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Abstract: Orography strongly interacts with the atmospheric circulation, especially during frontal 
events, generating an enhanced spatial variability of the rainfall field. Regional models of extreme 
rainfall have to deal with these circumstances in order to provide good spatial estimation of the 
regionalized variable. We present a model for the regional estimation of the mean of the probability 
distribution of the annual daily rainfall maxima in a region (Campania, Southern Italy) with 
complex orography. In a recent work, we found that areas with enhanced variability of extreme 
rainfall, in the same region, correspond to a particular set of orographic objects, which had been 
classified through an automatic, GIS-based geomorphological procedure. Here, we propose an 
approach that considers the same orographic objects as building blocks for a regional model that is 
able to capture the amplification of extreme rainfall caused by orography. The regional model is 
then the product of a basic stationary random spatial process and an amplification factor, whose 
values are related to the topographic features of the orographic objects. This approach represents a 
step towards the improvement of the predictive ability of regional models of extreme rainfall 
within orographically complex areas. 
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1. Introduction 

The interaction between atmospheric circulation and topography, especially during frontal 
events, produces a significant increase of the precipitation amount in orographic areas [1,2]. This 
complex interaction also leads to an enhanced spatial rainfall variability [3–6]: this, associated with 
an inadequate and uneven rain-gauge network in mountainous areas, makes the observation and 
modeling of orographic effects a challenging task. 

Here, we focus on the effect of orography on long-term probabilistic prediction of extreme 
rainfall at regional scale; hence, the main issue is to identify and model the effects induced by the 
orography over some statistical parameters of the rainfall extremes (in this work, annual daily 
rainfall maxima). Higher order statistical parameters are often considered either constant or 
smoothly varying over relatively large areas: this is a result of the sample estimation errors that 
usually mask spatial variability. On the contrary, estimates of low order statistical parameters, as the 
mean of the distribution, are less affected by sample errors and require a more accurate spatial 
model for regional estimation. Such statistical parameters of the annual maxima are affected by a 
multitude of events, with different characteristics. Physically based, meteorological models, 
although continuously improving, are storm-based models, therefore they are not suitable for the 
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scope: the influence of orography needs to be embedded into the regionalization model of the 
parameters of the probability distribution of the rainfall extremes [7]. 

A common solution to the problem is to split the region into homogeneous sub-regions in order 
to apply regression relationships with at site descriptors of topography within the homogeneous 
regions [3,8–10]. A more sophisticated approach consists in coupling a regression model with a 
spatial, nonparametric model of the residuals [4,6,11]. 

Following the latter approach, topographic variables need to be included into the spatial 
interpolation methods used to map the statistical parameters of the rainfall maxima distribution. 
Interpolation methods, even as sophisticated as geostatistical techniques, can indeed still suffer from 
lack of rainfall data in mountainous areas, providing inaccurate and sometimes biased estimation of 
the regionalized variables in those areas. 

In scientific literature, many regional studies deal with the estimation of rainfall in orographic 
areas using advanced kriging techniques that incorporate auxiliary topographic variables into the 
spatial interpolation model [3,4,6,11–13]. 

These methods may be categorized into two groups. One includes the methods that consider 
the external information directly in the kriging system, such as the kriging with an external drift or 
cokriging. The other consists of methods that first deal with the external information, for example by 
fitting a regression among the field and the external variables, and then apply an interpolation 
procedure, typically based on kriging, to the residuals. These methods are often referred to as 
“detrended kriging” [4]. 

This approach represent a significant improvement over simple regression analysis, and  
gives results whose quality depends on the physical meaning and complexity of the topographic 
descriptors and of the regression model. However, all these methods introduce local or locally 
averaged descriptors of the topographic surface as external variables for the orographic effects 
modeling. These descriptors are generally obtained through more or less complex elaboration of 
Digital Elevation Models (DEM): thus, they are not based on the identification of “orographic object” 
but only on local properties of the topography. 

This approach to regional modeling of extreme rainfall can be improved by introducing an 
objective description and identification of orographic features [7,14]. This allows dividing the region 
into “topographically” homogeneous areas, for which different spatial rainfall variability is 
considered. This is what we basically want to show. 

In Section 2, we present the study area, the available rainfall data and the current approach for 
the regional modeling of extreme rainfall as well as findings from previous works on the study area 
related to the influence of orography over the parameters of the probability distribution of the 
rainfall extremes. In Section 3, we define all the methods and models adopted. Finally, in Section 4 
the results of the application of the proposed model for the regional estimation of the mean of the 
probability distribution of the annual daily rainfall maxima in the study area. 

