probability 

that the phenomenon considered might happen. Among the different models applied to the evaluation of 

groundwater pollution risk in a quantitative way, complex mathematical models can be considered the 

most reliable. However, a lot of detailed information and/or data often not available, inaccurate or 
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doubtful are required, to run these models. To overcome the shortage of reliable information, an 

algorithmic approach has been integrated with a qualitative one. The hazard assessment was carried out 

using two methods (a traditional score and weight method and a fuzzy logic model). The same methods 

were used to integrate the intrinsic vulnerability of aquifers and the hazard of landfills, in order to 

calculate the risk of pollution of the illegal dumpsites. The parameters describing the possible sources 

of pollution are the same for both methods: water table depth, site acclivity, leachate production, waste 

volume and type, soil coverage, presence of monitoring system and river proximity index. 

Figure 1. Location of the illegal dumpsites in the region of Basilicata (Italy). 

Aquifer Intrinsic Vulnerability: The GNDCI-CNR Method 

The GNDCI-CNR method [11,12] allows us a qualitative evaluation of the aquifer pollution 

vulnerability. It is a method of zoning for homogeneous areas and it requires no numerical parameters. 

The method uses a protocol in which each Italian hydrogeological situation has a degree of vulnerability. 

The hydrogeological situations have been divided according to geometry, lithology and effective 

porosity of the aquifers. 

Hence, the intrinsic vulnerability of aquifers can be defined by identifying the hydrogeological  

situation of interest among those listed. The method is very flexible and can be adapted to specific 

situations which are not listed in the protocol of methodology. This protocol must be used for assessing 

the vulnerability, which is characterized by all the typical situations. These situations are identified by the 

main factors that influence the aquifer vulnerability, such as depth, porosity, fractures, karst phenomena 

and piezometric level. The hydrological situations are placed in a legend composed of six columns, each 

of which is related to the degree of intrinsic vulnerability (Figure 2). This immediately makes the legend 

interpretative and usable for creation, interpretation and reading of the vulnerability map. 

The vulnerability assessment is qualitative and based on the comparison between the situation of 

hydrogeological interest and the reference situation of hydrological conditions. The vulnerability map 
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was obtained by taking into account different hydrological scenarios and by assigning the following 

degrees of intrinsic vulnerability: very high, high, medium, low, very low. 

 

Figure 2. Cont. 
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Figure 2. Protocol for assessing the intrinsic vulnerability of aquifers with the GNDCI-CNR 

method [11]. 

The application of the GNDCI-CNR method is based on map overlay of different levels of 

information and it provides some operational phases: 

• identification and definition of hydrological and hydrodynamic characteristics of the  

area of interest; 

• creation of the hydrogeological map and identification of scenario or hydrological and impact 

scenarios in the area of interest; 
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• identification, on the basis of the GNDCI-CNR protocol, of the reference scenario or scenarios 

adaptable to the hydrogeological situation of interest by the consequent assignment of the relative 

degrees of vulnerability. 

• drafting of the aquifer intrinsic vulnerability map accompanied by an appropriate legend. 

2.2. Case Study 

The illegal dumpsites considered in this study are those found in the Basilicata region (Southern Italy) 

with the last census (“Corpo Forestale dello Stato” (Forest Rangers) and “Piano Regionale di Bonifica” 

(Regional Reclamation Plan, 2002), which identified 469 areas needing reclamation actions, 

environmental recovery and/or safety measures (315 in the province of Potenza and 204 in the province 

of Matera). Among these areas, 290 are illegal dumpsites: 122 in the province of Potenza and 168 in the 

province of Matera. In this study, we analysed 118 illegal dumpsites among all those identified  

(Figure 1), for which data related on the dumped waste were available to us. The assessment of risk 

factors of illegal dumpsites is a very complex issue. In fact, the information regarding the construction 

techniques of the plant, the managerial formalities and the types of waste are lacking. The 

characterization phase of the risk elements is therefore fundamental, since elements that affect the 

decision-making phase, and that can be easily reproducible and standardisable, must be identified. The 

elaboration of the method is set, in fact, as an objective to supply a decision making support for the 

prioritization during the phase of illegal dumpsite remediation. 

