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Abstract: The Yarlung Zangbo River (YZR) is the largest river system in the Tibetan Plateau, 

and its basin is one of the centers of human economic activity in Tibet. Large uncertainties exist 

in several previous climate change studies in this basin because of limited climate 

observations. In this paper, we used a meteorological drought index (Standardized 

Precipitation Evapotranspiration Index, SPEI) and a newly-released gridded climate forcing 

dataset based on high-quality climate station data to re-evaluate climate change in the YZR 

Basin during the period of 1961–2014. Results showed that precipitation experienced a 

statistically insignificant increasing trend at a rate of 6.32 mm/10 years, and its annual mean 

was 512.40 mm. The basin was sensitive to climate change in terms of the air temperature 

that significantly increased at the rate of 0.32 °C/10 years. This warming rate was obviously 

larger than that in many other regions. Analysis of SPEI showed that the basin had no 

obvious statistical trends in the number of dry/wet episodes, but the severity of dry episode 

aggravated in terms of duration and magnitude. This study provides a reliable analysis of 

OPEN ACCESS



Water 2015, 7 5475 

 

 

climate change in the YZR Basin, and suggests this large Tibetan river basin is sensitive to 

climate change. 
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1. Introduction 

The Yarlung Zangbo River (YZR) is the largest in Tibet and located at the highest altitude in the 

world with an average elevation of greater than 4600 m above sea level. It originates from the 

Chamyungdung glacier at an elevation of 5200 m in the south-central Tibet. The basin is long in the 

east-west direction and narrow in the south-north direction. Its south and north are the Himalayas and 

Gangdis-Nyainqentanglha Ranges, respectively. Located at the Yarlung Zangbo Suture Zone, the YZR 

acts as the precipitation generation source over the Tibetan Plateau because of its enormous 

transportation channels carrying moisture from the Indian Ocean to the inner region of the plateau [1]. 

Therefore, climate of the YZR Basin plays a significant role in the formation and development of 

atmosphere circulation, climate change, and inclement weather in the Tibetan Plateau [1–3]. 

Obvious warming has been observed in the late decades over the Tibetan Plateau and the YZR Basin, 

as in other parts of the world [4–9]. For example, Liu and Chen [10] found that the main portion of the 

Tibetan Plateau has experienced statistically significant warming since mid-1950s, and suggested  

that the plateau is one of the most sensitive areas to respond to global climate change. In the YZR Basin, 

a relatively larger temperature increase could also be found compared to the mean temperature of  

China [11,12]. You et al. [11] used the linear regression method to analyze the trends of precipitation, 

air temperature, and potential evapotranspiraton (PET) at 10 climate stations within the basin. Results 

suggested that both precipitation and air temperature increased from 1961 to 2005 over the YZR Basin 

with the rates of 6.75 mm/decade and 0.28 °C/decade, respectively, but PET had a decreasing trend, 

especially after the 1980s. Liu et al. [12] also analyzed the climate trends of the YZR Basin from  

1974–2000, and results showed that precipitation increased insignificantly and air temperature  

increased significantly. 

Climate station network is sparse in this large Tibetan basin due to its high elevation, complex terrain, 

and harsh environment, especially in the central and western regions. Previous studies of climate change 

in the YZR Basin were largely affected by lack of climate station data. In order to overcome uncertainties 

in climate change analysis due to limited station data, we revisited climate change based on the gridded 

forcing climate data, which can reduce input uncertainties to a large extent. Therefore, the objectives of 

this study are to: (1) revisit climate change of the YZR Basin with a more detailed and reliable 

precipitation and temperature dataset (1961–2014) than used in previous studies; and (2) evaluate the 

dryness and wetness evolutions with the Standardized Precipitation Evapotranspiration Index (SPEI)  

in the YZR Basin. In this study, monotonic trends of annual and seasonal precipitation, 

maximum/mean/minimum air temperature within different regions of the basin were investigated.  