2. Study Area, Data and Previous Works 

2.1. Description of the Study Area 

The study area is the Campania region and some surroundings, in Southern Italy (Figure 1), 
located between the Apennines and the Tyrrhenian Sea. 

The region is characterized by Mediterranean climate, with dry summers and wet winters.  
The mean annual precipitation ranges from 800 to 1100 mm/year. 

The precipitations are largely generated by wet air masses that come predominantly from  
the Tyrrhenian Sea (i.e., southwest-northeast direction) and they are strongly influenced by the 
interaction with orography [15,16]. 

Figure 1 shows the location of the region and its terrain elevations by DEM. 
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Figure 1. Location of Campania region with DEM. 

The area is characterized by a complex topography (Figure 1), which Cuomo et al. [14] 
schematized through an automatic, objective, Geographical Information System (GIS)-based 
geomorphological procedure. This procedure identifies orographic entities by means of topographic 
concepts of key contour, key saddle, summit point and prominence (Figure 2). 

 
Figure 2. Identification of the orographic entities. Reproduced with permission from Cuomo, A.; 
Guida, D.; Palmieri, V., J. Maps; Published by Taylor & Francis, 2011 [14]. 

The study in [14] provides orographic entities, hierarchically organized in nested orographic 
classes. Based on the results of a recent study [7], we have considered groups (4th order) and 
systems (3rd order) as meaningful objects for the regionalization study here presented (Figure 3). 

Table 1 provides the extent of the selected orographic objects within the study area compared to 
its total extension. 

Table 1. Extent of the study area and of the orographic areas (4th and 3rd order). 

Areas Area (km2)
Study area 18547 

Orographic areas 5235 
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2.2. Rainfall Data 

The rainfall database comes from the VAPI (VAlutazione delle PIene, Flood Estimation)  
project [9,10], a national project for the regional analysis of the frequency of extreme rainfall and river 
floods, redacted within the National Research Council (CNR, Consiglio Nazionale delle Ricerche). 

In Figure 3, the map of the region is presented along with the location of the 605 rain-gauges 
used for the analysis, among which 245 are placed in the region of interest. Besides the rain gauges 
located in the study area, we considered a convenient number of gauges in the surrounding area in 
order to avoid the presence of border errors in the spatial analysis. 

In this work, we use the annual maxima of daily rainfall because they represent the most reliable 
and largely available data in the region. The length of the time series varies from 5 to 77 years, collected 
from the beginning of the last century until the year 2000, and it is on average equal to 45 years. The 
maximum value of the mean of the annual maxima of daily rainfall is 134.7 mm, the minimum is  
39.3 mm, the average is 69.8 mm. The average coefficient of variation, Cv, is 0.353 and the average 
coefficient of skewness is 1.254. 

 
Figure 3. Location of the study area with the rain gauges (triangles), the “anomalous” rain gauges 
(squares) (Section 2.3.2 and [7]) and the orographic barriers (solid grey) [14]. 

2.3. Findings from Previous Works on the Study Area 

2.3.1. The VAPI Model for Extreme Rainfall in the Region 

The most recent and complete analysis of extreme rainfall at a regional scale for the study area was 
conducted within the VAPI national project [10] and described in the VAPI Campania regional report [9]. 

The VAPI procedure is based on the use of TCEV (Two Components Extreme Value, [17]) as a 
parent probabilistic model for the annual maxima of daily and sub-daily rainfall. The probabilistic 
model is coupled with a three level hierarchical procedure for the regional estimation of the 
parameters. The regional model is a simple model of homogeneous region at each level [8]. 

The first and second levels of regionalization deal with the regional estimation of the shape and 
scale parameters of the distribution. At both levels, the whole region can be considered 
homogeneous, with the shape and scale parameters that assume unique values everywhere. 
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At the third level, the regionalized variable is the mean of the annual maxima of daily (and hourly) 
rainfall. Here we report only the results for daily rainfall, which are the data analyzed in our work. 

The regional analysis conducted within the VAPI project led to the identification of  
six homogeneous sub-regions at the third level. In each sub-region, a linear relationship between 
elevation and logarithm of mean annual daily rainfall maxima was estimated through a  
regression analysis. 