2.2.1. Risk Factors 

We measured the following parameters, for the definition of the input variables: waste volume and 

type, physical state of dumpsite and presence of monitoring system. Other important parameters, such 

as leachate production, site acclivity, proximity to river index and water table depth were calculated on 

the basis of other known information, by using GIS tools and historical hydrological data. 

For the definition of the relative maps, the cell size was chosen to be 240 × 240 m, on the basis of the 

size of the study area. 

2.2.2. Water Table Depth 

The water table depth can be defined as the distance between the land surface and the groundwater 

table. This is a very important parameter, as it affects the travel time of the pollutant and the  

self-purification effectiveness of the unsaturated zone. The relative map was prepared interpolating 

punctual water table depth data, which was obtained from 506 wells located in the study area  

(about 10,000 km2). The method of interpolation used is the Kriging method, with a spherical model of 

the experimental semivariogram. 

2.2.3. Slope Gradient 

Slope gradient plays an important role in the infiltration process and, consequently, in leachate 

production. Slope gradient Figure 3a was calculated by using the digital elevation model in a  

GIS environment. 
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(a) (b) 

Figure 3. Maps of slope gradient (a) and river proximity index (b). 

2.2.4. River Proximity 

The river proximity index (IC) was calculated by modifying the topographic index: 

IC = FA × tan(β) 

where FA is the flow accumulation (calculated as the number of all cells flowing into each downslope 

cell) and β is the site acclivity. 

The river proximity index is shown in Figure 3 (on the right). 

2.2.5. Leachate Production 

Leachate production roughly calculated by considering the average values of rainfall in the involved 

area, since it directly depends on effective infiltration, estimated as proposed by Civita and  

De Maio [20]. Evapotranspiration was calculated with the Turc formula 

The resulting map (Figure 4) was obtained by interpolating, with the Kriging method, the  

punctual average data collected between 1920 and 2009 in the 138 thermopluviometric stations of the 

Basilicata region. 
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Figure 4. Map of leachate production. 

2.3. Assessment of the Pollution Risk of the Illegal Dumpsites of the Basilicata Region: The “Scores 

and Weights” Method 

In the first phase, the pollution risk of illegal dumpsites was assessed with a score and weight  

method [21]. This method can be used as a decision support tool for the identification and ranking of the 

sites that need to be reclaimed. 

Every single factor was multiplied by a weight W that takes values on a scale of 1–5, depending on 

the potential risk. In addition, risk factor reduction in weight “R” was applied to each element. In this 

case, the factor is included in a scale of 0.1–1. The sum of products between the relative weights and 

reduction factors allows us to calculate the hazard index “IH” through Equation (1): ܫு =෍ ௜ܹ ൈ ܴ௜ (1)

The hazard of each landfill has been evaluated on the basis of this hazard index, which is independent 

on the location of the site. The risk factors with the respective weights and reduction factors are shown 

in Table 1. 
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Table 1. Scores and coefficients of reduction (weights) of the considered risk factors. 

Hazardous Factors of Landfills 
Weights and Coefficient of 

Reduction of Risk Factors (R) 

Waste input rate (waste volume, m3) 

<1,000 0.1 

1,000–5,000 0.3 

5,000–10,000 0.5 

10,000–20,000 0.7 

>20,000 1 

Estimate of leachate production 

(infiltration value, mm) 

0–100 0.1 

100–200 0.3 

200–300 0.5 

300–500 0.7 

>500 1 

Waste types 

MSW, MSW + IW 0.1 

non-MSW, non-MSW + MSW 0.5 

HW, MSW + HW, non-MSW + HW 1 

Proximity to superficial water 

(Proximity river index value, adim) 

0–5 0.1 

5–10 0.5 

>10 1 

Water table depth (m) 

>5 0.1 

2–5 0.5 

0–2 1 

Site acclivity (degrees) 

>20 0.1 

10–20 0.3 

5–10 0.7 

0–5 1 

Monitoring system 
Present 0.1 

Not present 1 

Physical state of dumpsite 
Without soil cover 0.3 

With soil cover 1 

The hazard index IH calculated with the score and weight method was normalized and then subdivided 

into five hazard classes (very high, high, medium, low, very low). 