In addition, spatial and temporal evolutions of meteorological drought index (SPEI) were calculated  

and analyzed. 
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2. Materials and Methods 

2.1. YZR Basin 

The YZR Basin (upstream of Brahmaputra River), located at 27°80'–31°02' N and 81°09'–97°10' E, is 

the largest river system in the Tibetan Plateau (Figure 1). It originates at the Chamyungdung glacier 

(5200 m) in south-central Tibet, and is located at the highest altitude in the world with an average 

elevation of over 4000 m above sea level. The river length in China is about 2000 km, and the basin 

covers the area of about 2.4 × 105 km2, with maximum width less than 300 km [13]. The YZR Basin is 

part of the Indian Ocean water system. It exhibits obvious variation in its climate from the upstream to 

downstream regions of the basin, while wetter and warmer conditions are found downstream than 

upstream. Most precipitation falls during June and September [11]. Figure 1 shows the national climate 

station network released by the Climate Data Center, China Meteorological Administration (CDC-CMA) 

within and besides the YZR Basin, among which 16 out of 32 are located within the basin. Obviously, 

only the data from these surface stations could not provide an accurate analysis of climate change for 

the YZR Basin, especially for the upstream area of the basin. Therefore, we divided the whole basin into 

three subareas: upstream, midstream, and downstream (denoted as UYZR, MYZR, and DYZR, 

respectively) according to the basin length in longitudinal direction. The longitudes of 87° E and 92° E 

are two boundaries of these three subareas. 

 

Figure 1. The YZR Basin, surface climate stations, and the 0.5 degree grids. 

2.2. Forcing Data 

In this study, data used for trend analysis and drought index calculation, including monthly series of 

precipitation and maximum/mean/minimum air temperature, were obtained from the 0.5 Degree Gridded 

Monthly China Surface Precipitation and Air Temperature Dataset (Version 2) which was developed by 

CDC-CMA. This dataset is generated based on the data collected at 2472 climate stations and the Thin 

Plate Spline interpolation technique. This helps in evaluating climate change of the YZR Basin in both 

time and space more accurately as opposed to just using point climate station data. In total, only  
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824 climate station data for the entire country of China are released by CDC-CMA, showing a relatively 

sparse station networks in the YZR Basin, especially in its upstream area. 

2.3. SPEI Calculation and Trend Test Method 

Several meteorological drought indices are developed to describe the characteristics of climate change 

in multi-temporal scales, e.g., the Standardized Precipitation Index (SPI) [14] and SPEI [15]. SPEI was 

developed combining the sensitivity of the Palmer Drought Severity Index (PDSI) [16] to changes in 

evaporation demand and robustness of the multi-temporal nature of the SPI. It is defined as an index of 

water balance (precipitation minus PET). The Penman-Monteith equation [17] and the Thornthwaite 

equation [18] are two representative parameterizations using the underlying physical principles (changes 

in available energy, humidity, and wind speed) and air temperature, respectively, for PET calculation. 

Considering available climatic data in the YZR Basin, we employed the Thornthwaite equation based 

SPEI in this study. A time-series of the difference between precipitation and PET was fitted to a three 

parameter log-logistic probability distribution to take into account common negative values [19].  

This is done because the log-logistic distribution shows a very close fit to the data series. SPEI employs 

the dry and wet categories as used by SPI in Table 1 [20]. 

Table 1. SPEI drought index categories. 

Mositure Cateory SPEI 

Extremely wet (EW) 2.00 and above 
Very wet (VW) 1.50 to 1.99 

Moderately wet (MW) 1.00 to 1.49 
Near normal (NN) −0.99 to 0.99 

Moderately dry (MD) −1.00 to −1.49 
Severely dry (SD) −1.50 to −1.99 

Extremely dry (ED) −2.00 and less 

The nonparametric Mann-Kendall (MK) test [21,22] was used to detect trends in time series of 

meteorology and drought index. Positive (or negative) Z values of the MK test signify an increasing (or 

decreasing) trend. In order to eliminate the effect of significant serial correlation in time-series on trend 

analysis, a trend-free pre-whitening procedure [23] was used before applying the MK test. For a  

time-series, its increasing or decreasing slope (change per unit time) can be estimated by using the Sen’s 

slope method [24]. A positive (or negative) slope value indicates the increasing (or decreasing) trend in 

a time-series. 

3. Results and Discussion 

3.1. Precipitation Trends 

In the YZR Basin, average precipitation increases considerably from upstream to downstream with 

the mean of 512.40 mm for the period of 1961–2014 (Table 2). This is determined by the Indian Ocean 

water system as moisture is carried from the Indian Ocean to the inner region [12]. In addition, about 
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60% of the precipitation falls in summer while only less than 5% occurs in winter during the period of 

1961–2014 (Table 2). 

Table 2. MK tests of annual and seasonal precipitation in the YZR Basin during 1961–2014. 

