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Abstract: Water temperature is a critical variable for water quality control and management. 

The primary objective of this paper was to develop and compare simple methods to estimate 

hourly water temperatures in rivers. The wave function (WF) model, originally used to 

calculate hourly air temperature, was modified and applied to eight Alabama rivers.  

The results show significant improvement by using the modified WF model instead of direct 

linear and non-linear (polynomial and logistic) regression models with time lags (4–5 h). 

The average Nash–Sutcliffe coefficient (NS) used to evaluate model accuracy for the eight 

rivers improved from 0.71 for the linear model to 0.89 for the modified WF model with NS 

for most rivers exceeding 0.90. A lumped modified WF model was also developed by 

combining water temperature data for all eight rivers and can be applied for rivers in 

Alabama when no observed water temperatures are available to develop a site-specific WF 

model. The procedure to develop a modified WF model can be applied to other regions. 

Keywords: water temperature; streams/rivers; air temperature; wave function model; 

regression model; logistic model 

 

1. Introduction 

In investigating water quality and biotic conditions of rivers, water temperature has both economic 

and ecological significance [1]. It is an important indicator to determine the overall health of aquatic 
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ecosystems [2]. Water temperature plays a significant role in the ecology, not least for water quality 

control and management and hence for compliance with environmental regulations [3]. Natural 

processes or human activities such as industrial production, deforestation and climate change would 

affect the water temperatures [1]. Climate change has been identified as an important source of 

temperature disturbance on a large to global scale [4,5]. For instance, global warming has the potential 

to alter fish habitat in streams by direct warming of the water [5]. 

To predict/estimate river temperature, air temperature is not the only physical parameter influencing 

water temperature. Other parameters of influence are solar radiation, relative humidity, wind speed, 

water depth, groundwater inflow, artificial heat inputs, and thermal conductivity of the sediments [6,7]. 

Streams affected by impoundments, reservoirs, and/or artificial heat inputs produce poor correlations 

between stream water temperature and air temperature [8]. Discharge has a stronger and sensitive 

influence in accounting for water temperature from the air temperature, and multiple regression analysis 

also revealed water temperature to be inversely related to discharge proportional to catchment size and 

time scales [9]. Spatial gradients of stream temperatures are correlated with the parameters of the logistic 

model between water and air temperatures [3]. Groundwater inputs can affect the parameters from the 

linear or non-linear regression model for the stream/air temperature [3,8]. Many influencing factors are 

involved, which can generally be classified into four different groups: (i) Atmospheric conditions;  

(ii) Topography; (iii) Stream discharge; and (iv) Streambed [1]. Atmospheric conditions are among  

the most important factors and are mainly responsible for the heat exchange processes at the air/water  

interface [1]. Several numerical heat budget models of different complexities have been developed to 

predict stream water temperatures [10–12]. Meteorological data required for such models are often not 

available for small streams, or the effort necessary to acquire them may be substantial [13]. It is therefore 

useful to develop an approximate and simple relationship between monthly, weekly, daily or hourly air 

and water temperatures [6]. 

There are many models for predicting/estimating water temperature that are classified into three groups: 

Regression, stochastic and deterministic models [14–17]. Linear regression models have been used to 

estimate water temperature using only air temperature for mostly weekly and monthly data as the input 

parameter [18–23]. Studies have shown that as the time scale increases (daily, weekly, monthly, and 

annually), the model will be more accurate and reliable in estimating water temperatures [6,8,9,13,24]. The 

logistic regression model has been recently and widely used to estimate river water temperature [3,25–29]. 

Morrill et al. [28] evaluated the general temperature relationships (both linear and nonlinear) in 43 river 

and stream sites in 13 countries and indicated that the air/water temperature relationship is better fitted 

with non-linear regression. A stochastic modelling technique often involves separating the water 

temperature time series into two components, namely the long-term annual component (annual cycle) 

and the short-term component [17,30]. The stochastic model is not often used because it is relatively 

complex compared with regression models. Deterministic models employ an energy budget approach to 

predict river water temperature [15,31,32]. In addition, Cho and Lee [33] present a newly developed 

model of the relationship between daily air and water temperature that was constructed on the basis of 

harmonic analysis. 

Most of the previous studies focus on the daily, weekly or monthly relationship between air and  

water temperatures [8,9,13,25,29], but there is no simple or accurate model to estimate hourly water 

temperature in streams. Meteorological data required for deterministic models are often not available. 
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The primary objective of this paper was to identify a simpler method to estimate hourly water temperature 

from air temperature. Because estimated hourly water temperatures in streams can be used to calculate 

saturated dissolved oxygen concentrations over diurnal cycles and determine temperature-dependent 

chemical and biological reaction rates [34] for water quality control and management study, they can be 

used as temperature boundary conditions of small inflow streams for one-, two-, and three-dimensional  

(1-D, 2-D, and 3-D) hydrodynamic and water quality models, e.g., 1-D HEC-RAS temperature  

model [35], 2-D longitudinal/vertical water quality and hydrodynamic model (CE-QUAL-W2) [36], and 

3-D Environmental Fluid Dynamics Code (EFDC) [37]. The wave function (WF) model [38], originally 

used to calculate hourly air temperature, was modified and applied to eight Alabama rivers (Table 1). 