The boundary of the homogeneous sub-regions are represented in Figure 4 along with the lines 
representing the six linear regressions that were fitted. 

 
Figure 4. Map of the six homogeneous sub-regions for the mean annual daily rainfall maxima and 
linear relationships with elevation from VAPI Campania report. Reproduced with permission from 
Rossi, F. et al. Valutazione Delle Piene in Campania; Published by CNR-GNDCI, 1995 [9]. 

2.3.2. Identification of Spatial Outliers in Extreme Rainfall 

In a recent work, we identified areas with enhanced spatial variability of the mean of the annual 
daily rainfall maxima through an innovative statistical procedure [7]. The procedure demonstrates 
how linear geostatistics is not able to capture the spatial variability of the regionalized variable in 
areas with a strong orographic forcing. It is an iterative statistical procedure applied to the 
logarithmic transformation of the original series of the annual daily rainfall maxima. The logarithmic 
transform was applied in order to obtain an approximately Gaussian field, for which linear 
geostatistics works the best. 

Let Y(x) be the mean of the annual maxima of daily rainfall, Z(x) denote its logarithmic 
transformation as follows: 

)(ln)( xYxZ =  (1) 

The detection of the spatial non linearity, where the term “non-linearity” is used to characterize 
areas where linear geostatistics fails, due to an enhanced small scale variability of the field Z(x) was 
performed by analyzing the residuals of a cross-validation procedure in an innovative way. 
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The Kriging with Uncertain data (KUD) [18] estimator was run for the jack-knife estimation of 
the field in all the sampling points and then the standardized cross-validation residuals were 
calculated as follows: 

( ) ( )
( )
ˆ−

=
σ
i JN i

i
JN i

Z x Z x
e

x
 (2) 

where ( )ixZ  is the observed value of the field at sampling sites xi, ( )iJN xẐ  is the jackknife KUD 

estimation of the field at sampling sites xi and ( )iJN xσ  denotes the estimated predictor variance (for 
theoretical details, refer to [7]). 

The cross-validation residual at a given sampling site, as defined in Equation (2), represents the 
sum of the interpolation and the sampling errors at that site. Under the hypotheses of the kriging 
predictor, the standardized cross-validation residuals should follow a standardized Gaussian 
distribution. Because of the orographic effects, instead, there are “anomalous” errors in some 
gauges. The “anomalous” errors can be identified as outliers on the upper tail of the error 
probability distribution in the Normal Probability Chart, which facilitates the comparison between 
the empirical and the expected theoretical distribution of the residuals. We considered as outliers the 
residuals whose 95% confidence interval (in blue in Figure 5) deviates from the straight line (in red in 
Figure 5), which represents the theoretical distribution (i.e., standardized Gaussian distribution) of 
the residuals on the Normal Probability Chart (Figure 5). Hereinafter, we refer to these sampling 
sites/rain gauges where the outliers occur as “anomalous” sites/rain gauges or as spatial outliers. In 
these sites, the kriging predictor fails with an unacceptable underestimation of the field. 

 
Figure 5. Normal Probability Plot of the standardized residuals from cross-validation. Reproduced 
with permission from Furcolo, P.; Pelosi, A.; Rossi, F. Statistical identification of orographic effects in 
the regional analysis of extreme rainfall. Hydrol. Process. 2015 [7].  

Figure 5 displays the Normal Probability Chart of the standardized residuals. In the upper tail 
of the distribution, within the black square, there are the anomalous errors, which significantly 
deviate from the theoretical distribution. These errors correspond to rain gauges marked as 
anomalous in Figure 3. 

The statistical procedure detected the presence of 19 spatial outliers in the study area. The 
following step was to interpret the nature of these spatial outliers and highlight the physical factors 
that influence the rainfall field in such a way to produce a rainfall amplification that is so evident in 
the mean of the annual maxima. 

In Table 2, we show some basic statistics of the data (i.e., annual daily rainfall maxima) in the 
study area, discerning between the anomalous subset and the remaining rain gauges. These statistics 
reveal that the average value of the field over the region (i.e., the average mean) is much higher in 
the anomalous gauges than in the other gauges of the region while the other statistics (i.e., average 
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coefficient of variation, Cv, and average skewness) do not change as much. In particular, the 
circumstance that the skewness does not increase for the anomalous subset suggests that the mean is 
not affected by the presence of a few very intense events in the series but there is a more general 
amplification of the events producing the annual maximum. 

