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Abstract: Wetlands provide ecosystem goods and services vitally important to humans. 

Land managers and policymakers working to conserve wetlands require regularly updated 

information on the statuses of wetlands across the landscape. However, wetlands are 

challenging to map remotely with high accuracy and consistency. We investigated the use 

of multitemporal polarimetric synthetic aperture radar (SAR) data acquired with Canada’s 

Radarsat-2 system to track within-season changes in wetland vegetation and surface water. 

We speculated, a priori, how temporal and morphological traits of different types of wetland 

vegetation should respond over a growing season with respect to four energy-scattering 

mechanisms. We used ground-based monitoring data and other ancillary information to 

assess the limits and consistency of the SAR data for tracking seasonal changes in 

wetlands. We found the traits of different types of vertical emergent wetland vegetation 

were detected well with the SAR data and corresponded with our anticipated backscatter 
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responses. We also found using data from Landsat’s optical/infrared sensors in conjunction 

with SAR data helped remove confusion of wetland features with upland grasslands. These 

results suggest SAR data can provide useful monitoring information on the statuses of 

wetlands over time. 

Keywords: synthetic aperture radar; Radarsat-2; wetlands; wetland vegetation; wetland 

mapping; wetland monitoring; radar polarimetry; Freeman-Durden decomposition;  

change detection 

 

1. Introduction 

Wetlands provide ecosystem goods and services vitally important to humans, including food, fiber, 

filtering of contaminants, sediment storage, flood control, wildlife habitat, recreation, aesthetic value, 

and others [1]. Many of these goods and services are realized at the local scale, but wetlands also 

provide important services at broader scales. Wetland-rich landscapes help regulate regional climate 

(e.g., [2]) and offer crucial habitat for intercontinental migratory species. Despite these benefits, 

wetlands have been drained extensively worldwide, mainly to provide acreage for cropland [3]. Shifts 

in climate regimes further threaten the persistence of wetlands [4]. 

U.S. and Canadian collaborators in the Terrestrial Wetland Global Change Research Network 

(TWGCRN [5]) are studying how key ecological conditions in wetland-upland landscapes change in 

relation to climate and land cover. One goal of this effort is to understand how intra- and interannual 

variations in precipitation and temperature relate to changes in landscape moisture availability, primary 

productivity, wetland habitat, and animal calling phenology and site occupancy over different temporal 

and spatial scales, and to assess how these conditions likely will change in the future. Resource 

managers and policymakers need such information to try to maintain the ecosystem services these 

landscapes provide in the face of global change (e.g., [6]).  

TWGCRN partners measure ecological conditions across a set research nodes using complementary 

information from satellite- and ground-based sensors. The satellite measurements provide a broader 

geographic perspective of ecological conditions and are integral to establishing a landscape context for 

observations on the ground. However, wetlands have proven challenging to map remotely with high 

accuracy and consistency (e.g., see results in [7–13]) because the presence of water is highly dynamic 

and overstory vegetation can obscure wetlands viewed from above [14]. Also, the spatial extent of 

many wetlands is smaller than the resolvable capacity of most civilian satellite sensors, resulting in 

pixels where wetland components are eclipsed by upland components. Aerial sensors can provide data 

of high spatial resolution, and such data have been used for decades to map wetlands in the United 

States [15], but these data are expensive both to collect and interpret (typically highly labor intensive); 

thus, the repeat cycle for data acquisition and mapping is insufficient to study interactions between 

climate variables and wetland dynamics. Scientists in the TWGCRN continue to evaluate data from 

different sensors and approaches to map wetlands with sufficient reliability, consistency, and ease of use. 

Research on wetlands by the remote sensing community often has focused on approaches that rely 

on information made available at no cost from passive optical/infrared satellite sensors, such as 
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Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) sensors on Landsat satellites and 

Moderate Resolution Imaging Spectroradiometers (MODIS) on Terra and Aqua satellites. However, 

these sensors detect energy reflected primarily from the top part of the vegetation canopy and operate 

within a part of the electromagnetic spectrum where wavelengths do not penetrate clouds, which can 

be common over wetland-rich landscapes.  

Synthetic aperture radar (SAR) technology is attractive for mapping and monitoring wetlands 

remotely. These sensors provide their own energy source to detect features on the Earth’s surface and 

therefore are not limited to sunlight hours for collecting land-cover data. SAR systems operate at 

wavelengths in the microwave portion of the electromagnetic spectrum that can penetrate cloud cover 

and, to varying degrees, vegetation canopies. These systems are well suited to detect moisture in the 

landscape because water’s high dielectric constant increases the radar reflectivity of the land surface.  

Many radar systems are designed to transmit and receive energy that is either horizontally (H) or 

vertically (V) polarized. Some satellite radar systems have offered “co-polarized” (transmitted and 

received as HH or VV) or “cross-polarized” (transmitted and received as HV or VH) data products that 

have proven useful for mapping water and monitoring flood events [7]. More advanced systems, such 

as Canada’s Radarsat-2 satellite, offer fully polarimetric data, that is, all four combinations of the 

transmission and reception planes (HH, VV, HV, and VH). These data provide a greater potential to 

harvest information about the structure and other characteristics of land-surface features by better 

capturing the ways in which the transmitted energy interacts with them. For example, four of the main 

types of energy backscatter are [16–18]: (1) no return to the radar system, which results from a 

specular (smooth) surface re-directing transmitted signals away from the radar source (e.g., calm water 

surface); (2) rough scattering, which is a single-bounce return from a non-smooth surface (e.g., choppy 

water surface or low-growing shrubs); (3) volume scattering, where radar signals are reflected by the 

surface of a canopy as well as by features beneath the surface and may represent multipath propagation 

(e.g., woodland); and (4) double-bounce scattering, which results from a right-angle reflector 

intersecting and redirecting a specular response back to the radar system (e.g., vertical emergent 

vegetation surrounded by exposed, calm water). 

We investigated the use of multitemporal SAR data acquired with Canada’s Radarsat-2 satellite, a 

C-band system operating at a frequency of 5.405 GHz (5.6 cm wavelength), to assess if we could track 

changes in the extent of surface water and development of wetland vegetation over the course of a 

growing season, as well as distinguish differences between wetter and drier years. The types of radar 

derivatives we analyzed potentially could be produced operationally to monitor the statuses of 

wetlands, but we needed to evaluate whether we could interpret characteristics and processes of 

ecological interest with these data derivatives. For this assessment we selected the Tamarac National 

Wildlife Refuge, a TWGCRN research node offering a variety of wetland types and landscape settings 

and one of the research nodes less prone to cloud cover during the growing season. This latter 

characteristic allowed us to use data from optical/infrared sensors to augment our evaluation of the 

SAR data. We also took advantage of ground-based time-series data on wetland water levels collected 

by the TWGCRN, as well as several other types of ancillary information available for this node. We 

identified, a priori, temporal and morphological/foliar traits of wetland vegetation that we anticipated 

would affect characteristics of radar signal backscatter over the course of a growing season and, 

ultimately, provide information about the status of wetlands with respect to their hydrologic and 
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biological cycles [19]. We used this collection of information to interpret whether spatiotemporal 

changes in the backscatter patterns of the SAR data over four growing seasons generally paralleled 

temporal patterns of weather (precipitation and air temperature) and water levels and spatial distributions 

of different types of wetland vegetation. 

