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Abstract: Numerical models being one of the major tools for sediment dynamic studies in 

complex coastal waters are now benefitting from remote sensing images that are easily 

available for model inputs. The present study explored various methods of integrating 

remote sensing ocean color data into a numerical model to improve sediment transport 

prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment 

datasets delineated from satellite images from the Moderate Resolution Imaging  

Spectra-radiometer (MODIS) were assimilated into a coastal ocean model of the bay for 

one tidal cycle. It was found that remote sensing sediment information enhanced the 

sediment transport model ability by validating the model results with in situ measurements. 

Model results showed that root mean square errors of forecast sediment both at the surface 

layer and the vertical layers from the model with satellite sediment assimilation are 

reduced by at least 36% over the model without assimilation. 

Keywords: sediment transport model; satellite image; optimal interpolation; data 

assimilation; MODIS; Deep Bay 
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1. Introduction 

Suspended sediment particles are an integral part of ecosystem health in many coastal environments, 

because it is related to the total production and fluxes of heavy metals and micro-pollutants. The 

knowledge of the suspended sediment transport is critical to water quality management in the coastal ocean 

area [1]. Numerical models have long been the primary tools employed for understanding and 

assessing sediment movement in coastal and ocean environmental systems, in particular recent  

state-of-the-art fine-resolution models have led to fruitful outcomes in these research areas. However, 

predicting the transport and fate of coastal sediment is still a challenge, because of the highly complex 

nonlinear sediment dynamics and the lack of understanding of the key sediment processes underlying 

the behavior of a real-world dynamical system [2]. The state-of-the-art regional-scale sediment 

transport models, which are based on semi-empirical relationships, would suffer from significant 

uncertainty of the predictions, unless constrained with observations [3]. Traditionally, observations 

used for model initialization, calibration and validation have been collected by ship-based surveys or 

fixed moorings. Such methods usually acquire data with sparse spatial and temporal density and could 

be very costly. 

Satellite ocean color data can provide sea surface sediment information that is highly resolved in 

both space and time. This is a promising source of data that matches very well to the models’ spatial 

scales and has been proven to be valuable for model evaluation and development [4,5]. However, 

satellite observations generally have long temporal frequencies and are limited to the surface. On the 

contrary, numerical models could have no time or space limitations. Numerical models can potentially 

provide the missing information of the causes of distributions and changes seen in two successive 

remote sensing observations, as numerical models are built on fundamental principles of ocean physics [6]. 

Therefore, combining both the advantages of remote sensing data and numerical models can enhance our 

knowledge on sediment movement. In fact, integrating remote sensing data and numerical simulation has 

been widely applied in studying ocean and inland water environments. Pleskachevsky et al. [7] presented a 

three-dimensional SPM transport model in synergy with a two-dimensional suspended sediment 

distribution from ocean color (CZCS) images to analysis the resuspension and deposition characteristic 

of vertical sediment. Miller et al. [8] used sediment concentration derived from cloud-free Moderate 

Resolution Imaging Spectra-radiometer (MODIS) images to calibrate and validate the output of the 

sediment transport model by comparing with the model predicted SPM concentrations. Kouts et al. [9] 

analyzed the effect of sand dredging on the sediment dynamics of Pakri Bay, Finland, by comparing 

distributions from remote sensing images and numerical model results. Chen et al. [10] proposed an 

application using a sediment concentration distribution from MERIS images to initialize and calibrate 

a three-dimensional sediment transport model of Bohai Bay, China. 

However, apart from the numerical uncertainties existing in numerical models, satellite data may 

also suffer from problems coming from on-board acquisition and image interpretation methods [4]. 

Integrating a model with satellite images without considering their errors may aggravate the 

uncertainties in the model prediction. The accuracy of model results could be improved through data 

assimilation, by which models can be regulated in a way that the system’s dynamics is strongly 

complied with and errors in both models and satellite observations are acknowledged. Many 
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researchers have shown interests in studying remote sensing sediment assimilation in coastal and ocean 

models. Yet, the corresponding literature is scarce; but the number of publications is growing [4,11–13]. 