Table 2. Statistics of the data in the study area, with distinction among the whole dataset, the 
anomalous subset and the remaining rain gauges [7]. 

Set of Rain Gauges 
Number of Rain 

Gauges 
Average 

Mean (mm) Average Cv 
Average 

Skewness 
ALL 245 69.8 0.353 1.254 

ANOMALOUS 19 101.5 0.382 1.229 
NON ANOMALOUS 226 67.1 0.351 1.256 

In a climatologically homogeneous region like the one analyzed, orography may be identified 
as the main characteristic that may cause this amplification of the events producing the annual 
maxima. This is confirmed by a first examination of the results by comparing the anomalous rain 
gauges placed in the study area with the location of the orographic areas defined in Section 2. 

The results of the comparison are interesting (see Table 3 for the details): 

 The anomalous sites are located very close to orographic barriers: about 70% of the anomalous 
rain gauges are placed in orographic areas whereas only less than 20% of the gauges are located 
in those areas. 

 About 30% of the rain gauges placed in orographic areas are anomalous, against 3% of 
anomalous gauges in the other areas. 

Table 3. Main statistics referred to the location of the “anomalous” rain gauges. 

Areas 
Number of 

Rain Gauges 
Number of Anomalous 

Rain Gauges % 

Study area 245 19 7.76 
Orographic areas 47 13 27.7 

% 19.2 68.4 – 

3. Methods 

3.1. Formulation of the Regional Model for the Mean of the Annual Daily Rainfall Maxima 

The outcomes reported in the previous Section confirm the potential value of an approach 
based on the identification of orographic objects for the improvement of regional models of extreme 
rainfall. Here, we introduce a preliminary model for the regional estimation of the mean of the 
probability distribution of the annual daily rainfall maxima that gives a better interpretation of 
variability of the rainfall field in orographic areas. Despite its simplicity, this model is already very 
effective in increasing the accuracy of the regional estimates of the selected parameter. 

We suppose that the mean of the annual maxima of daily rainfall, Y(x), can be seen as the 
product of a basic, weakly stationary process, Y’(x), and of an amplification factor, AF, that arises 
only in orographic areas: 

( ) '(x)= ⋅Y x AF Y  (3) 

Then, by taking the logarithm: 

Z( ) '( ) ln( )= +x Z x AF  (4) 

The basic, weakly stationary process, or, better its logarithm, Z’(x), can be computed by using 
classic linear spatial interpolation techniques, such as KUD from the rainfall measurements in the 
valleys and in the plains. 
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The Amplification Factor, AF, corrects the linear estimations where it is necessary, i.e., in 
orographic areas as highlighted in Section 2. The Amplification Factor is computed accordingly an 
Amplification model (Section 3.2). 

3.2. The Amplification Model 

Here, we propose a model for the assessment of AF by relating its values to some global 
features of the orographic barriers. In the following, a set of topographic indices are evaluated for 
the estimation of AF in orographic areas. 

3.2.1. Computation of Topographic Indices 

Each isolated orographic object in the study area (Figure 3) has been treated as a unique 
homogeneous shape, for which a set of topographic indices has been computed, by means of a DEM 
having a spatial resolution of 20 m (Figure 1). 

We considered five topographic indices that are representative of the process of orographic 
interaction and amplification of extreme rainfall [1,4]: 

(i) Mean slope, denoted as Sl (%), which is strictly related to the rate of climb of the wet air masses 
in proximity to the orographic object.  

(ii) Average elevation, zmean (m a.s.l.), which is representative of the force, which leads up masses 
over orographic obstacles. 

(iii) Maximum elevation, zmax (m a.s.l.), which could state the intensity of the force, which leads up 
masses over orographic obstacles. 

(iv) Prominence, P (m), defined as the difference between the maximum elevation within the shape, 
zmax, and the average elevation of its perimeter line. It could express the presence of orographic 
obstacles in relation to the neighborhood. 

(v) Exposition, cosϕ, defined as the cosine of the angle between the dominant direction of the wet 
air masses and the principal direction of inertia of each orographic object, related to the 
minimum moment of inertia (Figure 6).  

We believe that the principal direction of inertia related to the minimum moment of inertia can 
conveniently represent the orientation of the orographic object itself. 