2. Methods 

2.1. Study Area and Wetland Characteristics 

The diversity of landscape settings in the Tamarac National Wildlife Refuge (NWR) in west-central 

Minnesota, USA, offered a basis to assess how consistently SAR data could detect wetland 

characteristics of interest for a variety of conditions. The area has a mix of vegetation types and 

species indicative of boreal forest, north-central hardwoods, and tallgrass prairie and includes a rich 

collection of lakes, temporary ponds, marshes, bogs, and swamps [20] (Figure 1) at various stages of 

development along continua [19] influenced by atmospheric and subsurface supplies of water. 

Tamarac NWR was established to support the interconnected wetlands and uplands needed by 

migratory birds and other wildlife, and monitoring statuses of wetlands is a key responsibility of 

Refuge staff. 

Figure 1. Location and example photos of the wetland-rich landscape of the Tamarac 

National Wildlife Refuge in Minnesota, USA. Filled circles indicate distribution of 

wetlands monitored in situ. 

 

Tamarac NWR has irregular plains of modest relief (30–90 m) averaging around 450 m above mean 

sea level. The area is snow-covered in winter, with snow and ice often lingering well into April and 

sometimes into May. Long-term (1981–2010) daily air temperatures over the growing season have 

averaged 12 °C for May, 17 °C for June, 20 °C for July, 19 °C for August, and 13 °C for September 
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(30-year normal for Global Historical Climatology Network station USW00094967), after which the 

growing season winds to a close. Total monthly precipitation from May through September has averaged 

76 mm, 109 mm, 89 mm, 80 mm, and 71 mm, respectively. 

We focused our analysis on a set of wetland vegetation types for which we anticipated specific 

characteristics of SAR energy scattering over the growing season, based on the interplay between 

surface water and types of vertical emergent vegetation found in the Tamarac NWR (Table 1). 

Changes in water levels and growth of plants can alter relations between the scattering mechanisms as 

outlined in Table 1. For example, an increase in water level may cause an increase in double bounce if 

new vegetation is flooded or a decrease in double bounce if already-flooded vegetation becomes 

submerged. Similarly, plant growth may increase to the point of obscuring the water surface and 

decreasing double-bounce scattering while increasing volume scattering. It is these types of changes in 

the wetland conditions that we can try to monitor using SAR data. For the current study we focused 

our assessment on wetland types most likely to provide specular and/or double-bounce scattering 

detectable at C-band wavelengths. These included wetlands with no or very-low-growing herbaceous 

vegetation types and wetlands with medium to tall herbaceous vegetation types. We did not expect 

wetlands populated with low- to medium-height herbaceous vegetation types, such as sedge meadows, 

to be detected well with double-bounce scattering. In general, when water levels drop during the 

summer or for periods of prolonged drought, the low- to medium-height vegetation may no longer 

have standing water but will have wet, near-saturated soil. Although a wet soil surface will give a 

higher backscatter than a water surface, the vegetation generally is too substantial for significant 

penetration to the soil with C-band wavelengths and the backscatter will mostly be governed by the 

plants as volume or rough scattering. This backscatter intensity will be higher than for open water, but 

usually less than would occur for flooded vegetation with a significant double-bounce component. We 

also did not expect the C-band wavelengths to adequately penetrate the vegetation canopy in woody 

wetlands to provide information about underlying conditions [21], and researchers studying woody 

wetlands have had varying success characterizing seasonal changes in woody wetlands with C-band 

SAR data in (e.g., [22–24]). 

Table 1. General types of wetland vegetation in the Tamarac National Wildlife Refuge and 

anticipated qualitative energy-scattering characteristics. Note: very-low height is <0.2 m; 

low height is 0.2–0.5 m; medium height is around 1 m; and tall height is approximate ≥2 m. 

Targeted for 

current study 

Height, structure, and temporal 

characteristics of wetland vegetation 
Expected energy scattering * 

Yes 
Open water, with or without submerged 

aquatic vegetation. 

Unbroken water surface should exhibit specular 

reflectance throughout the growing season. 

Yes 

Very-low growing floating-mat 

vegetation (e.g., water lilies, duckweed, 

and pondweed). 

Vegetation cover has very low stature that conforms 

to the surface of the water. Scattering characteristics 

should be comparable to slightly roughened open 

water (likely not distinguishable from open water). 
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Table 1. Cont. 

Targeted for 

current study 

Height, structure, and temporal 

characteristics of wetland vegetation 
Expected energy scattering * 

Yes 

Medium height to tall annual vertical 

emergent vegetation  

(e.g., bulrush and wild rice). 

Water surface is not vegetated at the start of the 

growing season, but is punctuated by stems as plants 

emerge. Stem and foliar development continue over 

the season. Specular reflectance at the beginning of 

the season shifts to double-bounce scattering after 

emergent plant structures gain height and biomass 

sufficient to deflect the radar signal from/to the water 

surface. Potential to distinguish between bulrush and 

wild rice communities with multi-year monitoring 

because bulrush begins each season in the same 

locations as the previous season(s) anchored by 

underwater rhizomes while wild rice starts from seed 

each year, with emergence within a waterbody 

dependent on how wind and water distributed the 

previous year’s seeds and/or how maturing plants 

were entrained as floating mats under windy 

conditions and rising water levels. 

Yes 

Tall vertical emergent vegetation with 

perennial vertical structures (e.g., cattails). 

New stems and leaves emerge annually, 

but senesced structures from previous 

seasons remain in place for multiple 

growth cycles. 

Senesced emergent stems surrounded by exposed 

surface water should enable double-bounce 

scattering at the onset of the growing season. 

Double-bounce response could diminish as the new 

season’s stems emerge and accumulate biomass if 

the combined new and old biomass obscures the 

water’s surface. 

No ** 

Low- to medium-height annual vertical 

emergent vegetation  

(e.g., sedge meadows). 

Vegetation cover often is dense, obscuring much of 

the water’s surface and reducing the opportunity for 

double-bounce scattering. Rough-scattering response 

is likely, with occasional small areas of specular or 

double-bounce scatter where sufficient canopy 

openings occur. 

Notes: * These description are based on the assumption that wetlands retain standing water throughout the 

season and that water levels do not rise so high as to drown the vertical emergents; ** We did not target 

monitoring of this type of wetland vegetation because the opportunity for double-bounce response at C-band 

wavelengths was too limited to expect to detect these wetlands. 

2.2. SAR Data 

We acquired multitemporal SAR data for 2009–2012 collected with Radarsat-2’s Fine Quad 

Polarization Beam mode (Table 2; [25]). This mode provides fully polarimetric imaging, with a 

nominal spatial resolution around 8 m (5.2 m range and 7.7 m azimuth) and an effective spatial 

resolution around 30 m after filtering for image speckle (noise). All acquisitions were right-looking, 

single-look complex data from descending orbits. 
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Table 2. Overpass dates for Radarsat-2 synthetic aperture radar (SAR) imagery. Data for 

2009 were acquired with Fine Quad Beam 12 (FQ12) *; data for all other years were 

acquired with FQ2 *. 