Periods Areas Average (mm) Slope (mm/10a) MK-Z Significance 

Year 

UYZR 266.52 10.26 1.25 <90% 
MYZR 380.38 5.15 0.93 <90% 
DYZR 784.02 6.44 0.79 <90% 
YZR 512.40 6.32 0.88 <90% 

Spring YZR 96.14 3.42 2.65 99% 

Summer YZR 298.92 1.21 0.01 <90% 

Fall YZR 95.87 1.22 0.53 <90% 

Winter YZR 21.54 −0.08 −0.24 <90% 

Annual and seasonal precipitation series was analyzed in Table 2 which shows that, during the period 

of 1961–2014, precipitation experienced a statistically insignificant increasing trend with the slope rate 

of 6.32 mm per decade (mm/10 years) in the YZR Basin. Three seasons contributed this increasing trend, 

except for winter, which showed a slightly decreasing trend at the rate of −0.08 mm per year (mm/year). 

Only the spring’s precipitation trend was statistically significant with the confidence level of 99%. 

Figure 2 shows spatial patterns of MK-Z values of annual precipitation trend test. Results indicated 

that most of the grids in the YZR Basin (75%) experienced the upward trend except for few grids in the 

downstream area for the period of 1961–2014. Most of the grids with statistically significant decreasing 

trends of precipitation located at the eastern part of the basin. Despite of these downward trending grids, 

the DYZR area also experienced increasing trend of annual precipitation as a whole like UYZR and MYZR. 

 

Figure 2. Spatial variation of MK-Z value of annual precipitation trend test during 1961–2014. 

Grids are in size of 0.5 degree × 0.5 degree. Grids with black dots in the center represent the 

statistically significant trends with the confidence level of 90%. 

3.2. Air Temperature Trends 

Table 3 shows the MK tests of annual and seasonal air temperature in the YZR Basin during 1961–2014. 

Averaging on the entire YZR Basin, annual mean temperature (TMEAN) is 0.31 °C, while the annual 

maximum and minimum values (TMAX and TMIN) are 7.58 °C and −2.52 °C, respectively. Spatial nature 

of air temperature is in accordance to the basin elevation, i.e., it becomes warmer from upstream to 
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downstream. For the seasonal temperature, air temperatures of 8.14 °C and −7.71 °C for TMEAN could 

be found for summer and winter, respectively. 

Table 3. MK tests of annual and seasonal air temperature in the YZR Basin during 1961–2014. 

Periods Areas 

TMAX TMEAN TMIN 

Average 

(°C) 

Slope 

(°C/10a) 

Average 

(°C) 

Slope 

(°C/10a) 

Average 

(°C) 

Slope 

(°C/10a) 

Year 

UYZR 4.06 0.25 −3.02 0.37 −9.50 0.52 

MYZR 6.84 0.25 −0.44 0.35 −6.92 0.45 

DYZR 10.39 0.19 3.01 0.28 −2.52 0.32 

YZR 7.58 0.21 0.31 0.32 −5.80 0.43 

Spring YZR 6.85 0.16 −0.22 0.27 −6.37 0.40 

Summer YZR 14.30 0.18 8.14 0.29 3.43 0.33 

Fall YZR 8.35 0.25 1.01 0.33 −4.86 0.38 

Winter YZR 0.82 0.26 −7.71 0.42 −15.38 0.56 

Note: All air temperature series trends in MK tests have confidence levels of 99%. 

The MK trend tests suggested that all temperature series had statistically significant (99% confidence 

level) warmer trends during 1961–2014. As a whole, TMEAN of the YZR Basin experienced a  

warming trend at the rate of 0.32 °C/10 years, while the slope rate for TMIN can be even as large as  

0.43 °C/10 years. These warming rates are obviously larger than the rates in many other regions of the 

world as global mean surface temperature over the past 20 years (1993–2012) rose at the rate of  

0.14 ± 0.06 °C/10 years (95% confidence interval) [25]. For the seasonal trends, winter was the most 

statistically significant warming season with the rates of 0.26 °C/10 years, 0.42 °C/10 years and  

0.56 °C/10 years for TMAX, TMEAN and TMIN, respectively. It was found that both annual and 

seasonal series of TMIN had the largest warming slope rate in all parts of the basin. 

Figure 3 shows a spatial variation of MK trend test results of annual TMEAN series during 1961–2014. 