Estimated water temperatures were compared with measured temperatures and estimates from the direct 

linear and non-linear (polynomial and logistic) regression models to quantify model accuracy. 

Table 1. Location, distance to Birmingham International Airport (BHM, Table 2), data 

period, mean, minimum and maximum hourly measured water temperatures of eight river 

stations in Alabama, USA. 

River Station 
Location Distance to 

BHM (km) 

Data Period 
Water  

Temperature (°C) 

Lat. Long. From To Mean Min. Max. 

Coosa River at  

State Line, AL/GA 
34°12'06" 85°26'51" 135.1 

1 October 

2007 

25 September 

2013 
19.50 4.20 35.30 

Kelly Creek  

near Vincent, AL 
33°26'51" 86°23'13" 30.8 

7 December 

2008 

25 September 

2013 
17.56 1.00 30.60 

Yellowleaf Creek  

near Westover, AL 
33°19'14" 86°29'43" 32.2 

7 December 

2008 

25 September 

2013 
16.68 0.00 31.30 

Tallapoosa River near  

Montgomery, AL 
32°26'23" 86°11'44" 132.9 

1 October 

2007 

25 September 

2013 
18.66 5.40 31.70 

Cahaba River near  

Whites Chapel, AL 
33°36'13" 86°32'57" 13.9 

9 August 

2011 

25 September 

2013 
18.21 5.30 31.40 

Little Cahaba River  

below Leeds, AL 
33°32'04" 86°33'45" 12.2 

17 October 

2008 

25 September 

2013 
17.53 4.50 27.30 

Cahaba River near  

Hoover, AL 
33°22'09" 86°47'03" 23.0 

1 October 

2007 

25 September 

2013 
18.24 1.30 32.80 

Sipsey Fork near  

Grayson, AL 
34°17'07" 87°23'56" 103.9 

13 April  

2012 

25 September 

2013 
17.08 4.30 30.80 

Note: Lat.: latitude; Long.: longitude; Min.: minimum; Max.: maximum; AL/GA: at the Alabama (AL) and 

Georgia (GA) state line. 

Table 2. The information of two weather stations used in the study. 

Air Temperature 

Station 

Location Data Period Air Temperature (°C) 

From To From To Mean Min. Max. 

Birmingham 

International Airport 
33°33'36" 86°41'24" 

1 October 

2007 

25 September 

2013 
17.47 −11.11 39.44 

Montgomery  

Regional Airport 
32°18'00" 86°24'36" 

1 October 

2007 

25 September 

2013 
18.59 −9.44 38.89 
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2. Materials and Methods 

2.1. Models of Calculating Hourly Water Temperature 

In this study, three regression models (linear, polynomial, and logistic) and the modified WF model 

were investigated to determine the model accuracy used to calculate hourly water temperature in a river 

from hourly air temperature. Linear regression model is the simplest regression model shown as Equation 

(1), which was used in many previous studies for daily or weekly temperature regressions [8,13];  

the polynomial regression model uses the second order polynomial defined by Equation (2): ( ) = ∙ ( ) +  (1)( ) = ∙ ( ) + ∙ ( ) +  (2)

where Tw(t) is hourly water temperature; Ta(t) is hourly air temperature with or without lag; a, b, c, d and 

f are regression coefficients. Water temperatures calculated from the linear model follow diurnal 

variations of hourly air temperatures. The coefficients a and b in Equation (1) are scale and translation 

parameters. When the polynomial regression model is used, the scale and translation from air 

temperature to water temperature are non-linear. 

The logistic regression model has been used over the last few decades to develop air and water 

temperature relationships [25], and it is a four-parameter model defined using Equation (3): = + −1 + ( ) (3)

where μ (°C) is a coefficient that estimates minimum water temperature, α (°C) is a coefficient that 

estimates maximum water temperature, γ (dimensionless) represents the steepest slope (inflection point) 

of the logistic Tw function when plotted against Ta, and β (°C) is air temperature at the inflection point. 

The diurnal variations of water temperature curves are the combination of periodic sine and exponential 

decay functions [38]. WF model was initially presented by De Wit [39], and Reicosky et al. [38] used the 

WF to estimate hourly air temperatures using daily maximum and minimum air temperatures as input. 

It was obtained from the subroutine WAVE in ROOTSIMU V4.0 by Hoogenboom and Huck [40].  

In this study, the WF as the fourth model (method) was used to estimate hourly water temperatures in  

a river using daily maximum and minimum water temperatures as input. 