Year 1st overpass 2nd overpass 3rd overpass 4th overpass 

2009 15 May ** 2 July 26 July 12 September 
2010 20 May 13 June ** 31 July 24 August ** 
2011 15 May ** 8 June ** 26 July ** 12 September ** 
2012 2 June 20 July ** 13 August ** 6 September 

Notes: * FQ12 has a near incidence angle of 31.3° and a far incidence angle of 33.0°; FQ2 has a near 

incidence angle of 20.0° and a far incidence angle of 21.8°; ** Post-acquisition visual examination of SAR 

image revealed windy surface conditions present during the overpass; however, no local data were available 

on wind speeds. 

We produced two types of output with the SAR data from each overpass: a thematic binary map of 

open water and layers for each of three major types of energy scattering. We followed procedures 

described in White et al. [26] to map open water. These steps included: (1) selecting HV polarization if 

there was visual evidence of windy conditions in the Radarsat-2 image, or HH polarization if wind was 

not apparent; (2) applying a 5 × 5 high-pass filter to the HH or HV data to enhance edges and sharp 

features in the image; (3) applying a 3 × 3 low-pass filter to the HH or HV data to smooth image noise; 

(4) rescaling results from each filter (i.e., the “edge” results and the “smooth” results) to decibel range; 

(5) manually selecting thresholds that distinguished water from non-water features in the rescaled 

results; (6) merging information across results into a single binary map of open water; and (7) applying 

a 3 × 3 modal filter to further clean the map of open water. 

We mapped types of energy scattering with the Freeman-Durden decomposition approach [17], 

which is well suited for identifying vertical emergent vegetation via the double bounce output channel. 

We used the PSFREDUR utility within the PCI Geomatica© software package (version 10.3.2) to 

partition the total power of each image pixel of the fully polarimetric SAR data into contributions from 

double-bounce, volume, and rough surface scattering responses. We selected this approach based on 

previous evaluation of several decomposition approaches [27] and because the direct relation of output 

to major energy-scattering mechanisms made interpretive sense within the context of vegetation structure 

and phenology and other environmental characteristics related to climate and moisture availability. 

2.3. Ancillary Data 

We used data from several sources to interpret and, to the extent possible, validate the information 

content and consistency of the SAR-derived maps of open water and polarimetric decompositions.  

We compiled data on water levels monitored at hourly intervals in situ at the deepest location per 

wetland for a set of wetlands located throughout the Tamarac NWR (see Figure 1). These ten wetlands  

(note, only four were instrumented in 2009) were selected by TWGCRN investigators using an 

unbiased randomized block design based on whether wetlands were wood frog (Lithobates sylvaticus) 

habitat; the area of inference therefore includes all such wetlands (which typically are palustrine with 

emergent vegetation) in Tamarac NWR. These monitored wetlands are smaller in size than wetlands 

we expected to map with the SAR data and are highly sensitive to evapotranspiration. They may dry 
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completely by the end of summer while moderate-sized to larger wetlands continue to hold water.  

In this way the monitored sites serve as a general indicator of relative changes in moisture status across 

the Tamarac NWR.  

We acquired data on total precipitation and average air temperatures from the closest weather 

station (Detroit Lakes, Minnesota, Remote Automated Weather Station, identification NWSID 212201) 

for which daily data were available with little or no interruption in collection from 2009 to 2012 [28].  

We had access to an unpublished, detailed digital vegetation map (minimum mapping unit 0.4 ha) 

developed for the Tamarac NWR by analysts at the USGS Upper Midwest Environmental Sciences 

Center from color-infrared aerial photographs acquired 25 September 2005 (scale 1:15,840). We also 

acquired a detailed digital map of wetlands (minimum mapping unit around 0.4–1.2 ha, depending on 

landscape setting [29]) classified from 1982 aerial photography as part of the U.S. Fish and Wildlife 

Service’s National Wetlands Inventory (NWI) project [15]. We obtained available high-resolution  

(1 m spatial resolution) color orthoimagery from overflights on 26 June 2009 and 9 July 2010 (two of 

our study years) and from 13 July 2005 (year of the unpublished vegetation map) through the U.S. 

Department of Agriculture’s National Agriculture Imagery Program [30,31]. Finally, we downloaded 

all available non-cloudy satellite data from Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced 

Thematic Mapper (ETM+) sensors (30 m spatial resolution) for each growing season from 2009 to 

2012 (Table 3; [32]). We were fortunate that these years were largely cloud-free over Tamarac NWR, 

as clouds were a pervasive problem in Landsat imagery for 2013, where the first clear growing-season 

overpass did not occur until 6 September. 

Table 3. Overpass dates for Landsat sensor data for the scene defined by Path 29/Row 027. 

Sensor 2009 Sensor 2010 Sensor 2011 Sensor 2012 

ETM+ 22 May ETM+ 25 May TM 5 June ETM+ 14 May 
TM 30 May TM 18 June ETM+ 29 June ETM+ 1 July 
TM 1 July ETM+ 28 July ETM+ 31 July ETM+ 2 August 
TM 18 August TM 5 August TM 24 August ETM+ 18 August 

ETM+ 26 August ETM+ 29 August TM 9 September ETM+ 26 August 
TM 19 September     ETM+ 3 September 

2.4. Evaluation of SAR Data Derivatives 

We used a combination of approaches for a multiscale assessment that capitalized on available field 

and remote data to learn: (1) if our expectations were met for within-season backscatter responses from 

different wetland vegetation types (per Table 1); (2) how consistently the same wetland features could 

be recognized from year to year; (3) the lower size limits for which these features could be mapped; 

(4) the types of landscape features associated with false detections; and (5) how well we could 

integrate information across SAR products to derive a seasonal summary of the status of wetlands in 

the Tamarac NWR. 

We compared the SAR open water maps and polarimetric decomposition layers with orthoimagery 

from 2009 and 2010 and the Tamarac NWR land-cover map derived from 2005 air photos.  

We conducted an informal visual assessment of the types and sizes of wetland features we could 

distinguish from the SAR products. We looked for upland landscape features that had backscatter 
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responses similar to those from wetland features to evaluate if there were parts of the growing season 

when the upland features were less likely to be confused with wetlands.  

We tested the accuracy of two maps of open water by comparing orthoimagery acquired on 26 June 

2009 with the SAR water map for 2 July 2009 and orthoimagery acquired on 9 July 2010 with the 

SAR water map for 31 July 2010. We used ArcMap software (ESRI® ArcMap 10.0) to select 1000 

point locations at random (“Create Random Points” utility) across the Tamarac NWR, specifying only 

that no two locations could be closer than 100 m apart. We then categorized each point location as 

water or non-water from the orthoimagery. We labeled a location as “water” if it had water with no 

vegetation, submerged aquatic vegetation, or floating mats of very-low growing vegetation, as we 

expected all these conditions to exhibit responses consistent with specular surfaces. We eliminated  

20 point locations that were on land/water boundaries or along the edge of the SAR image extent, and 

assessed how many of the remaining 980 locations were identified correctly as water/non-water in the 

SAR water maps. 

