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Abstract: Hydrometeorological data are commonly serially dependent and thereby deviate from
the assumption of independence that underlies the Spearman rho trend test. The presence
of autocorrelation will influence the significance of observed trends. Specifically, the positive
autocorrelation inflates Type I errors, while it deflates the power of trend detection in some cases.
To address this issue, we derive a theoretical formula and recommend an appropriate empirical
formula to calculate the rho variance of dependent series. The proposed procedure of the variance
correction for the Spearman rho method is capable of mitigating the effect of autocorrelation on both,
Type I error and power of the test. Similar to the Block Bootstrap method, it has the advantage that it
does not require an initial knowledge of the autocorrelation structure or modification of the series.
In comparison, the capability of the Pre-Whitening method is sensitive to model misspecification
if the series are whitened by a parametric autocorrelation model. The Trend-Free Pre-Whitening
method tends to lead to an overestimation of the statistical significance of trends, similar to the
original Spearman rho test. The results of the study emphasize the importance of selecting a reliable
method for trend detection in serially dependent data.
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1. Introduction

In most cases, statistical analyses of monotonic trends in time series require serially independent
data. However, the underlying stochastic processes behind the hydrometeorological time series
often contain an autocorrelation component, which can strongly affect the statistical significance
of the observed trends. The autocorrelation, also known as “serial dependence”, is ubiquitous in
hydrometeorological processes (evaporation, stream flow, temperature, rainfall, etc.), especially in data
series with sub-annual sampling time scales (i.e., monthly and daily data). Applying a technique that
allows for trend detection of serially dependent hydrometeorological series is particularly important
when trying to detect weak trends in highly variable time series. Furthermore, trend analyses of
serially dependent series often result in an over- or underestimation of the statistical significance of
observed trends. This issue was not always sufficiently addressed by studies that are based on the
widely used nonparametric rank-based Spearman rho trend test (SR) [1–3]. The test is well known
for its suitability for data series that have a skew distribution, are censored, or contain missing data.
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The problem has attracted considerable attention in recent decades, along with an increasing concern
related to the impact of intensifying climate change and human activity on the hydrologic cycle [4–12].

Several approaches were developed in an attempt to address this problem (Kundzewicz and
Robson [13], Khaliq, et al. [14], Sonali and Kumar [15]). Among these efforts, the most widely accepted
and applied approaches are Pre-Whitening (PW), Trend-Free Pre-Whitening (TFPW), Block Bootstrap
(BBS) and Variance Correction (VC).

The PW approach, proposed by von Storch [16], quantifies the autocorrelation component by the
lag-one autoregressive model AR(1). Data are pre-whitened by removing the AR(1) component before
applying trend tests. This method is without a doubt meaningful if the series can be represented by
an AR(1) process; however, the presence of additional trend components will result in this method
falsely removing a portion of a true trend and, by that, reducing the power of the trend test [17].
Moreover, the autocorrelation components are overestimated if the true trend is non-zero. Recognizing
these disadvantages, Bayazit and Önöz [18] suggested that PW is not suitable in the case of large
sample sizes and strong trends. Hamed [19] improved the PW approach by correcting the bias in the
estimation of the lag-one autocorrelation coefficient and carefully selecting the autocorrelation model.

To overcome the adverse interaction between a linear trend component and an AR(1) component,
Yue, et al. [20,21] introduced the TFPW approach. The basic idea of this approach is to preserve the
true slope of linear trends by removing trend components prior to PW before recombining trend
components and trend-free pre-whitened series. Rivard and Vigneault [22] and Blain [23] suggested
that TFPW is suitable for trend detection in negative and positive serially dependent data if slopes
of trends are estimated properly. However, recent studies provided empirical and theoretical proof
that the TFPW is unsuitable to preserve the correct Type I error, which is the only indicator that
can be controlled to prevent a false identification of numerous spurious trends. Some variants of
the TFPW approach were proposed to achieve more accurate Type I errors, such as the iterative
PW procedure [24], the TFPWcu procedure [25], or the Variance Correction Pre-Whitening method
(VCPW) [26].

The BBS approach is based on a subdivision of the time series into several blocks. The data are
serially dependent in each block but independent among the blocks. Based on this approach, the blocks
can be shuffled several times to generate resampled series. Trends are calculated for each resampled
series with the goal of deriving an empirical distribution of the test statistic. Subsequently, the test
statistic of the original series is compared to the empirical distribution to evaluate the significance of the
observed trend. Önöz and Bayazit [27] demonstrated that BBS is a robust choice for detecting trends in
serially dependent data. It neither inflates Type I errors nor deflates the power of the test excessively.
Alternative bootstrapping approaches are phase randomization [28,29] and sieve bootstrap [30]. All of
them have the potential to address the influence of autocorrelation effectively.