The obtained hazard of illegal open dumpsite was integrated with the intrinsic vulnerability of the 

aquifers, which was determined by using the GNDCI-CNR method described in Section 2.1.1, in order 

to give the pollution risk of illegal dumpsites. 

2.4. Development of the Fuzzy Logic Model for Assessing Aquifer Integrated Vulnerability 

The binary (or classical) logic is only concerned with what is completely true or what is completely 

false. Fuzzy logic, however, also extends its interest to that which is not completely true, which is 

probable or uncertain. Fuzzy logic is based on a linguistic approach, in which words or phrases of natural 

language are used instead of numbers. 
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Fuzzy logic operates on mathematical entities that are fuzzy sets, which obey rules, structures and 

axioms similar to those of classical logic. The only difference is that an object can simultaneously belong 

to several subsets in contrast to the classical theory. Belonging to a subset, in fuzzy logic, is associated 

with a degree of membership [22]. The set of deduction rules to be applied to a given system to achieve 

results through the use of fuzzy logic is the fuzzy inference process. Fuzzy inference is divided into three 

main phases: fuzzification, inference and defuzzification. 

The fuzzification is the process by which the input variables are converted to fuzzy measures of  

their belonging to certain classes (such as, for example, Very Low, Low, Medium, High, Very High). 

This conversion from deterministic greatness to fuzzy greatness is done through membership functions 

(Figure 5). A membership function is a function that associates a value, usually numeric, to the degree 

of membership. By convention, the degree of membership assumes values ranging from zero, when the 

element does not belong to the subset, to one, when it belongs entirely to the subset. If you consider a 

membership function μA and a value x°, the conversion of x° in a fuzzy set is a complement of set A 

corresponding to ordinate μA(x°) (Equation (2)): ܣᇱ = ൛ݔหμ஺ᇱሺݔሻ = min൫μ஺ሺݔ°ሻ,μ஺ሺݔሻ൯ൟ (2)

If the value x° intercepts more than one membership function, you will have a degree of membership 

for each function equal to the intercept with the y-axis. 

 

Figure 5. An example of membership function. 

A membership function is a function which associates a value (usually numerical) with the level of 

membership to the set. By convention, the real number which represents the level of membership  

(μ(x)) takes a 0 value when the element does not belong to the set, and 1 when it belongs to it completely. 

Membership functions can have different shapes: the simplest are made up of straight lines, while the 

most used are the triangular (Figure 6a) and trapezoidal (Figure 6b) functions; the former are 

characterized by a triangular trend while the latter by a trapezoidal one. The advantage of these functions 

is in their simplicity. The triangular membership function depends on three scalar parameters a, b and c 

and is given by the following expression: ݂ሺݔ, ܽ, ܾ, ܿሻ = ݔܽ݉ ቀ݉݅݊ ቀݔ − ܾܽ − ܽ , ܿ − ܿݔ − ܾቁ , 0ቁ (3)

while the trapezoidal one depends on four scalar parameters (a, b, c and d), as shown in the  

following formula: 
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݂ሺݔ, ܽ, ܾ, ܿ, ݀ሻ = ݔܽ݉ ൬݉݅݊ ൬ݔ − ܾܽ − ܽ , 1, ݀ − ݀ݔ − ܿ൰ , 0൰ (4)

There are other more complex functions, i.e., the Gauss function made up of a simple Gaussian curve 

(Figure 7a) which depends on the parameters σ and c (Equation (5)) and the Gauss2 function  