At a broader scale we generated time-series graphs to compare whether refuge-wide temporal 

changes in total area of open water mapped with SAR data corresponded with information from 

weather records and wetland hydrographs. We used monthly estimates of the Palmer Drought Severity 

Index [33] for the northwestern climate division of Minnesota (which contains the Tamarac NWR), 

downloaded from the National Oceanic and Atmospheric Administration [34], to inform our 

expectations for water in the landscape. This drought index is based on principles of the balance between 

moisture supply and evapotranspiration demand, and indicates the severity of a wet or dry spell. 

Developing Wetland Summaries 

We used results from our evaluations of SAR derivative outputs to guide two general approaches to 

integrate information to compile a summary map of wetlands for each year. We relied only on SAR 

data derivatives for one approach (Figure 2) and complemented the SAR derivatives with data from 

optical/infrared sensors aboard Landsat satellites for the other approach (Figure 3). We could avoid 

relying on data dependent on daylight and cloud-free conditions with the first approach, which is 

important for regions often covered by clouds. The use of data from optical/infrared sensors, where 

feasible, enhances the ability to differentiate wetland features from uplands.  

For both approaches we merged all pixels classified as water for any of the four overpasses per year 

to represent the maximum extent of water for the growing season (Figures 2a and 3b). We treated the 

maximum water extent as background against which we overlaid pixels we identified as vertical 

emergent vegetation (Figures 2h and 3i). This loosely reflected the process of open water becoming 

overtopped by vertical emergent canopies during a growing season. We examined the rough-scattering 

decomposition layers to identify windy overpass dates because wind is detrimental to the right-angle 

geometry needed for double-bounce response from non-woody plants in wetlands. We developed a set 

of criteria based on characteristics from Table 1 to identify pixels exhibiting the expected responses for 

different types of wetland vegetation, avoiding the use of imagery from windy dates, when we had the 

choice. We based all criteria on response thresholds we selected manually to extract: (1) high-intensity 

double-bounce scattering at the beginning of the growing season, decreasing over the remainder of the 

season (potential to capture senesced cattails [Typha angustifolia and T. latifolia] as well as less 
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densely vegetated parts of bogs and swamps; Figures 2b and 3c); (2) moderate to high increases in 

double-bounce response between early-season and peak-season overpasses (potential to capture 

bulrush [Schoenoplectus spp.], wild rice [Zizania aquatica and Z. palustris], and low-density areas of 

cattails; Figures 2c and 3d); (3) high-intensity double-bounce scattering by late season (potential to 

capture fully developed biomass for bulrush, wild rice, and low-density areas of cattails, particularly if 

windy overpasses compromised results from the image-differencing of early- to peak-season changes in 

response; Figures 2e and 3f); and (4) somewhat low increases in double-bounce response between early 

and peak season overpasses in locations also classified as water by the water-mapping algorithm (for HH or 

HV data) for both early- and peak-season dates (potential to capture bulrush, which would not yet have 

developed much biomass by peak season; Figures 2d and 3e). We combined results from the (assumed) 

vegetation responses into an annual composite of vertical emergent vegetation (Figures 2f and 3h). 

Figure 2. Processing steps to generate summary maps of wetlands for each year using only SAR data. 
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Figure 3. Processing steps to generate summary maps of wetlands for each year using data 

from SAR and Landsat sensors. 

 

Our two approaches for compiling summary maps diverged in how we handled potential errors of 

commission in mapping open water and wetland vegetation. Errors of commission can result from 

image speckle or from upland land-cover types exhibiting backscatter responses comparable with 

wetland features. Image speckle (noise) is inherent in radar data from sources in both the environment 

and the radar system equipment. The speckle has an observable spatial grain throughout the image. For 

the first approach (i.e., limited to SAR data) we calculated the areal extent for each patch of contiguous 

vegetation pixels meeting our criteria for double-bounce responses, then retained only those patches 

distinctly larger than the grain size of the image speckle (Figure 2g). For the second approach, where 

we supplemented SAR data with data from Landsat sensors, we used early-season information from 

the near-infrared part of the energy spectrum, a critical region for discriminating moisture [35]. We 

compared surface responses in the near-infrared band of Landsat TM and ETM+ data, calibrated to 

top-of-atmosphere reflectance (per [36,37]), with maps of wetlands as a preliminary step to proceeding 
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with this approach. We found the spatial patterns of near-infrared responses in early-season Landsat 

sensor imagery were very similar to the geographic patterns of wetland types of interest we identified 

in the 2005 land-cover map for the Tamarac NWR (Figure 4). Later in the growing season, after the 

deciduous vegetation canopy was fully developed and occluded the ground surface, the near-infrared band 

became less informative about the moisture conditions of the substrate. We therefore used early-season 

imagery to stratify dry areas from potentially moist areas for mapping wetland vegetation. We also 

examined the correspondence between patterns of low near-infrared response with the distribution of 

wetlands available from the NWI. We found reasonable similarity between near-infrared patterns of 

response and the NWI distribution of wetlands, but the classification scheme used for the NWI did not 

permit us to differentiate our wetland types of interest from those of non-interest. 

Figure 4. Comparison of early-season near-infrared (NIR) band reflectance (a) in 2011 

with the distribution of water/wetlands from the 2005 land-cover map; (b) Low values of 

NIR reflectance (≤0.24 for this Landsat image date) coincided well with areas of 

water/wetlands; (c) including types of interest and those not targeted for the current study 

(refer to Table 1). 
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We used qualitative visual clues to manually selected a threshold level of reflectance for each 

Landsat date to stratify the imagery into areas that could have been moist (i.e., that exhibited low 

reflectance in the near-infrared band, where water absorbs energy) versus areas that likely were dry 

(i.e., that exhibited higher reflectance than the “moist” areas). We then appended our double-bounce 

criteria to require that pixels indicating potential wetland vegetation must be located within areas 

identified with Landsat data as “potentially moist” (Figure 3g).  

As part of our second approach we also applied Landsat moist/dry landscape filters to reduce 

potential errors of commission in the maps of open water (Figure 3a). We selected the closest matching 

date of available Landsat TM or ETM+ imagery for each date of Radarsat-2 imagery to derive a 

separate mask per date to eliminate pixels classified as open water that were located in areas exhibiting 

near-infrared reflectance indicative of dry conditions. 

The Landsat-7 ETM+ sensor’s faulty scan line corrector results in data gaps in the form of east-west 

image stripes that increase in width with increasing distance away from the central, north-to-south, 

swath of the image. Tamarac NWR is near the center of the swath track, which minimized data loss in 

cases where the most appropriate image was from a Landsat-7 overpass. Whenever we used data from 

the ETM+ sensor we filled data gaps with information from the closest subsequent or preceding date of 

cloud-free Landsat data. This solution is not ideal for characterizing environmental conditions with 

temporal dynamics finer than the overpass frequency, but we preferred this remedy to having no 

information for the data gaps. 

3. Results 

3.1. Evaluation of SAR Maps of Open Water 

Rates of accuracy for mapping open water were 96%–98% for the 2009 date we tested and 97%–99% 

for the 2010 date, based on a 95% confidence interval for a normal approximation to a binomial 

distribution [38]. Main sources of error were grassy fields that routinely were classified as water, 

regardless of year or time of season (commission errors), inconsistent detection of waterbodies smaller 

than 100 m in the longest dimension (omission errors), inability to detect waterbodies beneath forest 

canopies (omission errors), and consequences inherited from a single threshold of energy backscatter 

selected to distinguish water from non-water (commission and omission errors). We addressed errors 

associated with confusing wetlands with upland grasslands by applying the near-infrared band filters 

we developed from best-match dates of Landsat data (Figure 5). The areal extent of this type of error 

of commission varied from date to date. We visually confirmed the near-infrared band filters were 

successful at removing grasslands routinely misinterpreted as open water from the water maps, but we 

had no good way to quantify the level of improvement.  