To predict hourly air temperatures, Reicosky et al. [38] assume that maximum air temperature is  

at 14:00 h and minimum air temperature is at sunrise in each day. Considering the time lag of water 

temperatures from air temperatures [13], times of maximum and minimum water temperatures should 

be set differently from times for maximum and minimum air temperatures. Table 3 gives statistical 

summary (including minimum, 25 percentile, median, 75 percentile, maximum, average and standard 

deviation) of times or hours of maximum and minimum water temperatures occurred in each day in  

the eight rivers (Table 1) used in this study. The average time of maximum water temperatures for the eight 

rivers is 16:19, which is same as statistical results of the time of daily maximum water temperature being 

between 16:00 and 17:00 in 122 stream-temperature data logger sites in the Great Lake basin, Ontario, 

Canada [41]. The average time of minimum water temperatures is 08:03. The sunrise and sunset at BHM 

from 1 October 2007 to 25 September 2013 were calculated day by day; it was found that the mean 

sunrise (given in Table 3) and sunset for the eight rivers are 05:42 and 17:52, respectively. Therefore, 
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the modified WF method assumes the maximum river temperature is at 16:00 and the minimum river 

temperature is at the sunrise plus 2 h. 

Table 3. Statistical summary of hours of maximum and minimum water temperatures and 

calculated sunrise occurred in each day at eight river stations. 

(1) Hours of Observed Daily Maximum Water Temperatures 

Statistical  

Parameter 
Coosa Kelly Yellowleaf Tallapoosa Cahaba_Whites 

Little  

Cahaba 
Cahaba_Hoover 

Sipsey 

Fork 

Minimum 6 7 9 5 10 7 5 11 

0.25 Percentile 14 16 15 16 15 16 16 15 

Median 16 17 16 17 16 16 17 16 

0.75 Percentile 17 18 17 18 17 17 17 16 

Maximum 21 21 20 21 20 21 20 19 

Average 15.70 17.23 16.15 16.54 15.98 16.36 16.57 16.00 

STDEV a 2.06 1.76 1.26 1.83 1.18 1.56 1.67 1.12 

(2) Hours of Observed Daily Minimum Water Temperatures and Calculated Sunrise 

Statistical  

Parameter 
Coosa Kelly Yellowleaf Tallapoosa Cahaba_Whites 

Little  

Cahaba 
Cahaba_Hoover 

Sipsey 

Fork 

Minimum 5 5 5 5 5 5 5 5 

0.25 Percentile 7 8 7 7 7 7 7 8 

Median 8 8 8 8 8 8 8 8 

0.75 Percentile 9 9 8 8 8 8 9 9 

Maximum 17 15 17 17 18 17 19 17 

Average 8.07 8.50 7.81 7.85 7.84 7.85 8.20 8.27 

STDEV 2.12 1.14 1.11 1.45 1.18 1.30 1.45 1.18 

Calculated 

Average Sunrise 
5.69 5.71 5.67 5.70 5.66 5.68 5.70 5.47 

Notes: a STDEV stands for the standard deviation from mean (average). STDEV =	 	∑ ( − ) , where 

xi is  the observed value, n is the number of observed values, and 	is the mean value of the observations. 

For the modified WF model based on the WF used in previous studies [38–40], the intervening 

temperatures at time H hour (0:00 to 24:00 h) are calculated from the following equations: 

For 0 ≤ H < (RISE + 2) and 16:00 h < H ≤ 24:00 h 

TW(H) = TWAVE + AMP (cos (π H'/(10 + RISE))) (4)

For (RISE + 2) ≤ H ≤ 16:00 h 

TW(H) = TWAVE − AMP (cos (π ((H – RISE – 2)/(16 − RISE − 2))) (5)

where RISE is the time of sunrise in hours in each day and TW(H) is the water temperature at time  

H hour, H' = H + 8 if H < (RISE + 2), H' = H − 16 if H > 16:00 h, and TWAVE and AMP are defined as 

TWAVE = (TWMIN + TWMAX)/2 as daily mean temperature and AMP = (TWMAX − TWMIN)/2 as temperature 

amplitude, respectively. TWMAX and TWMIN are estimated daily maximum and minimum water 

temperatures from logistic regressions using daily maximum and minimum air temperatures as input. 
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In order to have a smooth transition of hourly water temperature from one day to the next day,  

the modified WF method uses the information of TWMAX and TWMIN in the previous day. If the daily maximum 

temperature TWMAX(i) compared with the previous day TWMAX(i-1) increased more than 2 °C or dropped more 

than 3 °C, then the model substitutes TWMAX(i) with the average value (TWMAX(i) + TWMAX(i-1))/2; Otherwise, 

TWMAX(i) estimated from the logistic regression model is used directly. The same procedure is used for 

determining the daily minimum temperature TWMIN(i) for applying Equations (4) and (5). The proposed 

procedure is justified that the daily maximum and minimum water temperatures in a river do not increase 

or decrease rapidly due to high specific heat of water as the daily maximum and minimum air 

temperatures do when a cold or warm front occurs. No more than 2 °C increase and 3 °C drop on TWMAX 

and TWMIN were determined in this study using sensitivity analysis. 