Another popular approach to deal with this problem is the Variance Correction (VC) method.
It is based on the finding that positive or negative autocorrelation components inflate or deflate the
variance of the test statistic, even though they might not alter its asymptotic normality [31]. The VC
approach accepts the assumption of serial dependence without prior knowledge of the autocorrelation
structure. It is therefore able to handle higher-order dependences than AR(1) [32]. Hamed [33] recently
derived a theoretical relationship for computing the variance of the SR statistic for serially dependent
data which requires considerable computations. In case of n observations, its calculation requires
large numbers of terms which will be of order n4. The present study aims at deriving an alternative
expression for the same purpose with less computational terms, i.e., n2 pn´ 1q2{4. Based on that,
the new approach would greatly facilitate multisite trend detection studies. In developing this new
method, it is obvious that we need to pay close attention to its capability to correct Type I errors and
the power of the SR test.

The main goal of this study is to adapt the SR test to serially dependent data via the VC method,
an approach which we name Variance Correction Spearman Rho Trend Test (VC-SR). Our study
starts with analyzing the effect of autocorrelation on variance, Type I errors, and power of the
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original SR test. Subsequently, we develop a theoretical formula and suggest an empirical formula as
a practical approximation for computing the variance of the SR statistic that takes into account the
effect of autocorrelation. Based on simulation studies, we demonstrate that the proposed procedure
is effective in mitigating the effect of autocorrelation on both Type I errors and the power of the test.
Finally, we apply the proposed procedure to a real world hydrometeorological time series (potential
evapotranspiration) to investigate its applicability and discuss its limitations.

2. The Influence of Autocorrelation on the Original Spearman Rho Trend Test

2.1. The Original Spearman Rho Trend Test

Given a sample data set of observations of the stochastic process Xi “ x1, x2, ..., xn, Spearman rho
is formulated as:

ρ “ 1´
6

n
ř

i“1
rRi ´ is2

n
`

n2 ´ 1
˘ (1)

where Ri is the rank of the ith observation in the sample of size n, i “ 1, 2, ..., n is the chronological
order of Xi, ρ denotes the linear correlation between the rank series and the chronological order
series. ρ can assume any value between ´1 and +1; positive and negative values indicate upward and
downward trends in the sample data of Xi, respectively. Correspondingly, ρ = 0 indicates the absence
of any trend.

Spearman rho was successfully introduced as a trend test. The null hypothesis H0 is that Xi is
a stationary random process. The basic assumption is that the random variables of Xi at any time are
independent and identically distributed. Under this null hypothesis and assumption, the distribution
of ρ is asymptotically normal for large n with the mean and variance given by:

E pρq “ 0 (2)

var pρq “ 1{ pn´ 1q (3)

The standardized SR statistic ZSR “ ρ{var pρq0.5 follows the standard normal distribution
ZSR „ N p0, 1q. The significance of a trend can be computed by comparing |ZSR| with

ˇ

ˇ

ˇ
Zα{2

ˇ

ˇ

ˇ
, which is

the absolute value of the α{2 quantile of N p0, 1q. If |ZSR| ą
ˇ

ˇ

ˇ
Zα{2

ˇ

ˇ

ˇ
, the null hypothesis is rejected and

the detected trend is statistically significant.

2.2. Rho Variance (Variance of the SR Statistic)

In order to explore how much autocorrelation influences the rho variance, two classic forms,
AR(1) and the lag-one moving average model MA(1), which are commonly used to simulate serially
dependent hydrometeorological data, are generated by Monte Carlo simulations. The AR(1) model
has the form of xi “ µx ` ϕ pxi´1 ´ µxq ` ei, where µx is the mean of xi and ei is the white noise
following normal distribution. It is characterized by an exponentially decaying autocorrelation
function as r piq “ ϕ|i|. The MA(1) model is expressed as xi “ µx ` ei ` θei´ 1. Its autocorrelation
function vanishes beyond the first lag, which is given by rpiq “

!

1, i “ 0; 0, |i| ą 1; θ{p1` θ2q, |i| “ 1
)

.
The magnitude of r(i) is directly proportional to ϕ of AR(1) and θ of MA (1), respectively.

Our experiment simulates 200 data sets with 400 realizations of time series in each set.
Tables 1 and 2 provide the ratio of V(ρ) (the rho variance calculated from simulated series) to var(ρ)
(the rho variance given by Equation (3)), referred to as the variance inflation factor [34] for AR(1) and
MA(1) with different sample sizes and parameters for each model. As can be seen from Tables 1 and 2
positive autocorrelation inflates the rho variance. As a result, var(ρ), which is designed for independent
data, tends to be underestimated. On the other hand, negative autocorrelation reduces the rho variance
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so that var(ρ) is overestimated. Compared to the MA(1) model, the AR(1) model has a much larger
effect on the rho variance due to its slower decaying autocorrelation structure.