Annual trajectories of total area mapped as water (after applying Landsat moist/dry filters) for each 

radar overpass were consistent with much, though not all, of the major temporal patterns in weather 

and water levels. In general, the SAR water derivatives showed the seasonal draw-down of water 

levels typical for this part of the country. The usual progression is for spring snowmelt and rainfall to 

fill wetlands early in the growing season when ground frost is present, deciduous vegetation is not 

fully leafed-out, and air temperatures still are relatively cool. Subsequent lengthening of diurnal 
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photoperiod, warming of air temperatures, and development of the deciduous canopy all increase the 

demand on evapotranspiration, drawing down water supplies. Each of our study years offered its own 

variations on the combination of conditions that affect water levels. For example, annual accumulated 

precipitation was similar for 2011 and 2012 (although 2012 did tend to have larger precipitation events 

than did 2011), with neither year receiving much precipitation after mid-July (Figure 6a). A big 

difference between these years was that 2011 followed a very wet year and 2012 followed a dry year. 

In addition, air temperatures in 2012 were exceptionally high, resulting in drought conditions (Figure 6b), 

as evidenced by water drying in nearly all monitored wetlands that year (Figure 6c). The SAR maps 

showed similarities in extent of open water early in the season during 2011 and 2012 and captured the 

subsequent extraordinary drying of surface water in 2012 (Figure 6d).  

Figure 5. Errors of commission in a map of open water derived from the SAR overpass of 

8 June 2011. The water map generated with the initial algorithm we applied to HV data (a) 

included areas of grassy fields (encircled in yellow in (b)), a common outcome for nearly 

all dates of all years (the appearance of the area in (b) circled in blue, although similar to 

grassland, was turbid water). Landsat Thematic Mapper data for 5 June 2011 show that 

land-surface reflectance in the near-infrared (NIR) band was higher in the grassy areas than 

in areas of water/wetlands (c), enabling us to address this type of commission error with 

simple thresholding of the Landsat data (d). 
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Figure 6. Ground-based information on moisture versus extent of open water mapped with 

SAR data complemented with Landsat near-infrared data. Graphs of precipitation input (a) 

show interannual differences in delivery of water, both in individual events and in 

cumulative totals. The interplay between air temperature, moisture availability, and 

photoperiod affected the demand for evapotranspiration and resulted in varying drought 

status over time (b). Hydrographs for wetlands monitored in situ (c) corresponded with the 

changing conditions recorded in the precipitation record and with the estimated drought 

status (note: each colored line represents a different monitored wetland, and the same color 

is used for the same wetland across years). Total amount of water mapped with SAR data 

(d) captured some, but not all, of the general patterns of changing conditions in moisture 

availability. Note regarding (b): negative values of the Palmer Drought Index denote dry 

spells and positive values indicate wet spells. Values 0 to −0.5 = normal conditions; −0.5 to 

−1.0 = incipient drought; −1.0 to −2.0 = mild drought; −2.0 to −3.0 = moderate drought; 

−3.0 to −4.0 = severe drought; and greater than −4.0 = extreme drought. Similar adjectives 

are used for positive values of wet spells. 
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Environmental conditions during the growing season in 2009 followed the classic cycle of spring 

filling of wetlands and subsequent decline in water levels over the course of summer, as shown in the 

wetland hydrographs (Figure 6c). Delivery of precipitation was fairly even throughout the growing 

season, but events usually were small (Figure 6a). We have no clear ground-based evidence from the 

hydrographs to explain the slight rise in the trajectory of the water extent from the second to the third 

SAR overpass in 2009 (Figure 6d), but the increase in mapped water was only 50 hectares and might 

be attributable to error/noise in the data rather that changing landscape conditions. 

The temporal trajectory of water for 2010 was less straightforward to interpret from the SAR maps. 

In 2010 the snowpack melted soon after the start of March, which is early for the Tamarac NWR. 

There was little spring rainfall to fill wetlands (Figure 6a), nor was the previous year particularly wet. 

Several of the monitored wetlands began the season with lower water levels than in adjacent years 

(Figure 6c). Substantial rainfall began in mid-April, and July through August brought some very high 

precipitation events. Water levels in monitored wetlands were upward-trending over the season (Figure 6c), 

and from June onward, the cumulative precipitation was much higher in 2010 than in the other years 

(Figure 6a). The Palmer Drought Index estimated notably moist status at the beginning of the growing 

season in 2010 (i.e., there was enough moisture to meet the demand for evapotranspiration from the air 

temperatures), climbing to extraordinarily moist conditions by the end of the season (Figure 6b). The 

trajectory of surface water from the SAR maps reflected the drier start of the season and the delayed 

filling of the wetlands, but did not provide evidence for the substantial increase in moisture availability 

indicated by the weather data and wetland hydrographs. Some potential reasons the SAR water maps 

did not capture the wet conditions of the latter half of the 2010 growing season are: changes in water 

levels did not affect a wide enough swath along the margins of wetlands for the spatial resolving 

capacity of the sensor and/or for the algorithm used to map open water; the overstory vegetation 

canopy, once fully developed, obscured changes in the understory extent of surface water; very-low 

growing, floating-mat vegetation, such as duckweed and pondweed, so heavily obscured the 

underlying water by late summer that the surface became a rough target rather than a smooth target to 

the radar (the thresholding technique we used to map open water assumes smooth surface scattering); 

and/or the level of error introduced by subjective selection of thresholds when developing the water 

maps exceeded the amount of change in the extent of open water. 

3.2. Evaluation of SAR Polarimetric Decomposition Layers 

Annual time series of polarimetric decompositions developed with the Freeman-Durden approach 

revealed patterns of double-bounce scattering that aligned with our expectations for wetland vegetation 

morphology and phenological traits. We used the 2005 land-cover map, orthoimagery from 2005, 

2009, and 2010, and our collective field experience at the Tamarac NWR to visually evaluate the 

decomposition output. Wetlands having no emergent vegetation or having very-low growing mats of 

vegetation remained free of double-bounce response over the season (Figure 7—example type 1). 

Areas that began the season with no double-bounce return, but developed a strong response by the 

peak or latter part of the season, were associated with stands of vertical emergent vegetation, typically 

wild rice, bulrush, and low-density zones of cattail. Bulrush was slower than wild rice to develop 

enough biomass for intense double-bounce return; hence, areas with bulrush were still being identified 
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as open water (by the water algorithm) or as having low-intensity double-bounce backscatter as late as 

the peak of the growing season (Figure 7—example type 2). Wild rice, in comparison, had high-intensity 

backscatter by peak season (Figure 7—example type 3). Areas exhibiting a strong double-bounce 

return at the beginning of the season that showed a strong decrease in return by the end of the season 

were associated with dense stands of cattails or with woody wetlands such as tamarack bogs or alder 

swamps. Patterns of double-bounce scattering were spatially cohesive in cattail stands (Figure 7—example 

type 4), but diffuse in the woody wetlands. Low-density areas of cattails, such as along the advancing 

edge of a stand, had backscatter responses similar to wild rice and abutted an existing dense stands of 

cattails (Figure 7—example type 5). 