(Figure 7b) given by the fusion of two different Gaussian functions and depending on four parameters: 

r1 and c1, which define the shape of the function in the left part, and r2 e c2, which define the shape of 

the function in the right part. Moreover, between these types of functions, there is the bell membership 

function (Gbell) (Figure 7c) which is a hybrid of the Gaussian function; it is mainly used to manage  

non-fuzzy sets and depends on three parameters: a, b and c (Equation (6)) 

( )
( )2

22σ;σ,
x c

f x c e
− −

=  (5)

( ) 2

1
; , ,

1
bf x a b c

x c
a

=
−+

 
(6)

Despite their simplicity, such functions cannot be used to represent asymmetry, which is important in 

some applications. 

 
(a) 

 
(b) 

Figure 6. (a) Triangular membership function; (b) Trapezoidal membership function. 
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(a) 

 
(b) 

 
(c) 

Figure 7. (a) Gauss membership function; (b) Gauss2 membership function; (c) Generalized 

bell (Gbell) membership function. 

The sigmoid function (Figure 8a) may have left or right asymmetry and a horizontal asymptote.  

This function is ruled by parameters a and c (Equation (7)): 

( ) ( )cxae
caxf −−+

=
1

1
,;

 
(7)

Further asymmetric functions, Dsigm and Psigm membership functions, are represented in  

Figure 8b,c and described by Equation (8), depending on four parameters a1, c1, a2 and c2. 

( ) ( )cxae
caxf −−+

=
1

1
,;  (8)

The factors that discriminate the choice of the appropriate membership functions are of two  

types: the number of parameters of each curve and the shape of the function which represents the trend 

of the phenomenon. 
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(a) 

 
(b) 

 
(c) 

Figure 8. (a) Sigmoid (Sig) membership function; (b) Dsig membership function;  

(c) Psig membership function. 

Fuzzy inference is the mapping process, starting from an input space and going to an output space. In 

order to obtain an output, you need to assign the fuzzy rules that integrate fuzzy sets through a series of 

antecedents and consequents. These rules are not represented by complex mathematical models but are 

constituted by simple linguistic expressions, which are converted in mathematical formalism in the 

language of fuzzy rules. The fuzzy rules, “if-then-else”, are usually composed of two parts: the 

antecedent, which defines the condition, and the consequence, which defines the action. It is also possible 

to define a rule “Else”, which enters in to question when none of the rules has been satisfied or when the 

“Then” is weakly satisfied. The output of the fuzzy inference is often unusable and, therefore, it needs 

to be converted into a deterministic value through the defuzzification operation. 

The usually used defuzzification methods are the following: 
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• Centroid method: the chosen numerical value for the output is calculated as the centre of the mass 

of the fuzzy set; 

• Bisector method: the output is the abscissa of the bisector of the area subtended to the fuzzy  

data set; 

• Middle of maximum method: the output value is determined as the average of maximum values 

(Mom, middle of maximum) (Figure 4); 

• Largest of maximum method: the output numerical value is calculated as the maximum of the 

maximum (Lom: Largest of maximum); 

• Smallest of maximum method: the output value is represented by the output minimum value 

(Som: Smallest of maximum). 

Among the methods found in literature, the most common are the centroid and Mom methods. In the 

Mom method, output is obtained as the arithmetic mean of the values of “y” where fuzzy set height is 

maximum (Equation (9)). 

B’ is the fuzzy set inferred by rules and ݄݃ݐሺܤᇱሻ = ൛ݕ|μ஻ᇲሺݕሻ = ሻൟ (9)ݕ௬௘஻ᇱμ஻ᇱሺ݌ݑܵ

is the values set of “y” for which height “µB’(y)” is maximum. 

Therefore, we have (Equation (10)): 

௢௨௧ݕ = ׬ ׬௛௚௧ሺ஻ᇲሻݕ݀ݕ ௛௚௧ሺ஻ᇲሻݕ݀  (10)

whose geometric significance is shown in Figure 9: 

 

Figure 9. Geometric significance of the middle of maximum defuzzification method. 