Table 1. Variance inflation factor V(ρ)/ var(ρ) for AR(1) model.

n ϕ

´0.9 ´0.6 ´0.3 ´0.1 0 0.1 0.3 0.6 0.9

30 0.14 0.33 0.60 0.84 1.00 1.19 1.70 3.19 7.87
50 0.11 0.31 0.59 0.84 1.00 1.20 1.75 3.46 10.60

100 0.08 0.29 0.58 0.83 1.00 1.19 1.78 3.65 13.91
150 0.07 0.28 0.57 0.83 1.00 1.20 1.80 3.77 15.35

Table 2. Variance inflation factor V(ρ)/ var(ρ) for MA(1) model.

n θ

´0.9 ´0.6 ´0.3 ´0.1 0 0.1 0.3 0.6 0.9

30 0.16 0.26 0.54 0.83 1.00 1.17 1.47 1.78 1.87
50 0.11 0.21 0.51 0.83 1.00 1.18 1.49 1.80 1.90

100 0.08 0.18 0.49 0.83 1.00 1.18 1.50 1.81 1.94
150 0.06 0.17 0.48 0.82 0.99 1.19 1.51 1.84 1.93

2.3. Type I Error and Power of the Test

As a consequence of rho variance inflation (deflation), Type I errors are generally inflated by the
positive and deflated by negative autocorrelation (Figures 1 and 2). Their values equal the pre-assigned
significance level α = 0.05 in the case of independent data only. Different sample sizes do not change
Type I errors considerably.

The effect of autocorrelation on the power of the test is more difficult to trace. As can be seen in
Figure 2, the power does not change monotonically with the autocorrelation. Generally, it is directly
proportional to the autocorrelation while sample sizes are small. As sample sizes increase, the power
gradually changes to be a decreasing function of the autocorrelation. This type of variation holds true
for different combinations of serial standard deviations σx and superimposed slopes of linear trends β
(detailed results omitted here for brevity).
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Figure 1. The effect of autocorrelation on Type І errors (10,000 simulated sample series): (a) AR(1);  
(b) MA(1). 

 
Figure 2. The effect of autocorrelation on the power (10,000 simulated sample series, σx = 0.2,  
β = 0.002): (a) AR(1); (b) MA(1). 

3. The Variance Correction Spearman Rho Trend Test 

Figure 1. The effect of autocorrelation on Type I errors (10,000 simulated sample series): (a) AR(1);
(b) MA(1).
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3. The Variance Correction Spearman Rho Trend Test

3.1. Theoretical Formula for Correcting Rho Variance

Clearly, the original SR test tailored to independent data cannot preserve the same Type I errors
and power in the case of dependent data. The calculated significance of trends can be misleading.
For real hydrometeorological data, the basic assumption of serial independence is invalid. Therefore,
we attempt to re-derive the rho variance expression under the assumption of serial dependence.
More precisely, we assume that data autocorrelation coefficients r(i) exist. In contrast to the original
expression (Equation (3)), the new expression (Equation (8)) can take every lag of data autocorrelation
coefficients into consideration.

By defining C “
n
ř

i,j“1
pRj ´Riq pj´ iq and following standard statistical techniques [1], the rho

variance can be described as follows:

var pρq “
36

n4
`

n2 ´ 1
˘2 E

´

C2
¯

(4)

In the case of independent data with E
´

C2
¯

“ n4 `n2 ´ 1
˘

pn` 1q{36, Equation (4) is reduced to
the commonly used expression, that is, Equation (3). For the sake of incorporating the influence of
autocorrelation, we provide an alternative expression of E(C2) (see Appendix for details), yielding:

E
´

C2
¯

“ 4
n´1
ÿ

i“1

n
ÿ

j“i`1

n´1
ÿ

k“1

n
ÿ

l“k`1

rpj´ iq pl´ kqs
“

E
`

RjRl
˘

´ E
`

RjRk
˘

´ E pRlRiq ` E pRiRkq
‰

(5)

Each expectation in Equation (5) can be formulated similarly according to the definition of rank
autocorrelation as follows:

E pRiRkq “ rs pk´ iqσ pRiqσ pRkq ` E pRiqE pRkq “ rs pk´ iqσ2 pRiq ` E2 pRiq (6)

where rs(k – i) is the rank autocorrelation coefficient with (k – i) lag; σ2(Ri) is the rank serial variance,
its sample estimation is expressed as:

σ̂2 pRiq “
1

n´ 1
ˆ

n
ÿ

i“1

rRi ´ E pRiqs
2
“

n pn` 1q
12

(7)

Substituting from Equations (5)–(7) into Equation (4), we obtain a new expression for rho variance:

varC pρq “
12

n3
`

n2 ´ 1
˘

pn´ 1q

n´1
ÿ

i“1

n
ÿ

j“i`1

n´1
ÿ

k“1

n
ÿ

l“k`1

rpj´ iq pl´ kqs rrs pl´ jq ´ rs pk´ jq ´ rs pl´ iq ` rs pk´ iqs (8)

The rank autocorrelation coefficients rs(i) can be transformed from r(i) based on Equation (9)
while the autocorrelation structure is meta-Gaussian, see [31,32].

rspiq “
6
π
ˆ arcsin

„

rpiq
2



(9)

Using r(i) in Equations (8) and (9), we can calculate the correct rho variance for serially dependent
data. The theoretical formula of Equation (8) bears some resemblance to the earlier expression of the
rho variance estimator accounting for autocorrelation [32]:

varC pρq “
72

πn2
`

n2 ´ 1
˘2

n
ÿ

i“1

n,j‰i
ÿ

j“1

n
ÿ

k“1

n,l‰k
ÿ

l“1

rpi´ 1q pk´ 1qs arcsin

#

r pl´ jq ´ r pk´ jq ´ r pl´ iq ` r pk´ iq
2
a

r1´ r pj´ iqs r1´ r pl´ kqs

+

(10)
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A closer look at these two expressions reveals that the new expression reduces the computational
terms from the order n4 to n2 pn´ 1q2{4. Using the new expression can save around 75% of the
computation time, which would be an important consideration when investigating the significance of
trends for multisite observations.