Figure 7. Changes in intensity of double-bounce backscatter over the 2009 growing 

season. (a) Early-season overpass on 15 May; (b) peak-season overpass on 26 July;  

(c) late-season overpass on 12 September; and (d) difference between peak- and early-season 

intensity of double-bounce backscatter. Example types correspond with those referenced in 

Section 3.2. 
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We observed that early-season patterns of double-bounce backscatter generally included more noise 

from upland vegetation than in subsequent overpass dates. Prior to leaf-out, the trunks of trees rising 

from a bare understory provided double-bounce characteristics not unlike vertical emergent vegetation 

in wetlands. We also observed we could distinguish meaningful wetland vegetation features as small as 

25–30 m in width in images representing double-bounce backscatter. 

3.3. Integrating Information for Wetland Summaries 

Developing wetland summary maps with only SAR-based data made it more difficult to remove 

noise from the data. We used a size threshold to remove all patches of potential vertical emergent 

vegetation that were at or smaller than the grain of the speckle pattern in the images. With this criterion 

we could retain features ≥5 ha in size, which represented only a few, large areas of wetland vegetation. 

Reducing the size threshold enabled us to retain more stands of vertical emergent vegetation, but also 

included many spurious patches not associated with wetlands. 

We were much more successful in retaining wetland features in seasonal summary maps when we 

incorporated Landsat sensor data to help filter noise (Figure 5). Major patterns of water and wetland 

vegetation in our maps recurred across years, though there were interannual variations in details caused 

by actual changes in environmental conditions (areal expansion of vegetation communities and 

variations in water levels that affected vegetation emergence and development) as well as by artifacts 

from seasonal timing and wind conditions for Radarsat-2 overpasses (Figure 8). Nearly half (47%) of 

all pixels mapped as vertical emergent vegetation at some point during 2009–2012 were classified as 

vegetation in multiple years, and the patterns of the number of years a pixel was mapped as vegetation 

make interpretive sense, given variations in water levels (Figure 8). Most of the patterns for the 

number of times a pixel was mapped as water from 2009 to 2012 are related to them being mapped as 

vertical emergent vegetation in the other years. Exceptions are small areas in the southern part of the 

refuge that were mapped as water only once, but never as vertical emergent vegetation (see circled 

patches in Figure 8). These are grassy areas originally mapped with SAR data as open water in all 

years, but eliminated with the Landsat moisture threshold for years 2009–2011. In 2012 these areas 

had low reflectance in the near-infrared band at the beginning of the season (i.e., potentially were 

moist), which allowed them to be retained in the annual map as open water.  

Seasonal summaries we generated with the steps diagrammed in Figure 3 showed distinctions 

among vegetation types and performed best when overpass dates were well distributed with respect to 

key periods of the growing season and there was little ambient wind to interfere with data collection, 

such as in 2009 (Figure 9). Early season, high-intensity double-bounce scattering (that subsequently 

decreased over the season, see Figure 7) occurred as fairly cohesive patches for stands of cattails, and 

as smaller, more diffuse patches in tamarack bogs and alder swamps. Areas showing moderate to high 

increase in double-bounce response between early- and peak-season periods often coincided with 

stands of wild rice. Areas having high-intensity returns later in the season, but that didn’t exhibit a high 

magnitude of change by peak season, tended to be bulrush, which has less biomass and dimensionality 

in structure than wild rice and probably did not develop sufficient biomass for double-bounce returns 

until late in the season. A few, very small, patches of bulrush in 2009 met our algorithm criterion for 

being mapped as open water for both early- and peak-season overpasses while also exhibiting low 
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increases in double-bounce response in the polarimetric decomposition layers between those dates 

(Figures 2d and 3e). In other years, we observed more patches meeting this particular combination of 

criteria, which may have resulted from interference from wind or to sparser distribution of vegetation 

stems per unit area from seasonal differences in environmental conditions. 

Figure 8. Map showing the number of years for which a pixel was classified as vertical 

emergent vegetation or water. 

 

Our wetland summary maps depicted patterns that generally corresponded visually with those from 

the 2005 land-cover map (e.g., Figure 9). There was fairly strong agreement in patterns associated with 

distributions of cattails and wild rice, as well as with the suggestion of patterns of woody wetlands 

where water levels and canopy openings permitted early-season double-bounce returns. Bulrush  

was not among cover types mapped in the 2005 land-cover classification, which is not surprising 

because the foliage does not have enough biomass to be distinguishable in color-infrared air photos, 

but informal field reconnaissance we conducted verified the presence of bulrush (e.g., Figure 9,  

photo 1), as well as other vegetation types (Figure 9, photos 2–4), for selected locations throughout the 

Tamarac NWR. 
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Figure 9. SAR seasonal summary map for 2009 (a) and the land-cover map developed 

from 2005 data (b). These maps show how the spatial distributions for different temporal 

characteristics of double-bounce backscatter compare with the distributions of wetland 

vegetation types from the land-cover map. Photo 1—bulrush; photo 2—large stand of 

cattails; photo 3—expanse of wild rice edged with narrow strips of cattails; photo 4—mix 

of wild rice and cattails established along a drainage. 

 

4. Discussion  

We are interested in monitoring the dynamics of wetlands because they provide critical ecosystem 

services and because land-cover conversion and climate change threaten their persistence worldwide. 

Understanding how seasonal weather interacts with different hydrologic and land-cover settings to 

affect water dynamics is critical for discerning effects of climate change on wetlands. Wetlands 

naturally cycle through periods of flooding and drought that influence fluctuations and succession and 
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that are important for maintaining ecological processes and functions [19]. Tracking longer-term 

changes in the vegetation characteristics and water levels of wetlands is informative about their 

successional status and ability to provide various ecosystem services, such as habitat or, as with the 

Tamarac NWR, an annual crop of wild rice (which is harvested by Native Americans). 

We investigated the potential to use SAR data derivatives that could be produced semi-operationally 

for open water and types of energy-scattering to monitor extent of surface water and emergence, 

growth, and senescence of wetland vegetation. Interest in operational remote monitoring of wetlands is 

not unique to us. For example, the National Aeronautics and Space Administration (NASA) has funded 

a global-scale project to produce maps of inundation (i.e., fraction of land inundated with water) as a 

step towards operational monitoring of wetlands. These maps are being derived at a spatial resolution 

of approximately 25 km × 25 km with data from coarse resolution passive and active microwave 

sensors and optical/infrared sensors [39]. Our work targets finer spatial scales and informational detail 

relevant for resource managers charged with conserving wetlands to maintain ecological functioning, 

such as providing habitat for wetland-dependent species. 

Use of SAR data to map water extent is not new [40,41], but recent availability of fully polarimetric 

SAR data is fostering new capabilities to monitor changes in wetland vegetation [8,42,43].  