Reicosky et al. [38] compared four WF models to estimate hourly air temperature from daily maxima 

and minima, and the WF model (Equations (4) and (5)) is the simplest one, but Reicosky et al. (1989) 

concluded that the simple WF model is the best model indicated in the 4-year average statistics of error 

parameters. Other WF models not only are more complex but also require more input data (e.g., daily 

solar radiation). 

2.2. Model Error Parameters 

To compare the model accuracy against observed hourly water temperatures for the above four 

methods, three model error parameters were used (Tables 4–6). The mean absolute error (MAE) and the 

root mean square error (RMSE) are defined as: = 1 | − | (6)

= ∑ ( − )
 (7)

where  is estimated hourly water temperature at i hour,  is observed hourly water temperature 

at the same time, and n is the number of pairs of hourly estimated and observed water temperatures at a 

stream monitoring station (n for each river station is given in Tables 4 and 6). 

To find the goodness of fit for each method, the Nash-Sutcliffe model efficiency coefficient (NS) [42] 

was also used and defined in Equation (8). NS has a maximum value of unity and no minimum. An NS 

equal to 1 represents a perfect model efficiency. = 1 − ∑ −∑ −  (8)

where  is mean value of the observed water temperatures. NS = 0 indicates that the model predictions 

are as accurate as , whereas NS < 0 indicates that  is a better predictor than the model. 
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Table 4. Statistical error parameters for linear, polynomial, and logistic regression models between hourly water temperatures and hourly air 

temperatures in eight rivers. 

Coosa  
(51,365) a 

Without  
Lag Linear

With 4-Hour Lag Cahaba_Whites 
(17,755) 

Without  
Lag Linear

With 4-Hour Lag 

Linear Polynomial Logistic Linear polynomial Logistic

MAE (°C) 3.98 3.93 3.82 3.81 MAE (°C) 2.75 2.51 2.44 2.35 
RMSE (°C) 4.85 4.78 4.68 4.68 RMSE (°C) 3.34 3.06 2.99 2.93 

NS  0.63 0.64 0.65 0.65 NS 0.73 0.77 0.78 0.79 

Kelly  
(40,198) 

Without  
Lag Linear

With 4-Hour Lag Little Cahaba  
(41,809) 

Without  
Lag Linear

With 4-Hour Lag 

Linear Polynomial Logistic Linear Polynomial Logistic

MAE (°C) 3.12 2.90 2.88 2.84 MAE (°C) 1.79 1.55 1.55 1.51 
RMSE (°C) 3.82 3.57 3.52 3.51 RMSE (°C) 2.19 1.92 1.91 1.88 

NS 0.70 0.74 0.75 0.75 NS 0.79 0.84 0.84 0.85 

Yellowleaf  
(45,044) 

Without  
Lag Linear

With 4-Hour Lag Cahaba_Hoover 
(51,042) 

Without  
Lag Linear

With 5-Hour Lag 

Linear Polynomial Logistic Linear Polynomial Logistic

MAE (°C) 2.98 2.77 2.73 2.73 MAE (°C) 3.18 2.96 2.91 2.92 
RMSE (°C) 3.66 3.41 3.36 3.36 RMSE (°C) 3.89 3.63 3.56 3.58 

NS 0.72 0.76 0.77 0.77 NS 0.72 0.76 0.77 0.76 

Tallapoosa  
(49,790) 

Without  
Lag Linear

With 5-Hour Lag Sipsey Fork  
(12,140) 

Without  
Lag Linear

With 4-Hour Lag 

Linear Polynomial Logistic Linear Polynomial Logistic

MAE (°C) 2.95 2.82 2.77 2.77 MAE (°C) 2.71 2.33 2.28 2.17 
RMSE (°C) 3.58 3.42 3.38 3.38 RMSE (°C) 3.27 2.88 2.81 2.73 

NS 0.67 0.69 0.70 0.70 NS 0.74 0.80 0.81 0.82 

Note: a the number inside the brackets after the river name is number of data pairs for each river, MAE is the mean absolute error, RMSE is the root mean square error, and 

NS is Nash-Sutcliffe coefficient. 
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Table 5. Statistical error parameters of logistic regression models between daily mean, 

maximum and minimum water temperatures and corresponding air temperatures in eight rivers. 

Coosa Mean-Temp a Max.-Temp b Min.-Temp b Cahaba_Whites Mean-Temp Max.-Temp Min.-Temp 

MAE (°C) 3.10 (3.87) 3.25 3.28 MAE (°C) 1.70 (2.63) 1.89 1.89 

RMSE (°C) 3.89 (4.90) 4.08 4.20 RMSE (°C) 2.20 (3.32) 2.42 2.45 

NS 0.76 (0.62) 0.75 0.71 NS 0.88 (0.73) 0.86 0.84 

Kelly Mean-Temp Max.-Temp Min.-Temp Little Cahaba Mean-Temp Max.-Temp Min.-Temp 

MAE (°C) 2.14 (3.13) 2.54 2.19 MAE (°C) 1.09 (1.76) 1.30 1.23 

RMSE (°C) 2.79 (3.93) 3.21 3.01 RMSE (°C) 1.39 (2.19) 1.68 1.62 

NS 0.84 (0.68) 0.80 0.80 NS 0.91 (0.79) 0.88 0.89 

Yellowleaf Mean-Temp Max.-Temp Min.-Temp Cahaba_Hoover Mean-Temp Max.-Temp Min.-Temp 