Obviously, all grids had statistically significant upward trend (Z value > 1.28) except for one location at 

the southeastern edge of the basin (Z value = 1.17). The largest warming trend could be found in the left 

half part of the MYZR area, while the corresponding largest slope rate and MK-Z value were  

0.80 °C/10 years and 8.52, respectively. All these results suggest that the YZR Basin is very sensitive to 

climate change in temperature because warming rate is much larger than most other regions and global 

mean in the past decades [8,20,25]. 

 

Figure 3. Same as Figure 2, but for annual mean air temperature. 
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3.3. Evolution of SPEI 

3.3.1. Temporal Variations 

Figure 4 shows an evolution of SPEI over three, six, and 12 months intervals in the period of  

1961–2014. For the entire YZR Basin, short timescale (three-month) showed a higher temporal 

frequency of dry and wet periods of SPEI. Alternate dry and wet periods occurred during the study 

period, whereas the wet episodes were mainly in the 1970s and late 1980s for the 12-month SPEI series. 

A serious 12-month scale drought event was found in the October 2009 with SPEI of 3.0. As a whole, 

the YZR Basin stands approximately an even chance of dry/wet condition during the period of 1961–2014. 

 

Figure 4. Evolutions of three-, six-, and 12-month SPEI for the entire YZR Basin from 1961–2014. 

We evaluated statistics of decadal differences of dry and wet episodes in the YZR Basin in terms of 

the occurrence number, average duration (months) and magnitude in Table 4. Firstly, the dry or wet 

episode was identified with the threshold values of −1 and 1, respectively. Then, the above three 

statistical indicators can be calculated for each dry or wet episode based on their definitions [14]: the 

duration is the number of consecutive months with values <−1 (>1) for dry (wet) and the sum of  

12-month SPEI values is the dry (wet) magnitude. For the period of 1961–2014, the numbers of dry and 

wet episodes were almost the same (18 vs. 19). In the decadal statistics, there was also no obvious trend 
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of occurrence number for both dry and wet episodes. For the dry episodes, average duration and 

magnitude (with values of 18 months and −31.8) for a single episode during 2001–2010 were the most 

severe. This suggests that, despite no evident trend of occurrence number, severity of dry episode 

aggravated in terms of duration and magnitude. For the wet episodes, no obvious difference from other 

decadal results could be found during 2001–2010. 

Table 4. Occurrence number (ON), average duration (months) and magnitude of 12-month 

SPEI based dry and wet episodes. 

Periods 
Dry Episodes Wet Episodes 

ON Duration Magnitude ON Duration Magnitude 

1961–1970 5 5.4 −7.4 1 8.0 10.1 

1971–1980 2 2.5 −3.6 8 6.9 9.7 

1981–1990 2 5.0 −6.3 4 3.8 5.3 

1991–2000 4 4.3 −5.4 3 7.7 10.4 

2001–2010 2 18.0 −31.8 2 6.0 9.7 

2011–2014 3 3.3 −3.8 1 7.0 13.6 

1961–2014 18 5.8 −8.5 19 6.3 9.1 

3.3.2. Spatial Variations 

Figure 5 shows the 12-month SPEI series for different parts of the basin, i.e., UYZR, MYZR, and 

DYZR, during 1961–2014, while the area mean SPEI values are calculated based on the drought index 

at each grid. Evident differences could be found in the spatial distribution of SPEI. In the UYZR area, 

dry and wet period always lasted for several consecutive years. For example, a dry condition controlled 

nine years from 1961 to 1969, and then wet condition took the main role during 1970–1990 except for a 

moderately dry period (−1.49 < SPEI < −1.00) of two months in October and November 1974 and some 

near normal condition periods (−1.00 < SPEI < 1.00). For the following years, dry episodes were still 

the dominating period but wet episodes increasingly occurred in the UYZR area. In the MYZR area, wet 

episodes obviously increased and controlled more time than that in the UYZR. In the DYZR area, dry 

and wet episodes occurred alternately. Thus, these parts of the basin showed different SPEI evolutions 

during 1961–2014. This is certainly determined by spatial variations of precipitation and mean  

air temperature. 