The output of the Centroid method is obtained as the abscissa of the centre of gravity inferred from 

the rules in the space of fuzzy sets of output of the algorithm. The formula in the case of continuous 

function is given by the following Equation (11): ݕ௢௨௧ = ׬ݕሻ݀ݕμሺݕ׬ μሺݕሻ݀ݕ  (11)

Whereas, the formula for discrete function is given by Equation (12): ݕ௢௨௧ = ∑ ௜௜ݕ μሺݕ௜ሻ∑ μሺݕ௜ሻ௜  (12)
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In Largest of maximum, the precise value of the output variable is one of which the fuzzy subset has 

the maximum value of truth. The main disadvantage of this method is that it does not consider the 

distribution of membership function. 

The conceptual structure of the developed fuzzy model is represented in Figure 10. The intrinsic 

vulnerability of the aquifers and the hazard of the illegal dumpsites were integrated, in order to obtain 

the specific, or integrated, vulnerability, or pollution risk. The hazard of illegal dumpsites, however, was 

determined through the use of fuzzy logic, by considering the parameters describing the characteristics 

of the dumpsites. 

 

Figure 10. Conceptual model for the fuzzy aquifer specific vulnerability to pollution. 

In order to reduce the number of fuzzy rules, the parameters listed in Section 2.2.1 were used to define 

three different fuzzy inferences, as shown in the conceptual diagram in Figure 11. The results obtained 

through the first two fuzzy inferences, defined as site vulnerability and dumpsite potentiality, 

respectively, were then aggregated to the crisp parameter called dumpsite conditions, by obtaining the 

hazard index of each dumpsite. 

 

Figure 11. Conceptual diagram of the implemented fuzzy model for dumpsite risk assessment. 

In the assignment of the rules, we assumed that the increase in vulnerability is favoured by low slopes, 

proximity to surface watercourses and low depth of the water table. On the contrary, potentiality of 

landfill evaluates the probability of a landfill to release contaminants depending on the waste volume 

and the leachate production. Therefore, with the increase of these two factors, this potentiality will 

increase as described by the fuzzy rules. The procedure to determine the integrated vulnerability index 

combines the results obtained by the two previous fuzzy diagrams with the addition of the landfill 
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conditions. The landfill conditions parameter groups the non-fuzzy parameters, namely the type of waste, 

the presence of a coverage and the activity for each landfill. For the type of waste, a weight equal to 0.1 

for municipal solid waste (MSW), 0.5 for special waste and 1 for hazardous ones were defined. A unitary 

weight was given to the absence of coverage, and a weight equal to 0.3 to the presence of coverage. A 

weight of 0.1 was given to the landfill inactivity, and a unitary one to its activity. Therefore, an increase 

of the landfill conditions parameter indicates an increase of the landfill vulnerability. For example, “if 

site vulnerability” is low, “if landfill potentiality” is high, and “if conditions of the landfill” is low then 

the hazard index of landfill is medium. In general, the basis of the fuzzy inference has been drawn up 

considering that with increasing values of the three parameters of the subset, increases the hazard  

of landfills. 

The selection of the membership function and the defuzzification method was done with the 

application of the sensitivity analysis method described in [14]. The sensitivity analysis was performed 

by repeating the whole fuzzy inference procedure, modifying only one membership function or 

defuzzification method at a time, keeping all the other variables unvaried, thus performing 55 different 

simulations. We carried out an F test to compare more precisely the variances related to the distributions 

corresponding to each fuzzy model and to the starting data. What we observed from the analysis of 

deviation was confirmed by the F test which highlighted, as the best model, the Centroid defuzzification 

method associated with the trapezoidal or GBell membership functions gave comparable results  

(Table 2). 

Table 2. F test results. 