Figure 3 depicts the accuracy of the rho variance calculation based on the new expression.
The relative bias is calculated by

“

varC pρq ´V pρq
‰

{V pρq, where V(ρ) is the simulated rho variance
generated in Tables 1 and 2. It is evident that the theoretical rho variance fits the simulated value well
for dependent and independent data (ϕ, θ = 0). The majority of cases have a relative bias lower than
5%. In some cases, we observe a downward bias for the theoretical values with small sample sizes and
strong autocorrelation. This bias is related to the fact that the applied estimator of rank serial variance
σ̂2 pRiq, Equation (7), does not consider the influence of autocorrelation. In fact, the autocorrelation
will disturb the randomness of the rank variable Ri as well as the accuracy of its sample estimators.
When data are serially dependent, each data point shares some information with its former points.
As such, the intensified autocorrelation would reduce the number of independent data within the
sample series, leading to biased estimation results. As a result, increasing the sample size is obviously
leading to bias decline. It is noteworthy that the earlier expression, Equation (10), is not strongly
affected by this problem. It achieves a more accurate rho variance for small sample sizes. However,
both the new and earlier expressions perform similarly well with very low biases for sample size in
excess of 100.
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3.2. Empirical Formula for Correcting Rho Variance

The empirical method to approximate the variation of rho variance is introducing effective or
equivalent sample size (ESS). Bayley and Hammersley [35] defined the effective sample size n*, by
equating varC pxq (the variance of the mean estimator in a serially dependent sample of size n) to
var˚ pxq (the variance of the mean estimator in an independent sample of size n*). Specifically,

varCpxq “ var˚ pxq “
σ2

x
n˚
“
σ2

x
n
ˆ

n
n˚
“ var pxq ˆ

n
n˚

(11)

where σ2
x is the variance of xi and var pxq is the variance of the mean estimator in an independent

sample of size n. Bayley and Hammersley [35] found that positive autocorrelation reduces n* (which
is smaller than n) and hence inflates the variance of the mean estimator (and vice versa in case of the
negative autocorrelation). Lettenmaier [36] successfully introduced a similar expression to simulate
the effect of autocorrelation on the rho variance:

varC pρq “ var pρq ˆ n{n˚ “ r1{ pn´ 1qs ˆ n{n˚ (12)

where n* is computed by

1
n˚
“

1
n
`

2
n2 ˆ

n´1
ÿ

i“1

pn´ iq r piq (13)

This function was also suggested by Bayley and Hammersley [35]. Yue and Wang [37] refer to this
type of n* as the BHMLL-ESS and applied it to correct the variance of the Mann Kendall (MK) statistic,
another well-known nonparametric trend test.

For further improvement, Hamed and Rao [31] considered several alternative forms to
Equation (13), and introduced a new function to express n* based on rank autocorrelation coefficients
rs(i), referred to as HMR-ESS:

1
n˚
“

1
n
`

2
n2 pn´ 1q pn´ 2q

ˆ

n´1
ÿ

i“1

pn´ iq pn´ i´ 1q pn´ i´ 2q rs piq (14)

Both BHMLL-ESS and HMR-ESS were applied to correct the variance of the MK statistic for trend
detection in real world streamflow and temperature series [14,15]. It is reasonable to infer that both
approaches have the potential to correct the rho variance, since the SR test performs similarly to the
MK test in the case of independent data [2]. However, it remains unclear which ESS can approximate
the rho variance more accurately. Results derived from the theoretical formula provide a standard
to which we can compare results based on the empirical formula. Based on numerical experiments
(Figure 4), we find that HMR-ESS yields results that are very similar to those of the theoretical formula.
It is superior to BHMLL-ESS for both AR(1) and MA(1) models. Similarly, good performances also
occur for other sample sizes. HMR-ESS, consequently, is recommended as an appropriate empirical
approximation to implement the rho variance correction.
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3.3. Introduction of the Procedure

The procedure of the VC-SR test is outlined as follows.
Step 1. We estimated the linear trend slope β by appropriate methods (e.g., Sen’s slope

estimator [38]) and removed it from the original series. This approach proved to be meaningful
to reduce the overestimation of r(i) in the presence of a linear trend component [21,36].