In the Tyrrhenian area, the dominant direction of the wet air masses is known to be the 
direction southwest–northeast, which is inclined about 45° above the horizontal (west–east) line. In 
this case, a further statistical assessment have been done: We defined the dominant direction as the 
reference direction for measuring the angle ϕ, such that the linear correlation between ln(AF) and 
cosϕ is maximum. The result was a dominant direction with inclination 41° above the horizontal 
(Figure 6), which is in good agreement with the fact that rainfall events in this area prevalently come 
from the southwest quadrant. 

Exposition is important because it affects the dynamic of the interaction between the orographic 
obstacles and the wet air masses. 

Figure 6 shows the orographic objects and their orientation by means of the principal directions 
of inertia related to the minimum moment.  
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Figure 6. Principal directions of inertia related to the minimum moment of the orographic object. 

3.2.2. Computation of AF 

In our model, the Amplification Factor arises only in orographic areas, so that outside 
orographic areas its value is equal to the unity. Inside orographic areas, Equations (3) and (4) are 
useful for its evaluation, so that the logarithm of AF can be computed as the difference between the 
observed value Z(xi) and the value Z′(xi) estimated by the Kriging with Uncertain Data predictor 
using only the rainfall measurements in the valleys and in the plains, as follows: 

0 outside orographic areas
ln( )

( ) '( ) inside orographic areas


=  −
AF

Z x Z x
 (5)

By means of Equation (5), we evaluated ln(AF) in each one of the 47 rain gauges, placed in 
orographic areas (Figure 7) and, then, we assigned to each orographic object a representative value 
of ln(AF), evaluated through the arithmetic mean of the values of ln(AF) related to the rain gauges 
within the object. 

3.2.3. Regression Analysis 

In our model, the values of the Amplification Factor (Section 3.3) are simply related to some 
global features of the orographic barriers, expressed by means of some more significant 
topographical indices (Section 3.2). This choice is mainly driven by the limited availability of rainfall 
data in these areas. 

Univariate regressions between the Amplification Factor and the various topographical indices 
were first carried out. Then multiple regression analysis was performed. 

Criteria to be respected are that the explanatory variables should not be highly correlated and 
they should represent physical explanations for AF variations. 

The regression analysis has been performed using the data recorded in all 47 rain gauges (not 
just the anomalous ones) placed in orographic areas (Figure 7). 
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Figure 7. Rain gauges in orographic areas. The orographic shapes are numbered with two digits: the 
first one denotes the order (groups, 4th order, and systems, 3rd order), the second one identifies 
progressively the object. 

In particular, to proper select a combination of topographic indices and build the Amplification 
model by means of an eventually multivariate regression, we evaluated all the possible 
combinations of topographic indices, Xi, considering both a two-variate model and a three-variate 
model, as follows: 

22110)ln( XaXaaAF ⋅+⋅+=  (5a) 

3322110)ln( XaXaXaaAF ⋅+⋅+⋅+=  (6b) 

The best combinations were found considering both the coefficient of determination, R2, and the 
adjusted R2, R2adj, which allows to take account of the circumstance that R2 automatically and 
spuriously increases when extra explanatory variables are added to the model. R2adj was computed  
as follows: 

( )2 21 1
1

−= − −
− −adj
n pR R
n p

 (6) 

where p is the total number of explanatory variables (i.e., topographic indices) in the model  
(not including the constant term), and n is the sample size. 

Unlike R2, the adjusted R2 increases only when the increase in R2, due to the inclusion of a new 
explanatory variable, is more than one would expect to see by chance.  

4. Results and Discussion 

In this Section, we firstly report the results of the regression analysis for the definition of  
the Amplification model. Then, we illustrate the results related to the application of the complete 
regional model for the estimation of the mean of the annual daily rainfall maxima to the study  
area by comparing its final performances against the actual regional model (i.e., VAPI) and a pure 
geostatistical interpolation. 
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4.1. The Amplification Model 

Here, we considered each orographic object in the study area as a unique homogeneous shape 
for which we computed some topographic indices and the average value of ln(AF) (as stated in 
Section 3). Table 4 shows these values for the 14 orographic objects in the study area (numbered as in 
Figure 7). 

Table 4. Values of ln(AF) and topographic indices for each orographic object. 