MAE (°C) 2.21 (3.03) 2.60 2.23 MAE (°C) 2.18 (3.17) 2.54 2.29 

RMSE (°C) 2.74 (3.77) 3.25 2.91 RMSE (°C) 2.82 (4.00) 3.28 3.09 

NS 0.84 (0.71) 0.80 0.82 NS 0.85 (0.71) 0.81 0.81 

Tallapoosa Mean-Temp Max.-Temp Min.-Temp Sipsey Fork Mean-Temp Max.-Temp Min.-Temp 

MAE (°C) 2.26 (2.90) 2.36 2.39 MAE (°C) 1.60 (2.55) 2.13 1.56 

RMSE (°C) 2.79 (3.60) 2.99 3.05 RMSE (°C) 1.98 (3.19) 2.67 2.07 

NS 0.79 (0.66) 0.78 0.74 NS 0.90 (0.75) 0.85 0.88 

Notes: a Regression model between daily mean water and air temperatures, and numbers inside brackets are 

corresponding error parameters for using daily mean regression model to estimate hourly water temperatures 

using hourly air temperatures as input; b Regression models between daily maximum or minimum water and 

air temperatures, and these logistic models are used to estimate daily maximum and minimum water 

temperatures for the modified wave function model. 

Table 6. Statistical error parameters for individual and lumped WF models in eight rivers. 

Individual WF Models Coosa Kelly Yellowleaf Tallapoosa Cahaba_Whites Little Cahaba Cahaba_Hoover Sipsey Fork 

n 51,345 40,191 45,024 49,771 17,736 41,789 51,023 12,120 

MAE (°C) 2.68 1.73 1.80 2.01 1.46 1.03 1.73 1.42 

RMSE (°C) 3.32 2.24 2.26 2.51 1.80 1.30 2.25 1.79 

NS 0.83 0.90 0.89 0.84 0.92 0.93 0.91 0.92 

Lumped WF Model Coosa Kelly Yellowleaf Tallapoosa Cahaba_Whites Little Cahaba Cahaba_Hoover Sipsey Fork 

n 51,345 40,191 45,024 49,771 17,736 41,789 51,023 12,120 

MAE (°C) 3.21 1.90 2.25 2.08 1.57 1.61 2.00 2.43 

RMSE (°C) 3.87 2.46 2.84 2.57 2.00 1.97 2.44 3.00 

NS 0.76 0.88 0.83 0.83 0.90 0.83 0.89 0.78 

Notes: n is the number of data pairs for each river, MAE is the mean absolute error, RMSE is the root mean 

square error, and NS is Nash-Sutcliffe coefficient. 

2.3. Study Area and Available Data 

In this study, water temperatures observed at eight river monitoring stations and air temperatures  

at two airports in Alabama (AL), USA (Figure 1), were used to investigate accuracy of above models  

for calculating hourly water temperature in a river from hourly air temperature. Hourly water  

temperature data at each real-time monitoring station were obtained from U.S. Geological Survey 
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(http://www.usgs.gov/). Hourly air temperature was a part of meteorological data from BHM and 

Montgomery Regional Airport (MGM) obtained from the Southeast Regional Climate Center (SRCC) of  

the National Oceanic and Atmospheric Administration (NOAA). Table 1 lists the longitude and latitude of 

each station, the distance from the station to BHM, the data period, and water temperature statistical 

parameters (mean, maximum and minimum values). There is no seasonal freezing of all rivers studied. 

 

Figure 1. Geographic location of the study area and the locations of water temperature and 

weather stations used for the study. 

In the study region (AL), BHM is surrounded by these eight river monitoring stations. MGM is 

relatively far away from most river temperature monitoring stations. Therefore, the study mainly focused 

on developing and comparing models between water temperatures at the eight river temperature 

monitoring stations and air temperatures at BHM (Figure 1). The shortest distance between BHM and the 

river temperature monitoring stations is 12.16 km for Little Cahaba River below Leeds, AL (Table 1).  

The longest distance is 135.12 km for Coosa River. Most of the distances are from 12 to 32 km, except 

that Coosa River, Tallapoosa River, and Sipsey Fork are 100 km or more away from BHM. 
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3. Results and Discussions 

3.1. Calculated Hourly Water Temperature from Hourly Water-Air Regression 

Figure 2 shows a time-series plot of hourly water temperature of the Cahaba River near Whites 

Chapel, and hourly air temperature at Birmingham International Airport (BHM, airport code) from  

1 to 12 August 2012. The distance between two monitoring stations are 13.9 km. Figure 2 shows typical 

water temperature response to air temperature during the day and night. Water temperature variations 

have a lagged response behind air temperature fluctuations. For the Cahaba River near Whites Chapel, 

the lag was about 4 h. Therefore, lag time was used in the three regression models to investigate which 

model accuracy improvement the lag time can have. 