Step 2. We estimated significant r(i) from the detrended series and corrected the downward bias
of the r(1) estimator as recommended by Salas [39]: rC p1q “ rrp1q ˆ pn` 1qs { rn´ 4s. Other prevalent
bias correction procedures, recently summarized by Serinaldi and Kilsby [25], can also be applied in
this step. Subsequently, the rank autocorrelation coefficients rs(i) were estimated from r(i) based on
Equation (9).

Step 3. We computed the corrected rho variance varC pρq via the theoretical formula, Equation (8),
or the empirical formula, Equation (12), by introducing HMR-ESS, Equation (14).

Step 4. We implemented the SR test based on varC pρq.
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4. Simulation Study

4.1. Simulation Design

To investigate Type I errors and the power of the proposed VC-SR test, we generated 10,000
serially dependent series based on two specific forms of autoregressive-moving average models that
are characterized by a higher than lag-1 dependence, ARMA(1,1) and AR(2). Their expressions are
written by Equations (15) and (16), respectively.

xi “ µx `ϕ pxi´1 ´ µxq ` ei ` θei´1 `βt (15)

xi “ µx `ϕ1 pxi´1 ´ µxq `ϕ2 pxi´2 ´ µxq ` ei `βt (16)

Both of their autocorrelation functions gradually decay in terms of the increasing lags. For the
ARMA(1,1) model, the autocorrelation function is given by

#

r p1q “ p1`ϕˆ θq pϕ` θq{
´

1` θ2 ` 2ϕˆ θ
¯

r piq “ ϕˆ r pi´ 1q , i ě 2
(17)

The autocorrelation function of the AR(2) model is formulated as
$

’

&

’

%

r p1q “ ϕ1{ p1´ϕ2q

r p2q “ ϕ2
1{ p1´ϕ2q `ϕ2

r piq “ ϕ1 ˆ r pi´ 1q `ϕ2 ˆ r pi´ 2q i ě 2
(18)

For ease of interpretation of results, we set ϕ, θ, and ϕ1 to values ranging from ´0.8 to +0.8
simultaneously and simulated series from two models yielding the same values of r(1). As such, the
parameter ϕ2 for the AR(2) model is calculated by ϕ2 “ 1´ϕ1{r p1q. Each of the simulated series has
serial standard deviation σx = 0.2 and sample size n = 50,100; β = 0, 0.002, 0.005, 0.008 represent trend
free series, series with weak, moderate and steep linear trends, respectively.

Type I errors and Power are calculated by the two-sided rejection ratio, which is given by:

Rejection Ratio “ Nrej{10000 “ tType I error,β “ 0; Power,β ‰ 0u (19)

where Nrej is the number of samples that the null hypothesis is rejected by the test. We set the
pre-assigned significance level to 0.05.

The use of empirical formulae and unavoidable sampling errors of the r(i) estimation interfere
with Type I errors and the power of the VC-SR test. In order to highlight this influence, we discuss
simulation results based on three cases. In the first case, we apply the theoretical formula with
a pre-known autocorrelation structure. Every lag of data autocorrelation coefficients r(i) is calculated
based on the specific autocorrelation function. The test is denoted by VC-SRTheo.. For the second case,
we substitute the empirical formula for the theoretical one, and refer to the test as the VC-SRESS+Theo. r

test. We also apply the empirical formula for the third case; however, we follow the procedure that only
significant r(i) are estimated from the detrended series and the initial r(1) estimator are bias corrected.
The test is referred as VC-SRESS+Est. r.

For comparison, we also apply the SR test combined with PW, TFPW, and BBS approaches to each
simulated series and investigate their ability to correct Type I errors and power.

4.2. Type I Error Correction

As expected (Figures 5 and 6), the VC-SRTheo. test, to a large extent, restores the inflationary
(deflationary) Type I errors to a value close to 0.05. The use of the empirical formula does not change
Type I errors considerably. The VC-SRESS+Theo. r test yields almost the same results as the VC-SRTheo.

test for the ARMA(1,1) model. It slightly raises Type I errors to around 0.10 in the case of positive
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autocorrelation for the AR(2) model. Under the influence of sampling errors, the VC-SRESS+Est. r test
loses some abilities: its Type I errors slightly increase with the increasing autocorrelation. It nevertheless
presents a notable effectiveness in mitigating the effect of autocorrelation. For ARMA(1,1) series with
small sample sizes (n = 50) and positive autocorrelation, the test reduces the Type I errors of the original
SR test from the range (0.15–0.50) to (0.08–0.17). Larger sample sizes (compare n = 100 with n = 50) can
further enhance this ability. The BBS-SR test bears some resemblance to the VC-SRESS+Est. r test.

Water 2015, 7, page–page 

11 

loses some abilities: its Type І errors slightly increase with the increasing autocorrelation. It 
nevertheless presents a notable effectiveness in mitigating the effect of autocorrelation. For 
ARMA(1,1) series with small sample sizes (n = 50) and positive autocorrelation, the test reduces the 
Type І errors of the original SR test from the range (0.15–0.50) to (0.08–0.17). Larger sample sizes 
(compare n = 100 with n = 50) can further enhance this ability. The BBS-SR test bears some resemblance 
to the VC-SRESS+Est. r test. 