In the present study, a three-dimensional hydrodynamic and sediment transport model of Deep Bay, 

a tide-dominated bay in Hong Kong, has been established and used to assimilate sea surface sediment 

data derived from MODIS images. Deep Bay suffers from many environmental problems related to 

suspended sediment, including high turbidity and seriously contaminated wetland by heavy metals and 

nutrient sediment pollution, because of the high intensity of human activities [14]. The purpose of this 

work is to explore the combination of a sediment transport model and satellite images through data 

assimilation schemes to improve the understanding of the complicated sediment dynamics of Deep 

Bay. Such an investigation is important to enable better water quality management and wetland 

ecology restoration of the Bay. 

The remainder of this paper is organized as follows. Section 2 introduces the case study region and 

observational datasets and outlines the hydrodynamic and sediment transport models. Section 3 

describes the satellite data processing method and the data assimilation scheme, which integrates the 

sediment transport model with the remote sensing data. Section 4 presents the model calibration and 

validation processes and discusses the data assimilation results. Conclusions are given in the  

last section.  

2. Materials and the Model 

2.1. Study Area and In Situ Data 

Deep Bay (22.41° to 22.53° N, 113.88° to 114.00° E) is a semi-enclosed shallow bay on the eastern 

side of the Pearl Estuary, between Shenzhen to the north and the New Territories of Hong Kong to the 

south (Figure 1A). The width of the bay varies from 4 km to 7.6 km at the narrowest section near the 

mouth. The length is 13.9 km, and the total sea surface area is about 80 km2. It is influenced by the 

irregular mixed semi-diurnal tide of the South China Sea. Four major rivers (Shenzhen, Dasha, Yuen 

Long and Tin Shui Wai River) discharge into the bay with relatively small flow rates. Because of its 

unique geographic location, the embayment exhibits complicated tidal and sediment movement, 

subjected to tidal flushing and river outflows, as well as human activities, like reclamation [15]. Deep 

Bay is important for the conservation of the Futian National Nature Reserve (FNNR) and the Mai Po 

Nature Reserve (MPNR). These wetlands are located near the mouth of Shenzhen River at the upstream 

of Deep Bay and provide a habitat for numerous rare and endangered species [16]. The wetlands have 

been suffering from increasing contamination problems in the region, for example, the adsorption and 

release of heavy metals and organic pollutants from sediments in the water and sea bottom [17]. 

Measurements used in this study are parts of the synchronous survey project in the Shenzhen River 

Basin, which were conducted by the Hydrology Bureau of the Yangtze River Water Resources 

Commission of China. The project was commenced in October, 2004, during which the measurements 

were taken hourly from 11:00, on 17 October, to 15:00, on 18 October (in total, 29 h). Water levels 

were taken by means of tidal gauges placed at Dong Jiao Tou (DJT), Tsim Bui Tsui (TBT), Chi Wan 

and Lan Kok Tsui (See Figure 1). The vertical profiles of flow velocity, sediment concentration and 

salinity data were collected at sites located along three transects inside the bay. Transect A is to the 
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northwest of Deep Bay near the mouth of the Shenzhen River. There are three observation sites: S4, S5 

and S6. Transect B is in the middle of the bay and includes two observation sites: S7 and S8.  

Transect C (not shown in Figure 1A) is at the mouth of Deep Bay, almost parallel to Transect B, and 

includes five observation sites. The measured data in Transect C were not used for calibration or 

validation purposes, but as the boundary condition data. According to the water depth, H (m), at local 

measurement time, the velocity measurements were obtained at six vertical levels: 0.0 H (surface 

layer), 0.2 H, 0.4 H, 0.6 H, 0.8 H and 1.0 H (bottom layer). At each site, current velocities were 

measured hourly by the ZSX-3 direct-reading flow instrument at each vertical layer. Water samples 

were collected sequentially from the surface layer to the bottom layer at each site. Five hundred 

milliliters of each water sample were taken and filtered immediately on a pre-weighted Whatman 

Cellulose Acetate Membrane filter with a diameter of 47 mm and a nominal pore size of  

0.45 micrometers. The filter was stored in a desiccator, which was then combusted in a 500 oven for  

3 h and weighed in the laboratory. An analytical balance was used to weigh the filter, with a precision 

of 0.01 mg. Sediment concentration was determined by the weight difference normalized by the 

filtered water volume. Salinities were measured by a digital salinity meter from these water samples. It 

is noted that when the water depth less was than 2 m, no measurements at the surface layer were taken, 

and measurements were made near the surface layer. In this study, near surface sediment data were 

used as the surface sediment data when there were no surface sediment measurements. It also should 

be noted that there was a very small amount of near surface sediment taken at S4 and S6, because the 

water depths at these two sites were very shallow most of the time, and measurements were taken only 

near the bottom layer (0.8 H).  