 

Figure 2. Time-series of observed hourly water temperature of Cahaba River near  

Whites Chapel, AL and hourly air temperature at Birmingham International Airport from  

1 to 12 August 2012. 

Figure 3a,b show graphic examples of linear, polynomial and logistic regression models between 

hourly water temperatures in Cahaba River near Whites Chapel (abbreviated as Cahaba_Whites in 

Tables and Figures hereafter) and Sipsey Fork and hourly air temperatures at BHM. For these two rivers, 

a 4 h lag was incorporated for these regressions. For all eight streams, the linear regression models with 

time lags (4–5 h) are consistently but only slightly better than the regression model without time lag 

(Table 4). The NS improves by 0.01 at Coosa River and 0.06 at Sipsey Fork. The average improvement 

of RMSE for linear regression with time lag is about 0.3 °C (Table 4). Stefan and Preud’homme [13]  

had similar results of using lag times for regression models between daily water and air temperatures. 

They used a time lag, ranging from four hours to seven days depending on the depth of the stream and 

determined that introducing a lag time had an effect only for major rivers and improved the predictions 

by 0.5 °C or less. 
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Figure 3. Hourly water−air temperature regressions of linear, polynomial and logistic 

models for (a) Cahaba River near Whites Chapel and (b) Sipsey Fork. Scatterplot for 

estimated hourly water temperatures from hourly logistic regression versus observed hourly 

water temperatures at (c) Cahaba River near Whites Chapel and (d) Sipsey Fork. 

The physical interpretation of the water-air temperature relationship [26] shows that linear extrapolations 

to high and low air temperatures are not justified. Figure 3 shows that polynomial and logistic regression 

lines are closer to the data but depart from linear regression as air temperature exceeds 30 °C and falls 

below 5 °C in Cahaba River near Whites Chapel and Sipsey Fork. The logistic regression models fitted 

better to hourly data than the linear model did for high and low temperatures, and the polynomial 

regression models fitted better to hourly data for lower temperatures only (Figure 3). 

Figure 3c,d show scatterplot for estimated hourly water temperatures from logistic regression  

models versus observed hourly water temperature in Cahaba River near Whites Chapel and Sipsey Fork. 

NS values are 0.79 and 0.82, respectively. Using time lag, the polynomial and logistic models for hourly 

water−air temperature regressions have slightly smaller MAE and RMSE and slightly larger NS, 

compared with linear regression models (Table 4). The average NS values of polynomial and logistic 

methods for eight rivers are both 0.76. The average MAE and RMSE are 2.7 and 3.3 °C for both methods. 

The NS for individual rivers improved only 0.01 or 0.02 from the linear model with time lag. MAE and 

RMSE decreased up to 0.16 and 0.13 °C, respectively. Therefore, the logistic models for eight rivers are 

only slightly better than the linear model and are the same as polynomial models, but regression 

parameters for logistic regression models have more meaningful interpretations. Further improvement 

of estimation from hourly air temperature to hourly water temperature is necessary.  
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3.2. Calculated Hourly Water Temperature from Daily Temperature Regression 

Webb [43] observed that water-air temperature relationships become more scattered and less  

reliable as the time period over which the data are averaged becomes shorter. Studies have shown that 

as time scale increases (daily, weekly, monthly), the regression of water and air temperature improved 

significantly [6,9,13,29]. Therefore, logistic regression models between daily mean water and air 

temperatures were also developed for the eight rivers in AL. Figure 4a,b show graphic results of daily 

logistic regression models for two river stations. Daily regression models have smaller MAE and RMSE, 

and larger NS shown in Table 5 under the column “Mean-Temp” (numbers outside brackets) in 

comparison to statistical error parameters of hourly regression models shown in Table 4. 

 

Figure 4. Daily water-air temperature regressions of logistic models in (a) Cahaba River 

near Whites Chapel and (b) Sipsey Fork. Scatterplot for estimated hourly water temperatures 

from daily logistic regression versus observed hourly water temperatures in (c) Cahaba River 

near Whites Chapel and (d) Sipsey Fork. 

Before we discovered hourly observed water temperatures in eight rivers, the daily regression model 

from Pilgrim et al. [6] was used to estimate hourly water temperatures for small rivers to provide 

temperature boundary conditions for the 3-D EFDC modeling studies. What are model accuracies of 

using the daily regression models to estimate hourly water temperatures for each river? Figure 4c,d show 

two examples: Estimated hourly water temperatures from daily logistic regression models versus 

observed hourly water temperatures in Cahaba River near Whites Chapel and Sipsey Fork. NS for hourly 
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estimations using daily regression models reduces from 0.88 (daily) to 0.73 (number inside brackets under 

“Mean-Temp” in Table 5) for Cahaba River near Whites Chapel and from 0.90 to 0.75 in Sipsey Fork.  