Defuzzification Method Gauss2 Triangular Trapezoidal Gbell Gauss Disig Psig Pi 

Centroid 0.692 0.594 0.969 0.966 0.280 0.001 0.001 0.479
Bisector 0.687 0.945 0.945 0.030 0.940 0.118 0.114 0.815

Mom 0.009 0.009 0.009 0.009 0.012 0.008 0.011 0.013
Lom 0.009 0.009 0.009 0.018 0.012 0.010 0.014 0.023
Som 0.026 0.025 0.025 0.012 0.021 0.087 0.094 0.093

The obtained fuzzy hazard index was successively revised for a classification in linguistic terms  

(Very low, Low, Medium, High, Elevated), by using a cumulative frequency distribution curve, and 

choosing, as the ends of the classes, the points of the curve where a clear slope variation is observed. 

The intrinsic vulnerability and the landfill hazard, placed in a fuzzy model, provided the integrated 

vulnerability index. The fuzzy inference has been created using as input data the landfill hazard index 

and the classes of intrinsic vulnerability, which were converted into numerical values. Therefore, during 

the fuzzification, the trapezoidal-type membership function was defined for the intrinsic vulnerability of 

aquifers and the hazard of landfills. 

In order, to determine the environmental risk index, the if-then fuzzy rules (Table 3) and the  

Centroid defuzzification method were defined. These rules have been established by considering that the 

aquifer pollution risk grows with an increase in both the intrinsic vulnerability of aquifers and the hazard 

of dumpsites. 
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Table 3. Fuzzy rules for the evaluation of aquifer integrated vulnerability. 

Landfills 
Hazard 

Aquifer Intrinsic Vulnerability 

Very Low Low Medium High Very High 

Very Low Very Low Low Low Medium Medium 
Low Low Low Medium Medium High 

Medium Low Medium Medium High High 
High Medium Medium High High Very high 

Very high Medium High High Very high Very high 

3. Results and Discussion 

3.1. Aquifer Intrinsic Vulnerability 

The map of the aquifer intrinsic vulnerability, determined with the GNDCI-CNR method, is shown 

in Figure 12. The map indicates that approximately all of the centre part of the Basilicata Region falls 

under the very low, low and medium vulnerability classes, except for the areas located at the edges of 

the region. The aquifer vulnerability was reclassified into six classes: extremely elevated, elevated, 

medium, high, medium, low, very low. 

 

Figure 12. Aquifer intrinsic vulnerability map. 
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3.2. Results of the Pollution Risk of Dumpsites Obtained with the “Scores and Weights” and the Fuzzy 

Logic Method 

The map related to the pollution risk of dumpsites, obtained with the “scores and weights”  

method is shown in Figure 13. The percentage distribution of the classes of risk is shown in Figure 14. 

Looking at the percentage results, we observed that most of the dumpsites show a medium-high 

vulnerability (about 70%). 

 

Figure 13. Map of the integrated vulnerability of illegal dumpsites (“scores and weights” method). 

 

Figure 14. Distribution of the classes of integrated vulnerability of illegal dumpsite  

(“scores and weights” method). 

The pollution risk obtained with the fuzzy logic method was reclassified in linguistic terms  

(Very low, Low, Medium, High, Very high), by using the cumulative frequency distribution curve 

(Figure 15) and by choosing, as the extremes of classes, the points of the curve where there is a distinct 

change of slope (Table 4). 
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Figure 15. Cumulative frequency curve of risk classes (fuzzy logic method). 

Table 4. Range classes of dumpsite pollution risk (fuzzy logic method). 

Dumpsite Pollution Vulnerability Classes Classes Range 

Very low 0.402 
Low 0.468 

Medium 0.599 
High 0.665 

Very high 0.796 

The classification identifies a large part of the dumpsites (about 60%) in the range of high and  

very high pollution risk, as shown in the graph of Figure 16. Figure 17 shows the spatial distribution of 

the risk. 