Figure 1. Model area and in situ measurements location (A) and the model grids with 

bathymetry (B). FNNR, Futian National Nature Reserve; MPNR, Mai Po Nature Reserve. 

 

2.2. Model Description and Configuration 

The model applied for the calculation of the hydrodynamics and sediment transport in Deep Bay is 

an unstructured grid, finite volume, free-surface, 3-D primitive equation coastal ocean model 

B A
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(FVCOM) developed by [18]. Unstructured triangular grids used in FVCOM provide an accurate fit 

for the geometry of irregular coastlines. A sigma-coordinate transformation was used to represent 

bottom slope irregularities in the vertical direction. The model simulates water surface elevation, 3D 

velocity, flooding and drying processes, temperature, salinity, water quality and sediment transport. The 

FVCOM sediment transport model is based on the Community Sediment Transport Model (CSTM) 

developed by the U.S. Geological Survey (USGS). It is implemented by solving the three-dimensional 

advection-dispersion equations. It has been tested on many coastal environment studies for the 

calculation of current-induced erosion, transport and the deposition of multiple sediment classes and has 

also been implemented in the well-known Regional Ocean Modeling System (ROMS) [19]. Through 

analyzing the size distribution of suspended sediment from the field survey data of Deep Bay by Wong and 

Li [20], it is argued that the median size of suspended sediment in the dry season is 10 μm, and there is 

no significant difference in the size distribution of suspended sediment in the vertical direction. In this 

study, cohesive sediment with a dominant median size of the suspended matter was considered to 

simulate the three-dimensional sediment transport of Deep Bay by FVCOM. 

The model grids were generated based on the land boundary with a relatively high resolution (80 m) 

in the inner bay near the Shenzhen River and a coarser resolution (250 m) at the open boundary. 

Because the in situ measurement was conducted at 0.0 H, 0.2 H, 0.4 H, 0.6 H, 0.8 H and 1.0 H (H is 

water depth), we set six vertical sigma layers in the model in order to facilitate model validation. 

Hourly wind metrological data at S7 was used as the spatial uniform water surface driving force. The 

open boundary was driven by tidal elevations measured at Chi Wan and Lan Kok Tsui. Measured 

sediment concentrations and salinity at the sites of Transect C were also prescribed in the open 

boundary. Mean flow rates and sediment concentration of Shenzhen, Yuen Long, Tin Shui Wai and Da 

Sha Rivers (Table 1) in the dry season obtained from the Drainage Services Department of Hong Kong 

were prescribed in the model. Model run time extended from 0:00, on 10 October, to 24:00, on 20 

October in 2004, and the external and internal time steps were 1 s and 10 s. The model was cold started 

and initialized with zero current velocity. Since the model initial time is in the neap tide period, the 

sediment concentration and salinity were initialized by horizontally uniform values with the mean 

observed profiles measured from 11:00, on 17 October, to 15:00, on 18 October. The tidal amplitude 

was initialized by the in situ measured water level on TBT obtained from the Hong Kong Observatory. 

The model reached a steady state after several tidal cycles of spin-up time until 11:00, on 17 October, 

when the model calibration and validation were conducted by comparing with in situ measurements. 

Table 1. The mean flow rates (V) and sediment concentration (C) of four rivers. 

Parameter Shenzhen River Dasha River Yuen Long River Tin Shui Wai River 

V (m3/s) 1.4 0.47 0.34 0.23 
C (mg/L) 30 10 10 10 

3. Methods 

3.1. Satellite Sediment Information Retrieval 

In this study, we used images from the National Aeronautics and Space Administration (NASA) 

MODIS data archive website [21]. Two cloud-free MODIS Aqua satellite images were obtained during 
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the in situ measurement period. One is in 13:30, on 17 October, and the other is in 13:30, on 18 October. 

We selected Level 1 data to correct the atmospheric effect to obtain the water reflectance using the 

Quick Atmospheric Correction (QUAC) method proposed by Bernstein et al. [22]. QUAC is a  

semi-empirical method that requires no prior information on atmospheric conditions and 

illumination/viewing geometry at the time of image acquisition, and it is based on several simplistic 

assumptions. Previous results over turbid waters have shown that QUAC yields accuracies that are 

comparable to other methods [23], with significantly faster computational speeds and a robust 

atmospheric correction result. 