The same situation happened for all other rivers (Table 5) due to the daily mean air temperature not being 

able to reflect temperature fluctuation during the day and night. After comparing error parameters in  

Tables 4 and 5 for hourly estimations using daily regression models NS values for eight rivers are only slightly 

smaller than NS values from direct hourly regression models (Table 4), and MAE and RMSE (Table 5) are 

only slightly larger. This shows that the hourly direct logistic models (Table 4) are not significantly better 

than daily regression models (Table 5) when they are used to estimate hourly water temperatures. 

3.3. Calculated Hourly Water Temperature from Modified Wave Function Model 

To improve model accuracy estimating hourly water temperatures, the modified WF model was 

investigated. Figure 5a,b show graphic results of logistic regression models between daily maximum and 

minimum water temperatures (TWMAX and TWMIN) in Cahaba River near Whites Chapel and daily 

maximum and minimum air temperatures (TAMAX and TAMIN) at BHM. TWMAX and TWMIN are input 

parameters for the modified WF model presented by Equations (4) and (5). The NS values for daily 

maximum and minimum temperature regression models range from 0.75 (Coosa) to 0.88 (Little Cahaba) 

and from 0.71 to 0.89, respectively, for eight Alabama rivers (Table 5). These NS values are larger than 

NS values for direct hourly regression models (Table 4). 

Figure 5c shows a scatterplot for estimated hourly water temperatures from the modified WF  

model versus observed hourly water temperatures in Cahaba River near Whites Chapel. Comparing with 

Figures 3c and 4c, data pairs on Figure 5c are much less scattered (closely distributed around 1:1 line). 

The NS is 0.92, that is, 0.15 larger than NS for the linear model with time lag in Cahaba River near 

Whites Chapel. Table 6 shows NS values for all eight rivers are all improved a lot by using the modified 

WF model. The NS values range from 0.83 at Coosa River to 0.93 at Little Cahaba (NS for most rivers 

exceeded 0.90). The average NS value for all rivers improved from 0.71 of the linear model to 0.89 of 

the modified WF model. The RMSE reduced from 3.58 to 2.18 °C. In summary, better performance of 

daily maximum and minimum temperature logistic regression models and the modified wave functions 

(Equations (4) and (5)) improved model accuracy in estimating hourly water temperatures in streams. 

Figure 6a,b show a comparison of time-series estimated water temperatures by polynomial, logistic 

and modified WF models with observed water temperatures at Cahaba River near Whites Chapel and 

Sipsey Fork from 19 August to 29 August 2012. Figure 6 shows that direct polynomial and logistic 

models give less accurate estimates of lower temperatures from midnight to early morning. The modified 

WF models have overall better performance to estimate hourly water temperature in comparison to direct 

polynomial and logistic models. 

Figure 7 shows that NS decreases with natural logarithm of the distance from BHM for all rivers 

except Sipsey Fork. Only Sipsey Fork has observed water temperatures for a one-year period. The other 

rivers have more than 2 years of data, and most of them have 5 or 6 years of data. Although the trend in 

Figure 7 is location dependent, it is what one would expect since only hourly air temperatures from BHM 

were used as input to estimate hourly water temperatures at all eight rivers. For NS ≥0.8 extrapolated 

from regression trendline equation, it seems that the distance from the air-temperature station should be 
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less than 350 km. For more accurate estimate of hourly water temperature, using NS ≥0.9, the distance 

from the air-temperature station should be less than 30 km. 

 

Figure 5. (a) Daily maximum and (b) daily minimum water-air temperature regressions using 

logistic model; and (c) Scatterplot for estimated hourly water temperatures from modified WF 

model versus observed hourly water temperatures in Cahaba River near Whites Chapel. 
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Figure 6. Comparison of time-series of estimated hourly water temperatures by polynomial, 

logistic and modified WF models with observed water temperatures at (a) Cahaba River near 

Whites Chapel from 19 August to 29 August 2012 and (b) Sipsey Fork from 30 July to  

9 August 2012. NS values were calculated for all available data (see Table 1, not for above 

ten days). 

 

Figure 7. NS versus distance from the river temperature monitoring station to BHM  

(air temperature data station). 
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3.4. Calculated Hourly Water Temperature from Lumped Modified WF Model 

In this study, the modified WF model was first developed for each river (Tables 5 and 6). Regression 

parameters of logistic models to estimate daily maximum and minimum water temperatures are listed in 

Table 7 for each river. The maximum and minimum water temperature data of eight rivers were also 

combined to develop two lumped logistic regression models (see graphic abstract) as follows: = 1.00 + 36.50 − 1.001 + . ( . ) (9)= 0.10 + 33.00 − 0.101 + . ( . ) (10)

Using Equations (9) and (10), the lumped WF model was applied to calculate hourly water 

temperatures for individual rivers (one example is shown in the graphic abstract). Table 6 shows that the 

lumped WF model has NS values ranged from 0.76 to 0.90 with average NS of 0.84, just slightly less 

than NS values from the modified WF models for individual rivers. The average RMSE is 2.64 °C, which 

is slightly larger than 2.18 °C, the average RMSE from individual WF models. In estimating hourly water 

temperatures, the lumped WF model still performs much better than direct hourly regression models, 

except for Little Cahaba and Sipsey Fork (similar performance). 