 

 
Figure 5. Comparison of Type І errors of different Spearman Rho (SR) tests for ARMA(1,1) series:  
(a) n = 50; (b) n = 100. 

 

Figure 5. Comparison of Type I errors of different Spearman Rho (SR) tests for ARMA(1,1) series:
(a) n = 50; (b) n = 100.

Water 2015, 7, page–page 

11 

loses some abilities: its Type І errors slightly increase with the increasing autocorrelation. It 
nevertheless presents a notable effectiveness in mitigating the effect of autocorrelation. For 
ARMA(1,1) series with small sample sizes (n = 50) and positive autocorrelation, the test reduces the 
Type І errors of the original SR test from the range (0.15–0.50) to (0.08–0.17). Larger sample sizes 
(compare n = 100 with n = 50) can further enhance this ability. The BBS-SR test bears some resemblance 
to the VC-SRESS+Est. r test. 

 

 
Figure 5. Comparison of Type І errors of different Spearman Rho (SR) tests for ARMA(1,1) series:  
(a) n = 50; (b) n = 100. 

 
Figure 6. Cont.

7055



Water 2015, 7, 7045–7065Water 2015, 7, page–page 

12 

 

Figure 6. Comparison of Type І errors of different SR tests for AR(2) series: (a) n = 50; (b) n = 100. 

The PW-SR test, which is AR(1)-based in this case, yields systematic under- and over-rejection 
for the ARMA(1,1) and AR(2) model, respectively. This problem is mostly related to the model 
misspecification. Indeed, the ARMA(1,1)- or AR(2)-based PW approach will perfectly preserve stable 
Type І errors as similar to the VC-SRTheo. test. Nevertheless, even a slight change in the model structure 
would interfere with its ideal performance. We take the ARMA(1,1) model as an instance. The AR(1) 
based approach whitens the series according to the r(1) estimator of the ARMA(1,1) model. Since 
parameters ϕ and θ of the ARMA(1,1) model have been designed to change simultaneously from −0.8 
to 0.8 as stated above, we may yield 

( ) ( ) ( )
( )

( )
( )

 
   ×

2ARMA ARMA 2ARMA ARMAAR 1

ARMA ARMA 2 ARMA 2ARMA ARMA

2φ 1+ φ 1- φr 1φ 1= = = 1+ > 1
φ φ φ1+ 3 φ 1+ 3 φ

 (19) 

That means the AR(1)-based approach tends to over-whiten series generated from the 
ARMA(1,1) model, which can explain the under-rejection behavior depicted in Figure 5. Detailed 
results of the influence of the chosen model on the effectiveness of the PW approach can be taken 
from Hamed [19]. 

The TFPW-SR test yields very high Type І errors, which are, in fact, even higher than those of 
the original SR test. This will result in an unexpectedly high probability of detecting non-existent 
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The PW-SR test, which is AR(1)-based in this case, yields systematic under- and over-rejection
for the ARMA(1,1) and AR(2) model, respectively. This problem is mostly related to the model
misspecification. Indeed, the ARMA(1,1)- or AR(2)-based PW approach will perfectly preserve stable
Type I errors as similar to the VC-SRTheo. test. Nevertheless, even a slight change in the model
structure would interfere with its ideal performance. We take the ARMA(1,1) model as an instance.
The AR(1) based approach whitens the series according to the r(1) estimator of the ARMA(1,1) model.
Since parameters ϕ and θ of the ARMA(1,1) model have been designed to change simultaneously from
´0.8 to 0.8 as stated above, we may yield

ϕARp1q

ϕARMA “
r p1qARMA

ϕARMA “
2ϕARMA

”

1`
`

ϕARMA˘2
ı

1` 3
`

ϕARMA
˘2 ˆ

1
ϕARMA “ 1`

1´
`

ϕARMA˘2

1` 3
`

ϕARMA
˘2 ą 1 (20)

That means the AR(1)-based approach tends to over-whiten series generated from the ARMA(1,1)
model, which can explain the under-rejection behavior depicted in Figure 5. Detailed results of the
influence of the chosen model on the effectiveness of the PW approach can be taken from Hamed [19].

The TFPW-SR test yields very high Type I errors, which are, in fact, even higher than those of the
original SR test. This will result in an unexpectedly high probability of detecting non-existent trends.
One reasonable explanation is that the variance of the slope estimator is also inflated by the positive
autocorrelation. Even in the case of stationary series, we will falsely report a considerable number of
nonzero slopes. To reinstall these spurious trends to the pre-whitened series is obviously detrimental
to obtaining correct Type I errors. Another explanation attributes the inflationary Type I errors to the
deflationary variance of residuals after whitening the series. By addressing at least one of these reasons
we expect to effectively restore Type I errors [24–26].