Using satellite image data to derive sea surface sediment concentration, a relationship between 

suspended sediment concentration (SSC) and water reflectance must be determined. Such relationships 

have been proposed through semi-analytical algorithms based on radiative transfer theory [24,25] and, 

very often, by empirical regression methods. Many empirical regression relationships documented by 

other researchers have been tested to establish the remote sensing retrieval models of the suspended 

sediment. These empirical models include linear, exponential, logarithmic statistical relationships, and 

so forth [8,26,27]. In this study, we tried to establish an empirical regression algorithm for retrieving 

the sediment concentration from MODIS images. 

For MODIS data, traditional bands with a spatial resolution of 1000 m were specifically designed 

for ocean color observation of open ocean waters. Such bands are not suitable over highly turbid 

coastal and inland waters for ocean color observation, because the bands saturate and the true signals 

are unknown [28]. However, a number of investigators have looked to exploit some land/cloud bands 

that have a spatial resolution of 250 m and 500 m for application to inland and coastal turbid  

waters [29,30]. These bands contain 645 nm and 555 nm wavelengths, which have been proven to be 

useful for establishing the sediment retrieval algorithms on the eastern part of Pearl River Estuary in 

which the Deep Bay is located [31,32]. In this study, the water reflectance on these two bands obtained 

from MODIS images was used. Because the acquisition time of the used MODIS data is at 13:30, on 

17 October and 18 October, the average value of in situ measured sediment concentration at 13:00 and 

14:00 was used as the measured sediment concentration at 13:30. Based on water reflectance and the in 

situ measured suspended sediment concentration at all sites on Transect A, B and C at the two image 

acquisition times, the best relationship for representing the model with the square correlation 

coefficient of 0.835 has been found, and it is shown as follows.  ܵܵܥ = 0.0242exp[6.3466 × (555)ݏݏܴ/(645)ݏݏܴ ]		 (1)

where SSC denotes the suspended sediment concentration (mg/L) and Rss(645) and Rss(555) denote 

the water reflectance on bands 645 nm and 555 nm, respectively. Figure 2 shows the scatter plot of 

remote sensing reflectance and suspended sediment concentration. The surface sediment concentration 

was retrieved from the two available images based on this function. The retrieved image reflectance 

may have unusually high values in the pixels adjacent to the land due to the land reflection effect. This 

will result in abnormal sediment concentration in the image pixel near the coastline. Therefore, such 

bad pixels have been deleted manually to ensure a reliable assimilation experiment. Figure 5 shows the 

retrieved sediment distribution of the two images at 13:30, on 17 October, and 13:30, on 18 October. 
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Figure 2. Matched in situ suspended sediment and remote sensing reflectance retrieved 

from Moderate Resolution Imaging Spectra-radiometer (MODIS) images. 

 

3.2. Assimilation Scheme 

In this study, the widely used ocean data assimilation method—the optimal interpolation (OI) 

algorithm—was employed as the assimilation approach [33,34]. The OI method obtains the 

statistically optimal state based on model forecasting and observation through least squares estimation. 

It has the advantage of the simplicity of implementation and its relatively small computation cost, 

especially for highly nonlinear, high-dimensional ocean model systems. Based on OI, the sediment 

observations from remote sensing images were interpolated into a model grid using a model forecasted 

field as a first guess. First, we mapped remote sensing sediment concentration into n model grids. The 

updated sediment concentration field is then obtained from ۱݇ܽ = ۱௞௙ ൅܅௞(۱௞௥௦ − ۱௞௙)  (2)

where C is the n-dimensional vector of sediment concentration, with superscripts a, f and rs denoting 

the updated state, the model forecast and remote sensing observation, respectively, and subscript k 

denoting the assimilation time when there is a remote sensing image. The gain, W, is an n × n matrix 

of weights that determines each observation’s influence on the final updated state. Using a principle of 

minimizing error variance of updated sediment concentration [35], we can argue that Wk should be: ܅௞ = ௞௙۾)௞௙۾ ൅ ௞)ିଵ  (3)܀

where Pf is the n × n error covariance matrix of the sediment concentration field from the model 

forecast and R is the n × n error covariance matrix of the sediment concentration field from remote 

sensing images. After determining Wk, the updated sediment concentration field is obtained by 

Equation (2). The model is then integrated to the next forecast time, with the updated field as the initial 

condition until the next assimilation time. 