ID Object Ln(AF) cosϕ Sl (%) P (m) zmean (m a.s.l.) zmax (m a.s.l.) 
3_2 0.210 0.390 0.267 700 481 1000 
3_3 0.154 0.578 0.322 774 403 975 
3_4 0.012 0.549 0.340 1080 649 1385 
3_5 0.184 0.775 0.355 459 452 761 
3_6 0.189 0.947 0.498 1234 1416 1429 
3_7 0.323 0.563 0.389 825 937 1225 
3_8 0.065 0.348 0.166 541 742 1128 
3_11 −0.044 0.870 0.389 302 789 1003 
3_12 0.093 0.885 0.189 438 759 1109 
3_16 0.019 0.609 0.233 509 1034 1407 
4_1 0.381 0.483 0.415 1092 774 1589 
4_2 0.073 0.516 0.366 1299 966 1898 
4_3 0.211 0.326 0.451 1117 1025 1813 
4_4 0.294 0.351 0.347 1248 1115 2038 

The former step toward the regression analysis was to look at the correlation matrix to 
investigate at the same time the dependence between the multiple variables involved in the analysis. 
As we can see, from Table 5, the variables are all correlated to each other: the correlation between 
some topographic variables, such as exposition and slope or exposition and prominence is strictly 
related to the geological process that led to the formation of the orography itself. The correlation 
between prominence and slope, prominence and zmean, prominence and zmax is instead mainly related 
to the definition itself of the prominence (Section 3.2) so that, as expected, the highest correlations 
are between P and these variables. 

Table 5. Correlation matrix. 

Variable Ln(AF) cosϕ Sl P zmean zmax 

ln(AF) 1  −0.332  0.397  0.450  0.117  0.269  
(R2) (1) (0.110) (0.158) (0.203) (0.014) (0.072) 
cosϕ −0.332 1 0.158 −0.368 0.113 −0.451 

Sl 0.397 0.158 1 0.589 0.429 0.355 
P 0.450 −0.368 0.589 1 0.502 0.809 

zmean 0.117 0.113 0.429 0.502 1 0.671 
zmax 0.269 −0.451 0.355 0.809 0.671 1 

From Table 5, it is possible extract the values of R2 related to the univariate regressions between 
ln(AF) and each topographic index by squaring the values in the first row, as reported in parenthesis. 
The higher correlation is between ln(AF) and prominence, followed by slope and exposition. 

Then, Table 6 shows the top five models (having the best fits among all the possible 
combinations in term of R2 and R2adj) in the case of multiple regressions, as in Equations (6a) and (6b). 
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It is clear that the exposition is a crucial explanatory variable in the bivariate regression, followed by 
slope. The introduction of a third variable into the model should be chosen among prominence, zmean 
and zmax. 

Table 6. Regression coefficients, coefficient of determination, R2, and adjusted coefficient of 
determination, R2adj for five selected multiple regression models. 

Topographic indices M21 M22 M31 M32 M33 
X1 cosϕ cosϕ cosϕ cosϕ cosϕ 
X2 Sl P Sl Sl Sl 
X3 - - P zmean zmax 

Regression coefficients M21 M22 M31 M32 M33 
a0 0.0917 0.107 0.0796 0.0987 0.146 
a1 −0.241 −0.114 −0.221 −0.240 −0.281 
a2 0.604 1.380 × 10−4 0.543 0.628 0.677 
a3 - - 2.532 × 10−5 −1.929 × 10−5 −4.171 × 10−5 

Statistical performances M21 M22 M31 M32 M33 
R2 0.317 0.235 0.319 0.318 0.327 

R2adj 0.192 0.095 0.115 0.113 0.125 

All the multivariate models, except M22, provide very similar results. Following a pure 
statistical criterion, the bivariate regression M21 is to be considered the most meaningful, because it 
provides the best result in terms of adjusted R2. Nonetheless, the tri-variate model M31 is also 
interesting, despite its poorer statistical performances, because it includes a physically meaningful 
variable, prominence (P), which can improve the accuracy of the model in certain circumstances. 

Then, the chosen amplification model, M31, states: 
5ln( ) 0.0796 0.221 cos 0.543 2.532 10AF Sl P−= − ⋅ ϕ + ⋅ + × ⋅  (7) 

In Figure 8, we show the comparison between the observed ln(AF) and the model M31 results, 
as shown in Equation (7) (the differences with M21 are very small, though). The perfect agreement is 
obtained in correspondence of the solid line, with a slope of 45°. The points represent the fourteen 
orographic shapes of the study area. The alignment of the points in the graph shows a significant 
residual dispersion, which suggests that the amplification model can be furtherly improved. In this 
study, we had to use a relatively simple model because of the poor density of the rain gauge network 
in orographic areas: This is a consequence of the historical inaccessibility of these places due to 
morphology, vegetation and lack of infrastructure. However, interesting considerations can be made 
once model performances in terms of estimated mean, estimated variance and MSE are computed, as 
follows in the next Section. 