4.3. Power Correction

In terms of power (Figures 7 and 8), all SR tests show similar power for independent data
(ϕ, θ, ϕ1 “ 0); however, their performances with serially dependent data differ considerably. The
power of the VC-SR test and the PW-SR test decrease with increasing autocorrelation. The TFPW-SR
test performs similarly to the original SR test, as their powers fluctuate as the autocorrelation increases.
Their power values increase for series with the weak trends but decrease for series with steep trends.
The BBS-SR test is almost unaffected by autocorrelation when trends are weak (β “ 0.002).

Given that hydrometeorological series are often positively autocorrelated, the VC-SRTheo., the
VC-SRESS+Theo. r and the PW-SR test always rank among all tests with the lowest power. Their ability to
detect a real trend will rapidly decrease as the autocorrelation increases. For example, the probability
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of identifying a significant trend is less than 20% when the slope of the real trend is steep (β “ 0.008)
and the autocorrelation is strong (ϕ, θ, ϕ1 “ 0.8). Although the TFPW-SR test is the most powerful
test, its Type I errors deviate considerably from the pre-assigned significance level, which makes its
high power questionable. The powers of the VC-SRESS+Est. r and the BBS-SR test are comparable; their
performance is somewhat average when compared to other tests. For series with steep trends, their
powers are no less than 50%, even in the case of the strongest autocorrelation.

In light of both Type I errors and power results, we conclude that even though no single test
can thoroughly eliminate the effect of autocorrelation, the VC-SRESS+Est. r and the BBS-SR test are
practical choices since they are capable of keeping relatively accurate Type I errors without significantly
losing power.
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We compare the performance of different SR tests based on annual mean potential 
evapotranspiration records (PET) within the upper Yangtze River basin, which is one of the major 
water and hydropower sources of China. Continuous annual series from 1961 to 2011 are available at 
372 grid points (0.5° spatial resolution) provided by the Climate Research Unit, University of East 
Anglia (CRU TS 3.22 dataset) [40]. The analysis of serial dependence reveals that approximately 58% 
and 28% of grid points yield significantly positive r(1) values based on the original series and 
detrended series, respectively (Figure 9). We therefore expect trend detection results at these grids 
and statements regarding their spatial distribution to be affected by autocorrelation. 
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5. Application

We compare the performance of different SR tests based on annual mean potential
evapotranspiration records (PET) within the upper Yangtze River basin, which is one of the major
water and hydropower sources of China. Continuous annual series from 1961 to 2011 are available
at 372 grid points (0.5˝ spatial resolution) provided by the Climate Research Unit, University of East
Anglia (CRU TS 3.22 dataset) [40]. The analysis of serial dependence reveals that approximately
58% and 28% of grid points yield significantly positive r(1) values based on the original series and
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detrended series, respectively (Figure 9). We therefore expect trend detection results at these grids and
statements regarding their spatial distribution to be affected by autocorrelation.Water 2015, 7, page–page 
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Figure 9. The empirical cumulative distribution of r(1) values estimated from potential 
evapotranspiration (PET) data. 

At the significance level of 0.05, the original SR test suggests that 174 grid points, accounting for 
47% of the total grid points, exhibit significant upward trends. However, this number is greatly 
reduced to 75 (20%) if we require all SR tests to be in agreement. As illustrated in Figure 10, most of 
the grid points with positive trends are located in the southern region of the basin. Applying various 
SR tests yields diverging results for 125 (34%) grid points, most of which are located in the northern 
part of the basin between 98° E and 108° E. The other 172 (46%) grid points, statistically, have not 
changed beyond natural variability. 

 
Figure 10. Trend detection results of annual mean PET data (1961–2011) in the upper Yangtze River basin. 

The different power of each test can be verified by observing the spatial distribution of trend 
detection results (Figure 11). Clearly, the TFPW approach does not substantially correct the results of 
the original SR test. In fact, it even overestimates the significance of upward trends in some areas. All 
other tests mitigate the inflationary significance due to positive autocorrelation more effectively. The 
PW-SR test rejects the existence of trends for most grid points while the VC-SRESS+Est. r and the BBS-SR 
tests yield similar results. The latter suggests that the northern region of the basin between 103° E 
and 108° E experienced positive trends. 

Figure 9. The empirical cumulative distribution of r(1) values estimated from potential
evapotranspiration (PET) data.

At the significance level of 0.05, the original SR test suggests that 174 grid points, accounting
for 47% of the total grid points, exhibit significant upward trends. However, this number is greatly
reduced to 75 (20%) if we require all SR tests to be in agreement. As illustrated in Figure 10, most of the
grid points with positive trends are located in the southern region of the basin. Applying various SR
tests yields diverging results for 125 (34%) grid points, most of which are located in the northern part
of the basin between 98˝ E and 108˝ E. The other 172 (46%) grid points, statistically, have not changed
beyond natural variability.
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Figure 10. Trend detection results of annual mean PET data (1961–2011) in the upper Yangtze
River basin.