In order to perform OI, the model forecast error covariance matrix, Pf, and remote sensing error 

covariance, R, in Equation (3) must be determined. In this study, the error variances of model forecast 
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and remote sensing sediment concentration were obtained through a comparison with in situ measured 

sediment concentration at all sites on three transects. They are computed using the following formula. ߪ௙,௞ଶ = ଵே∑ ൫۱௜,௞௙ − ۱௜,௞௜௡ ௦௜௧௨൯ଶே௜ୀଵ ௥௦,௞ଶߪ(4)   = ଵே ∑ ൫۱௜,௞௥௦ − ۱௜,௞௜௡ ௦௧௨൯ଶே௜ୀଵ   (5)

where ߪ௙ଶ , ௥௦ଶߪ	  are the error variances of forecasted sediment concentration and remote sensing 

sediment concentration, with subscript k denoting the assimilation time.	۱௜௜௡	௦௧௨  denotes the in situ 

measured sediment concentration at the i-th in situ site. N is the number of in situ measurement sites. 

The error variances of model forecast and remote sensing sediment concentration were calculated as 

739.84 and 28.09, respectively.  

In optimal interpolation, it is often assumed that both model and measurement errors follow a 

Gaussian distribution, and there is no correlation between measurement error and model error [36]. It 

is also usually assumed that there is no correlation between measurement errors, so the error 

covariance matrix, R, is a diagonal matrix with an error variance of 28.09 in the diagonal line and 0 in 

other elements.  

For the determination of the model forecast error covariance, Pf,	many schemes for calculating 

forecast error correlations have been proposed and put to practical assimilation application [36,37]. In 

this study, an exponential correlation model was chosen to define the error correlation. It is assumed 

that the forecast errors follow a Gaussian distribution, and the error correlation decreases exponentially 

with the square of the distance [38]. The formulation of the correlation function is given as: ߩ = exp ቂ− (Δ௫)మା(Δ௬)మோమ ቃ  (6)

where ρ is the forecast error correlation, Δx, Δy are the distances between two forecast grid points in the 
x, y directions and R is the correlation length, which limits the influence of interpolated data within a 
fixed region in optimal interpolation [39]. In this study, the hydrodynamic and sediment transport 
model first ran “cold” with the provided input data and parameters and was validated by in situ 
measurements. In this study, the hydrodynamic and sediment transport model first ran “cold” with the 
provided input data and parameters and was validated by in situ measurements. Based on the 
established model, model runs were conducted with two surface sediment concentration images 
obtained in Section 3.1 sequentially assimilated into the model. In order to achieve a good performance 
of data assimilation, the optimal forecast error correlation must be determined. By repeatedly 
assimilating remote sensing sediment using different correlation lengths, an optimal correlation length 
that produced the best result in the OI was selected. In this study, the root mean square error (RMSE) 
was calculated for each correlation length at the two assimilation times to evaluate the assimilation 
performance. The RMSE is calculated as: ܴܧܵܯ = ට∑ (۱೔ೌ ି೔ಿసభ ۱೔೔೙ ೞ೔೟ೠ)మே   (7)

where ۱௜௔ and ۱௜௜௡	௦௜௧௨	denote the sediment concentration from OI results and in situ measurement sites. 

N is the number of in situ measurements. The RMSE is also used to evaluate the model performance to 

forecast water level, salinity, current velocity and sediment concentration.  
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4. Results and Discussion 

4.1. Model Calibration and Validation 

A well calibrated and validated hydrodynamic and sediment transport model based on FVCOM that 

simulates the tide and sediment movement of Deep Bay has been built by Zhang et al. [40]. However, 

the model was established for application in the wet season of the bay. For application in the dry 

season in the present study, all parameters need to be recalibrated. Based on the hydrodynamic and 

sediment transport model parameters in Zhang et al. [40], we use the trial-and-error method to adjust 

the parameters to achieve a consistent computed result with the measurement. After repeatedly 

adjustments, an optimal set of parameters has been determined for the model of Deep Bay in the dry 

season. The final parameters are listed in Table 2. 

Table 2. Parameters used in the model of Deep Bay in the dry season. 