 
Figure 8. Comparison between the observed ln(AF) and its estimation. 
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4.2. Regional Model Performance 

Finally, the performances of the proposed regional model (4) + (8) are compared with three 
spatial interpolation techniques: (i) linear regression with elevation, using the formulas given by 
VAPI report [9]; (ii) linear regression with elevation, following the same approach of the VAPI report 
but updating the formulas with the new and extended database; and (iii) Kriging with Uncertain 
Data. The comparison was performed in terms of estimated mean, estimated variance, MSE, net 
MSE, dimensionless RMSE (ρ) and maximum error, distinguishing the whole region and orographic 
areas.. To calculate the net MSE, we subtracted the average variance of the sampling errors in the 
study region (equal to 0.0044) from the MSE. The contribution to the MSE given by the variance of 
the sampling errors, in fact, cannot be eliminated. For this reason, the comparison between different 
models is more significant when done in terms of net MSE rather than MSE. 

The numbers in Table 7 refer to the (natural) logarithm of the mean annual daily rainfall maxima. 

Table 7. Comparison with the main statistics related to different methods of spatial estimation. The 
proposed model is in the last column, indicated as KUD+AF. 

Whole Region Observed 
Linear Regression

VAPI 
Linear Regression

(Updated) KUD KUD + AF 

Mean  4.21 4.18 4.21 4.20 4.20 
Variance  0.070 0.063 0.044 0.042 0.047 

MSE - 0.0324 0.0256 0.0225 0.0196 
Net MSE - 0.0280 0.0212 0.0181 0.0152 

ρ - 0.038 0.038 0.035 0.033 
Maximum error - 0.66 0.64 0.42 0.42 

Orographic 
areas Observed 

Linear Regression
VAPI 

Linear Regression
(Updated) KUD KUD + AF 

Mean 4.30 4.24 4.25 4.21 4.31 
Variance 0.11 0.084 0.062 0.058 0.077 

MSE - 0.0625 0.0576 0.0361 0.0256 
Net MSE - 0.0581 0.0532 0.0317 0.0212 

ρ - 0.059 0.055 0.043 0.037 
Maximum error - 0.66 0.64 0.42 0.32 

The improvements in all the metrics are encouraging, especially in orographic areas (Table 7), 
where we have a reduction of the net MSE almost equal to 65% compared to the current regional 
model for the mean of the annual daily rainfall maxima (i.e., VAPI). In the whole region, compared to the 
current VAPI model for daily rainfall maxima, we have an improvement of the net MSE close to 50%. 

5. Conclusions 

We presented a preliminary model for the regional estimate of the mean of the annual daily 
rainfall maxima in a region with complex orography. This model can be included into regional 
models for the long-term probabilistic prediction of extreme rainfall. The reasons that led us to 
approach the problem in this way are presented as background in Section 2, which mainly reports 
the work in [7] along with the most recent regional studies in the area of interest [9]. 

The identification of spatial anomalies in orographic areas highlights how linear geostatistics is 
unable to describe the spatial variability of the rain field in areas with a strong orographic forcing.  
A preliminary model to deal with this circumstance is then suggested. 

The comparison between the proposed model and other regionalization methods shows that the 
former produces better regional estimates of the mean of the annual maxima of daily rainfall. This is 
particularly evident in regard to the linear regressions with elevation within homogeneous sub-regions, 
which is the current model used for extreme rainfall estimation in the study area. The improvements 
allow a better regional estimation in orographic areas and provide encouraging results for future 
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developments of this new approach to regional modeling of extreme rainfall in orographic areas. The 
improved interpretation of spatial variability of the extreme rainfall field can also provide the support for 
the development of better criteria for rain gauge and meteorological radar network design. 

With reference to the region of this study, it is evident that any further improvement of the 
regional model is deeply linked to a more accurate observation of the phenomenon, by updating the 
rain gauge network and, even better, by integrating it with meteorological radars. Depending on the 
quantity and quality of data available, a first step could consist in introducing separate models of 
upwind and downwind hillslope. More sophisticated models could consider the eventual 
interaction between different orographic objects as well. 
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