 

Figure 16. Distribution of the classes of integrated vulnerability of illegal dumpsite  

(fuzzy logic method). 
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Figure 17. Map of dumpsite integrated vulnerability in the Basilicata region (fuzzy logic). 

The analysis of the histograms (Figures 14 and 15) representing the percentage of dumpsites falling 

in different classes of risk by applying both “scores and weights” and fuzzy logic methods, shows that 

the both distributions are platykurtic because they present negative kurtosis (−1.16 for fuzzy logic results 

and −2.40 for “scores and weights” results). The skewness, which is a measure of the asymmetry of a 

distribution, is −0.45 for fuzzy logic results and 0.15 for “scores and weights” results. The comparison 

of the results obtained with both tested models indicates that 50% of the vulnerability of dumpsites is 

over-estimated by applying the fuzzy model while over 30% has a comparable vulnerability (Figure 18), 

because the fuzzy logic distribution moves to higher risk classes. This result should not be of concern 

because this means that the fuzzy logic method gives safer results and that the underestimated aquifers 

fall into the classes of very low and low risk. 

For a more appropriate comparison, we calculated the statistical dispersion indices of the distributions 

of the risk indices obtained with the two methods. The comparison of the risk indices, without the 

division into classes, shows that the behaviour of the two distributions is very similar. The congruence 

of the two distributions is confirmed by the values of variance and standard deviation (Table 5). 
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Figure 18. Comparison of the results obtained with both the tested models. 

Table 5. Statistical dispersion indices for the comparison between the fuzzy logic method 

and the scores and weight method. 

Statistical Dispersion Indices Scores and Weight Method Fuzzy Logic 

Standard deviation 0.237 0.211 
Variance 0.056 0.044 

Mean 0.466 0.470 

4. Conclusions 

In this study, an index of environmental risk was introduced to evaluate both the intrinsic and 

integrated vulnerability of the aquifers of the Basilicata region (Southern Italy). The fuzzy method was 

developed and the results were used to make a comparison with a conventional “score and weight 

method”. The aim of fuzzy logic was to reduce the subjectivity found in the score and weight method. 

The fuzzy methodology and the score and weight method allow us to identify contaminated sites that 

need prompt interventions. The evaluation is carried out on the basis of the integration of the 

characteristics of the dumpsite (hazard of dumpsite) and the intrinsic vulnerability of the studied aquifers. 

It is possible to reduce the risk that a pollutant may leach along the soil profile and reach groundwater 

in areas with an intrinsic vulnerability by ranking different illegal dumpsites to their degree of hazard. 

For dumpsites characterized by a high degree of hazard, it would be necessary to propose actions aimed 

at mitigating their environmental impact. When investigating the risk of groundwater pollution due to 

the presence of illegal dumpsites, the system should be able to indicate the dumpsites in which we should 

concentrate efforts to mitigate or reduce the environmental impact. The evaluation of the pollution risk 

index, in fact, allowed us a classification of risk for a subsequent detailed planning of investigations for 

each site. The comparison of the two methods showed that the two obtained distributions of the results 

are congruent. This is confirmed by the similar values obtained for variances and standard deviations. 

The spatial distributions show that the two methods give very similar results. Besides, an analysis of the 

histograms representing the percentage of aquifers falling in different classes of risk, obtained by 

applying fuzzy logic and score and weight methods, show that the fuzzy logic has a distribution that 

moves at higher risk classes compared to the score and weight method. 

The fuzzy method, unlike the traditional score and weight method, does not require a deep knowledge 

of the phenomenon and can be used by a non-expert in a screening context to better understand aquifer 
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vulnerability for decision-making purposes. Moreover, this fuzzy method is transferable to other regions 

and other geology. This is very useful when it is necessary to make a broad classification of very 

numerous contaminated sites in order to decide which of them require immediate characterization and/or 

remediation procedures and which of them do not have characteristics of serious contamination hazard. 

The most important limitation of the model is that it is not possible to calculate an absolute value of 

pollution risk, but it is only possible to classify dumpsites in a hazard scale. 
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