We incorporated data from Landsat’s optical/infrared sensors with SAR data to improve the accuracy 

of our wetland maps. Other researchers also have integrated data from optical/infrared and SAR 

systems to improve results of mapping wetlands (e.g., [44]), including the use of thresholds in the 

near-infrared band (e.g., [45]). We built upon this body of research by identifying specific annual traits 

of vegetation emergence, growth, and senescence that could be monitored with fully polarimetric SAR 

data. Outcomes from our work provide more specific information about tracking within-season 

development of wetland vegetation, as well as the potential to map vegetation types, to respond to 

information needs for those responsible for wetland conservation (e.g., [6]). 

The method we implemented to map open water incorporated spatial resampling via a low-pass 

filter to reduce data noise and edge detection via a high-pass filter to identify land-water interfaces. 

Output from both steps required manual selection of a threshold of backscatter to distinguish water from 

non-water. We measured high rates of classification accuracy for water maps generated for two overpass 

dates. However, confusion of grasslands with open water and effects from over- or under-representing 

water because of the subjective selection of thresholds hindered our use of the maps for measuring 

changes in extent of open water over time. We filtered errors of commission with simple thresholding 

of Landsat data to exclude pixels routinely mapped as water that coincided with areas having levels of 

near-infrared reflectance indicative of upland or dry conditions. We lacked data appropriate to quantify 

levels of improvement these filters provided to our water maps, but confirmed visually with 

orthoimagery and topographic information that the resultant water maps no longer included obvious 

patches of upland grassland. We then compiled water information from the “filtered” maps to assess 

seasonal water dynamics at the scale of the Refuge. Our graph of extent of open water across the 

Tamarac NWR (Figure 6) showed a general annual pattern of greater amounts of open water at the 

beginning of the season, decreasing over the summer due to growth of emergent vegetation (water still 

present, but specular reflectance replaced by double-bounce response), and losses from evapotranspiration, 

runoff, and subsurface flow. Extent of open water mapped for 2012 was noticeably lower than for the 

other three years, which we would expect based on the Palmer Drought Index and wetland water levels 
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that showed the majority of monitored sites went dry in 2012. Years 2010 and 2011 showed an upturn 

in open-water extent after mid-season (approximately after day 200 in Figure 6d), which corresponded 

with information in wetland hydrographs, but the minor uptick in open water mapped with SAR data 

for mid-2009 may have been due to mapping error, rather than changes in landscape conditions. 

Additional overpass dates would have helped us determine if this mapped increase in extent of open 

water was an artifact of mapping error or was supported across more dates of imagery. 

We selected thresholds manually for the near-infrared data from Landsat sensors, which meant our 

results were susceptible to the same issues we faced with thresholds selected manually to map water 

with the SAR data. More objective methods exist for using Landsat data to map moisture  

(e.g., [11,46]), but results have been inconsistent or the methods are labor-intensive. We used only the 

near-infrared band from Landsat to stratify potentially moist areas because that part of the spectrum is 

highly informative about moisture in the landscape. However, other phenomena unrelated to moisture 

can exhibit similar responses in near-infrared wavelengths. Our results provided examples in the 

southern part of the Tamarac NWR, where grassy fields that had been burned just prior to the 2012 

growing season had near-infrared reflectance responses similar to moist areas (Figure 8, circled areas). 

This type of problem can be minimized by incorporating additional Landsat data (e.g., from the  

thermal-infrared band) or ancillary data on burned areas (e.g., the MODIS Burned Area Product, available 

with near global coverage—although, this operational product has a spatial resolution of 1 km2 [47]). 

The years 2009–2012 provided extraordinary circumstances for studying moisture in wetlands of 

the Tamarac NWR. The growing season of 2009 had the greatest moisture surplus on record (dating 

back to 1895), as estimated by the Palmer Drought Index, and the growing season of 2012 was the 

10th most droughty year by the same measure. This wide range of growing conditions was juxtaposed 

against different winter snowpacks and a very shallow depth-to-groundwater, resulting in a complexity 

of interactions reflected by our wetland hydrographs. All of this illustrates the importance of a 

monitoring system with complementary ground-based and satellite-borne sensors, as well as methods 

that are more automated and less subjective to produce results sufficiently consistent and accurate for 

operational monitoring. The science community continues to investigate more effective methods to 

automate mapping of surface water and flooding via temporal comparisons of SAR data to detect 

change (i.e., before and after flooding), use of optical data and land-cover classifications to identify 

areas more prone to flooding, and use of fine scale, high-precision elevation data to delineate terrain 

areas where flooding can occur [48–50]. 

We acquired SAR data from Radarsat-2’s Fine Quad Polarization Beam mode, but these fully 

polarimetric data were not required for mapping open water. Data sent and received in horizontal 

polarization are sufficient for mapping water under non-windy acquisition conditions, and dual 

polarization (HV) data can be used successfully when wind is a factor [51]. We observed no obvious 

impact to water maps we derived from data acquired during windy overpasses. Factors that did limit 

our ability to map water were SAR system wavelength and the method we used to reduce data speckle. 

Radarsat-2’s C-band wavelengths could not penetrate far enough into the closed woody canopies of the 

Tamarac NWR to provide information about water in the woodland understory. Longer wavelengths, 

such as the L-band system on ALOS-2, are better suited for such vegetation cover. The spatial 

averaging filter we used to reduce image speckle in the radar data substantially decreased the 

resolvable scale for water features; although we could detect waterbodies as small as 30 m in width, 
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those we mapped with consistency across space and time were 100 m or larger in width. A near-term 

solution to resolve smaller waterbodies is to acquire data from beam modes of higher spatial 

resolution, such as Radarsat-2’s Spotlight mode, which has a nominal resolution around 1 m and, after 

spatial filtering, can resolve wetlands as small as 5 m in width (or likely around 10 m with 

consistency). The tradeoff for data of higher spatial resolution is a narrower swath width per overpass, 

increasing the number (and temporal separation) of side-lapping overpasses needed to cover an area of 

interest. The Spotlight mode also is not available as fully polarimetric data, limiting its use for 

mapping vegetation. Another option is to densify the time-series data stack sufficiently to implement 

temporal resampling, rather than spatial resampling, to reduce data speckle. This approach is becoming 

progressively more practical with the Radarsat Constellation Mission planned by the Canadian 

Government (designed to provide temporal coverage allowing for daily imaging over most of the 

Earth’s surface), the European and Asian SAR missions in place and planned, and an evolution in the 

business models for data distribution towards no- or low-cost availability of SAR data. 

Fully polarimetric SAR data were necessary to decompose the scattering mechanisms we used to 

detect characteristics of vegetation emergence, growth, and senescence. We found the results showed 

potential to distinguish among vegetation types, which is encouraging for monitoring ecological 

dynamics. We used the Freeman-Durden approach to decompose the radar response signals into three 

main types of energy scattering, which we found straightforward to interpret with respect to our 

ecological knowledge of wetland features in the Tamarac NWR. There are other methods to 

characterize energy scattering with fully parametric data (some examples are listed in [8]), and these 

also may prove useful for applications like ours. Our results can be used to inform strategies for field 

campaigns to validate SAR-derived wetland maps, such as in considering resolvable area of features, 

vegetation morphology (complexity and robustness of vertical structures), stage of annual 

development, plant density per unit area, vegetation stand extent and shape, and water levels at the 

time of the SAR satellite overpass.  