Table 7. The parameters of logistic regression models for daily maximum and minimum 

water temperatures in eight rivers. 

River 
Daily Maximum Temperature 

River 
Daily Minimum Temperature 

α (°C) β (°C) γ μ (°C) α (°C) β (°C) γ μ (°C) 

Coosa 35.30 23.67 0.14 5.00 Coosa 32.50 12.11 0.13 4.20 

Kelly 31.01 21.02 0.13 2.50 Kelly 29.50 9.53 0.12 1.20 

Yellowleaf 33.93 22.89 0.12 2.00 Yellowleaf 28.86 10.07 0.11 0.10 

Tallapoosa 32.50 23.11 0.13 6.80 Tallapoosa 31.00 11.67 0.11 5.00 

Cahaba_Whites 31.50 25.76 0.21 10.00 Cahaba_Whites 27.00 12.76 0.17 6.00 

Little Cahaba 27.80 21.02 0.13 7.80 Little Cahaba 25.40 8.97 0.11 4.00 

Cahaba_Hoover 35.00 21.95 0.13 2.90 Cahaba_Hoover 31.50 10.21 0.12 1.20 

Sipsey Fork 31.00 25.38 0.19 6.80 Sipsey Fork 26.50 13.29 0.16 4.40 

Lumped All Rivers 36.50 22.33 0.10 1.00 Lumped All Rivers 33.00 11.26 0.09 0.10 

Notes: α (oC) is a coefficient that estimates maximum water temperature, μ (oC) is a coefficient that estimates 

minimum water temperature, γ (dimensionless) represents the steepest slope (inflection point) of the logistic 

water temperature function when plotted against air temperature, and β (oC) is air temperature at the inflection 

point. The bold parameters were developed using combined water temperature data from all rivers. 

Montgomery Regional Airport (Table 2) is relatively far away from most river monitoring stations 

(Figure 1). Tallapoosa River is the closest one, with a distance of just 25.4 km from Montgomery 

Regional Airport. Taking Tallapoosa River as an example, we redeveloped a modified WF model based 

on the air temperature data from Montgomery Regional Airport and recalculated the error parameters. 

The MAE, RMSE, and NS are 1.99 °C, 2.44 °C, and 0.84, respectively. The model accuracy at Tallapoosa 

River improves only a little bit: RMSE decreased 0.07 °C but there was no change of NS when using the 

air temperature data from Montgomery Regional Airport instead of BHM to develop the modified WF 



Water 2015, 7 1084 

 

 

model (Table 6). Therefore, the modified WF models (both individual and lumped) based on BHM’s air 

temperatures will give us reasonably accurate hourly water temperature estimates for all rivers in 

Alabama. The lumped WF model (Equations (9) and (10), and Table 7) can be applied to other Alabama 

rivers when observed hourly temperatures are not available to develop a site-specific WF model. 

4. Conclusions 

This paper presents a modified WF model to estimate hourly water temperatures in rivers using daily 

maximum and minimum water temperatures as input. The logistic regression models were developed 

and used to estimate daily maximum and minimum water temperatures for the modified WF model from 

daily maximum and minimum air temperatures in each of eight rivers in Alabama, USA. 

The direct linear and non-linear (polynomial and logistic) regression models were also developed to 

compare model accuracy in estimating hourly water temperatures with the modified WF model. These 

regression methods used a time lag of 4 to 5 h for eight rivers. Regression with time lag slightly improved 

hourly water temperature estimates without time lag. The results show significant improvement by using 

the modified WF model instead of direct regression models. The average NS value for eight rivers 

improved from 0.71 of the linear model to 0.89 of the modified WF model, and NS for the most rivers 

exceeded 0.90. The RMSE reduced from 3.58 °C to 2.18 °C. Figure 6 shows the modified WF models 

have overall better performance to estimate hourly water temperature in comparison to direct polynomial 

and logistic models. 

A lumped WF model was also developed by combining all hourly water temperature data from all 

eight rivers. In estimating hourly water temperatures, the lumped WF model still performed much better 

than direct hourly regression models except for Little Cahaba and Sipsey Fork (similar performance). 

The lumped WF model had NS values ranging from 0.76 to 0.90 with average NS of 0.84, just slightly 

less than NS values from the modified WF models for individual rivers. The average RMSE is 2.64 °C 

that is slightly larger than 2.18 °C, the average RMSE from individual WF models. Therefore, the WF 

models (both individual and lumped) based on BHM’s air temperatures can be applied to give us 

reasonably accurate hourly water temperature estimates for all rivers in Alabama when observed hourly 

temperatures are not available to develop a site-specific WF model. The procedure to develop modified 

WF model can be applied to other regions. 
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