The different power of each test can be verified by observing the spatial distribution of trend
detection results (Figure 11). Clearly, the TFPW approach does not substantially correct the results
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of the original SR test. In fact, it even overestimates the significance of upward trends in some areas.
All other tests mitigate the inflationary significance due to positive autocorrelation more effectively.
The PW-SR test rejects the existence of trends for most grid points while the VC-SRESS+Est. r and the
BBS-SR tests yield similar results. The latter suggests that the northern region of the basin between
103˝ E and 108˝ E experienced positive trends.Water 2015, 7, page–page 
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Figure 11. Spatial distribution of trend detection results of PET data: (a) the original SR test; (b) the
TFPW-SR test; (c) the VC-SRESS+Est. r test; (d) the BBS-SR test; (e) the PW-SR test.
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6. Limitations

We need to emphasize that applying the proposed procedure of the VC-SR test with confidence
requires that autocorrelation is limited to short term persistence (STP). Some case studies demonstrated
that accounting for long term persistence (LTP) would decrease the number of significant trends
detected under the assumption of STP [9,41]. If LTP (including trend-like change) is a possible
explanation for natural variability, we may resort to scaling stochastic processes; for example, fractional
Gaussian noise model (FGN) or fractionally differenced autoregressive integrated moving average
model (FARIMA) to represent the series [42,43]. In that case, other parameters, such as the Hurst
exponent and the fractional order of differencing, have to be incorporated into the r(i) estimators.
This will introduce additional sampling errors of estimation. The VC-SR test cannot be readily
utilized for long-term persistent data unless these sampling errors are properly dealt with and the
normality of the Spearman rho is verified. Based on stochastic simulation results of FGN, Hamed [33]
provided an empirical expression to correct the bias of rho variance due to sampling errors of the Hurst
exponent. Furthermore, the exact distribution of Spearman rho converges on the normal distribution
in an acceptable manner, although the speed of convergence, in terms of the increasing sample size, is
slower than for other trend test statistics, such as Kendall’s tau. Further studies are needed to address
Type I errors and the power of the VC-SR test to assess the significance of trends in different scaling
stochastic processes and to provide a practical procedure to differentiate LTP from STP.

Another challenge is related to the fact that hydrometeorological variables commonly deviate
from normal distributions. The null hypothesis of the original SR test is distributional free, implying
that its Type I errors are independent from the data skewness. It is reasonable to infer that the VC-SR
test inherits this merit since it does not impose an additional distributional assumption. However, the
data skewness does change the power of the test. Yue [2] found that the MK test is more likely to detect
significant trends in variables if they are following Pearson Type III or extreme value distributions
rather than normal distributions. If this finding is valid for the VC-SR test, the test would probably
achieve higher power than that shown in the current simulation results, which are generated from
a normal distribution.

7. Conclusions

Our study addresses the influence of autocorrelation on trend analyses, which is often overlooked
in the interpretation of the possible significant trends versus natural random variability. To mitigate
this adverse influence, we developed the Variance Correction Spearman Rho Trend Test. It consists
of two major efforts. Firstly, we derived a theoretical formula to calculate the rho variance that can
account for every lag of data autocorrelation coefficients. Compared with the earlier expression for
the same purpose, the new formula can save around 75% of computation time. Both formulae share
similar accuracy in calculating rho variance under the influence of autocorrelation for large sample
sizes. Secondly, we provide a practical procedure to implement variance correction that only requires
significant lags. Statistical simulation results confirm the satisfactory performance of the proposed
method. It ultimately yields acceptable Type I errors and maintains a relatively strong power of trend
detection. This ability bears much resemblance to the Block Bootstrap method.

Among other techniques, the TFPW approach tends to inflate Type I errors excessively and is
not recommended for serially dependent data. The PW approach is more effective for the correction
of Type I errors and is still a practical choice for trend detection. Users, however, should notice
that its capability is sensitive to model misspecifications if the series are whitened by a parametric
autocorrelation model. Furthermore, the PW approach is actually assessing the significance of deflated
trend slopes.

We conclude that neglecting the effect of autocorrelation or dealing with it without choosing
adequate methods will lead to incorrect results. A first step of a robust trend detection strategy would
be an evaluation of regional characteristics of observations. A second step would lead to selecting
methods with acceptable Type I errors and power, based on a well-tailored simulation study. A final
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step would include a comparison of results of various methods and an interpretation of plausible
underlying physical mechanisms. The proposed VC-SR test is one meaningful option to implement
this strategy.
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Appendix

Technical Details

We present technical details for deriving the new expression of E(C2), Equation (5). For the sake
of simplicity, we define

$
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Based on the null hypothesis that the observations are realizations of a stationary random process,
the rank Ri is independent from the chronological order i. Therefore, aij is also independent from
bij, and

E
´

C2
¯

“ 4
n´1
ÿ

i“1

n
ÿ

j“i`1

n´1
ÿ

k“1

n
ÿ

l“k`1

E
“

bijbkl
‰

E
“

aijakl
‰

(23)

Substituting from Equation (21) into Equation (23), we get
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Because the chronological orders of i, j, k and l are constant once their values are specified, we
may neglect the first symbol of expectation, yielding the form of Equation (5).
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