The vegetation features we could resolve consistently across years with the double-bounce response 

layers were fairly small (25–30 m in width) when we used Landsat data to filter errors of commission. 

At this resolution we were able to map the relatively narrow bands of vegetation often found along the 

edges of wetlands where water levels are shallower. We capitalized on temporal changes in vegetation 

structure and plant density to derive seasonal summary maps of reasonable spatial resolution for 

representing wetland habitat. We lacked data appropriate for a formal accuracy assessment or 

validation of the summary maps, given the available land-cover map was developed with imagery from 

2005 and we are studying features that change annually in extent and density per unit area.  

We observed general agreement in patterns of wetland vegetation we mapped versus the 2005 land-cover 

map. Post-analysis informal reconnaissance of areas of disagreement revealed changes in vegetation 

cover since 2005 that supported the results we obtained with the SAR data (e.g., Figure 9).  

Seasonal maps we generated without the benefit of Landsat data retained all errors of commission 

for open water (such as several sizeable grassland areas) and included only the largest (≥5 ha) 

contiguous patches of vertical emergent vegetation, as we spatially removed patches smaller than the 

grain size of the background noise pattern. These results might be useful for tracking changes in 

wetlands at broad regional to continental scales, but are less useful for scales at which land-management 

decisions are made. Given Landsat data are freely available and the archive dates back several decades, 
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it is worthwhile to consider incorporating Landsat data into the wetland mapping procedures to help 

improve results. We experimented with two methods that could be used to generate Landsat moist/dry 

landscape filters for cloud-prone areas. For one method we searched the Landsat data archive [32] back 

through time to obtain an early-season overpass for the wettest possible year that provided cloud-free 

conditions to represent the maximum extent of landscape likely to include wetlands. We applied the 

filter we developed from this date to all SAR-derived water maps to reduce errors of commission.  

This approach would be feasible as long as current/future environmental conditions are not 

substantially wetter than those represented by historical wet conditions. For a second method we 

averaged the Landsat sensor data for the near-infrared band across early-season images from 2009 to 

2012 to develop a single wet/dry filter from the results, which we then applied to all SAR-derived 

water maps. This method provided one, generally representative, filter across the years for which we 

had SAR data and could accommodate data gaps in the Landsat images either from the Landsat-7 scan 

line corrector or from clouds. Both methods appeared to perform reasonably well, certainly much 

better than not including a Landsat wet/dry filter.  

Wind posed a major challenge for mapping vegetation. Wind during the early-season overpass 

compromised our ability to map cattails. If either the early-season or peak/late-season overpass was 

windy, it hindered results from image differencing that we needed to detect certain stands of wild rice 

and/or bulrush. Without results from the image differencing we only could distinguish stands 

exhibiting intense double-bounce returns during the latter half of the growing season, but had no way 

to extract the stands that had less-intense returns. For those, we required the magnitude of seasonal 

change in double-bounce response. Originally, we speculated that wild rice could be distinguished 

from bulrush based on spatial changes in annual seed establishment of wild rice (refer to Table 1).  

We remain uncertain if this is possible because the wetlands we knew contained wild rice at the 

beginning of our study years already were completely covered by the plants, and windy conditions in 

subsequent years compromised this aspect of our multiyear assessment. However, mapping results 

from 2009 suggest the timing of development (peak versus late season) and morphological differences 

in wild rice and bulrush are better ways to distinguish between these vegetation types (Figure 9). 

The challenges imposed by wind-contaminated data and background data noise can be addressed 

with the same strategy: acquiring more dates of imagery per season. A denser time series will 

accommodate temporal filtering of noise (rather than spatial filtering), given that noise is spatially 

random, which ultimately will improve the spatial resolution of wetland features that can be mapped 

and the consistency with which they are detected with SAR data. Dense time series have not been 

feasible to assemble for most users of SAR data because of the difficulty and high costs associated 

with SAR data acquisition and processing. Availability and affordability of SAR data are evolving in 

ways that favor monitoring and multitemporal research. Some SAR specialists even have referred to 

the next decade as the Golden Age of SAR, given the number and variety of systems and constellations 

planned (including wavelengths from X- to L-band) and the shift in business models towards providing 

data at no or low cost to users. This bodes well for expanded opportunities to incorporate SAR systems 

with other satellite and ground-based sensors for operational, integrated monitoring of wetland landscapes. 
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5. Conclusions 

We assessed the information value of SAR data derivatives representing open water and  

energy-scattering mechanisms for monitoring wetland characteristics we ultimately aim to relate to 

other types of responses we are measuring in wetland-upland landscapes as part of the TWGCRN. We 

used fully polarimetric data from Radarsat-2 and applied the Freeman-Durden approach to decompose 

microwave energy responses into three of the major types of scattering mechanisms we could anticipate 

and interpret in terms of cover types, plant morphology, and phenological traits of wetland-associated 

features. We learned we could extract features of wetland vegetation stands as small as 30 m in width 

with consistency across years. Our results suggest it is possible to distinguish among key vertical 

emergent vegetation types in the Tamarac NWR, including cattails, wild rice, and bulrush, when SAR 

overpass dates are well distributed with respect to key periods of the growing season and when there is 

little ambient wind to interfere with data collection. We also found we could reduce errors of mapping 

commission by incorporating early season data from Landsat optical/infrared sensors to complement 

the information content of the SAR data. 

The growing-season time series of SAR data we acquired over four years clearly captured 

information about dynamics in selected types of wetlands, especially the interplay between water and 

vertical emergent vegetation. Time-series maps of open water we developed from HH and HV channel 

data were informative, but somewhat challenging to use for temporal tracking of changes in the extent 

of open water because the algorithm we employed included manual decisions about thresholds that 

could introduce errors into results. We refined our maps of open water by post-classification filtering 

with near-infrared band data from closest-match dates of Landsat overpasses. 

We relied heavily on manual selection of thresholds throughout the steps we employed to educe 

wetland features. Our intent was to assess if the data derivatives captured the types of intra- and 

interannual dynamics we want to monitor in conjunction with other variables we are tracking in 

wetland-upland landscapes. We approached this assessment from a fairly straightforward, conceptual 

ecological basis. We determined we could interpret the information in the SAR data derivatives 

relative to other data we assembled regarding dynamics of weather, landscape moisture status, and 

land cover. This is encouraging for the goals of the TWGCRN, although we still face the challenge of 

translating a highly manual approach to one that is more sophisticated and automated. 

The main problems we encountered with SAR data to map intra- and interannual changes in 

wetlands were related to reduced quality of information caused by wind during satellite overpasses and 

reduced spatial resolution of resolvable features caused by the spatial filtering we applied to remove 

data noise (speckle). Both types of problems can be addressed by increasing the density of the time-series 

stack for each growing season, a strategy that traditionally has not been feasible for most data users 

because SAR data are difficult and costly to acquire. Anticipated increases in availability and 

affordability of SAR data from a growing number of radar systems in orbit and shifts in data 

distribution policies that reduce or eliminate acquisition costs for users will make it much more 

feasible to monitor the influence of climate on wetland dynamics at scales appropriate for informing 

land-management decisions. 
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