Spatial composition of each SPEI category in the YZR Basin (total 127 grids) was calculated every 

year in the Figure 6. Results showed that there were 42 years with near normal grids exceeding 50% of 

total basin area. That is to say, near normal condition is the main weather status of the YZR Basin during 

1961–2014. For severely dry and extremely dry grids, maximum area percentages were 31.4% in 1983 

and 41.7% in 1982, respectively. For very wet and extremely wet grids, corresponding maximum values 

were 26.0% in 1973 and 37.8% in 2008, respectively. On average, for those years with non-dominated 

normal grids in the YZR Basin, a dry or wet condition mainly depends on the percent increase of a 

number of moderately dry and wet grids. 
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Figure 5. Evolutions of 12-month SPEI for the UYZR, MYZR, and DYZR areas from 1961–2014. 

 

Figure 6. Number of grids in the YZR Basin for each SPEI category during 1961–2014. 

During the period of 1961–2014, SPEI trends of each basin grid was calculated and displayed in terms 

of the MK-Z value varying from −5.22 to 3.00 (Figure 7). Results showed that a statistically significant 

downward (drier) trending grids are mainly located at the eastern part of the basin, while statistically 
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significant upward (wetter) trending grids could be found in the southeastern part and near the boundary 

between UYZR and MYZR. Most of the basin grids experienced insignificant trends during the period 

of 1961–2014. 

 

Figure 7. Same as Figure 2, but for 12-month SPEI. 

Drought and wetness periods were identified and evaluated by SPEI that depends on changes of 

precipitation and air temperature. In the YZR Basin, both precipitation and air temperature increased 

during 1961–2014, and contributed to the evolutions of drought and wetness periods. It is found that the 

trends of precipitation and SPEI are consistent in Figures 2 and 7, respectively, but they are significantly 

different from the results of air temperature in Figure 3. This discrepancy indicated that the SPEI 

calculation may be dominated by precipitation rather than temperature in the YZR Basin. 

4. Conclusions 

This study analyzed the climate change of the YZR Basin for the period of 1961–2014 based on the 

0.5-degree precipitation and air temperature dataset with a high precision. This is different from the 

previous studies just using limited point climate station data. Therefore, our study suggests that input 

uncertainty of climate data can be reduced. 

In the YZR Basin, annual mean precipitation increases considerably from the upstream to downstream 

with a mean of 512.40 mm for the period of 1961–2014. Annual and seasonal precipitation data were 

analyzed by using the MK trend test, and results showed that all series increased except for the winter 

precipitation. For the entire YZR Basin, precipitation experienced a statistically insignificant increasing 

trend with the slope rate of 6.32 mm/10 years. Additionally, only spring precipitation series had a 

statistically significant trend. Spatial analysis of precipitation trend indicated that most of the grids in 

the YZR Basin (75%) experienced an upward trend except for several grids in the downstream area for 

the period of 1961–2014. 

Three temperature variables (TMAX, TMEAN, and TMIN) in the YZR Basin were 7.58 °C, 0.31 °C, and 

−2.52 °C, respectively, for the period of 1961–2014. Spatial pattern of air temperature was in accordance 

to the basin elevation, i.e., becoming warmer from upstream to downstream. The MK trend tests 

suggested that annual and seasonal temperature series had statistically significant warmer trends during 

1961–2014, while the slope rates of TMEAN and TMIN were 0.32 °C/10 years and 0.43 °C/10 years, 

respectively. These warming rates are larger than that in many other regions of the world as global mean 
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surface temperature over the past 20 years (1993–2012) rose at the rate of 0.14 ± 0.06 °C/10 years (95% 

confidence interval) [25]. 

Different timescales of SPEI were calculated for each grid in the YZR Basin for the period of  

1961–2014. It was found that a temporal frequency and duration of dry/wet periods would be decreased 

and increased, respectively, with an increasing timescale. On average, the YZR Basin stood 

approximately an even chance of dry/wet condition during the period of 1961–2014. Decadal analysis 

suggested that, despite no evident trends of occurrence number, severity of dry episode aggravated in 

terms of duration and magnitude. The MK trend test of SPEI showed that most of the basin grids 

experienced insignificant trends during the period of 1961–2014, except for some drier grids in the 

eastern part and some wetter grids in the southeastern part of the basin and near the boundary between 

UYZR and MYZR. 

Finally, during the period of 1961–2014, precipitation experienced a statistically insignificant increasing 

trend while air temperature became warmer remarkably in the YZR Basin. Analysis of meteorological 

drought index showed that the YZR Basin had no obvious statistical trend in the occurrence number of 

dry/wet episodes, but severity of dry episode aggravated in terms of duration and magnitude. 
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