Parameters Value 

Bottom friction coefficient 0.0024 
Sediment median diameter 0.011 mm 

Erosion constant 1.2× 10−5 kg/m2/s 
Critical shear stress for erosion 0.2 N/m2 

Critical shear stress for deposition 0.08 N/m2 

Settling velocity 
Ws = 0.014 × c1.3 m/s, c ≥ 60 mg/L 

Ws = 5 × 10−5 m/s, c < 60 mg/L 

Figure 3 shows the comparisons of simulated hydrodynamic and sediment transport model results 

and corresponding measurements. The comparisons show that the simulated water levels agree well 

with in situ measurements at DJT (Figure 3a) and TBT (Figure 3b). The RMSEs of the computed 

water level at the two stations are 0.026 m and 0.075 m, respectively. The simulated results from two 

sites, S5 in Transect A and S7 in Transect B, were selected to compare with the measurements  

(Figure 3c–j) and for the later analysis. Figure 3c,d demonstrates that the simulated salinities are in 

good agreement with the measurements at S5 and S7, respectively. The statistics shows that the 

RMSEs of simulated salinity for all sites are less than 1.8 ppt. By comparing the salinity dynamics at 

sites S5 and S7 with water level variation at the nearby tidal stations, TBT and DJT, it is found that the 

salinity transport in the bay is highly correlated with the ebb and flood tidal cycles. The dynamics of 

salinity show almost the same periodic variation with the tidal levels. This indicates that salinity in the 

dry season of Deep Bay is largely dominated by brackish water intrusion from the outlet of the bay. 

However, in the wet season, as shown in Zhang et al. [40], the salinity transport in Deep Bay did not 

show obvious correlation with tidal level variation, but was largely affected by the salinity of the water 

discharged from rivers.  

Figure 3e–h demonstrates that the simulated depth-averaged current velocity and direction are 

reasonably consistent with corresponding measurements at sites S5 (Figure 3e,g) and S7 (Figure 3f,h). 

The RMSEs of simulated current velocity and direction for all measurement sites are less than 0.118 ms−1 

and 19.7°, respectively. Figure 3i,j shows a comparison of simulated depth-averaged sediment 

concentration with measurements at S5 and S7, respectively. It shows that, due to the complex 
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sediment dynamics, the sediment is not precisely forecasted, especially when the sediment 

concentration is relatively low. The time series of simulated sediment demonstrated an apparent 

smooth dynamic trend compared to in situ measurements, which exhibit a more irregular cycle. 

However, both the measured and simulated sediment concentrations exhibit a dynamic trend that is 

similar to the complicated dynamics of current velocities. This finding indicates that sediment 

transport is dominated by the current dynamics of the bay, which is in line with the previous study of 

Zhang et al. [40]. Because deposited sediments need time to be resuspended to the water column after 

the occurrence of the maximum ebbing or flooding tidal period, the maximum value of sediment 

concentration lags behind the maximum value of current velocity by about one hour. 

Figure 3. Validation of model results. (a) the water level at Tsim Bui Tsui (TBT);  

(b) water level Dong Jiao Tou (DJT); (c) the depth-averaged salinity at S5; (d) the  

depth-averaged salinity at S7; (e) the depth-averaged current velocity at S5; (f) the  

depth-averaged current velocity at S7; (g) the current direction at S5; (h) the current 

direction at S7; (i) the sediment concentration at S5; (j) the sediment concentration at S7. 

 

Figure 4 compares the profiles of measured and modeled current velocity, sediment concentration 

and salinity at the maximum flood (11:00, on 17 October) and the maximum ebb (4:00, on 18 October) 

periods. The comparisons show that the simulated results can reasonably represent the profiles denoted 

by the measurements. It can be seen that the vertical velocities at the maximum ebb period are 
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relatively higher than the ones at the maximum flood period, but the vertical sediment concentrations 

are higher at the maximum flood period. This is probably because tidal transport dominates the 

sediment dynamic at the maximum flood period, when a large amount of sediments are carried into the 

bay from the outer bay. It should be noted that, at the maximum ebb period, the high concentrations 

occurred at the near-bottom layers, which may be caused by the bottom resuspension, because the tidal 

flow reached the maximum current velocity. The vertical profiles of salinity demonstrate unobvious 

vertical stratification. It can be seen that the salinities shown in the profile at the maximum flood 

period are relatively higher than those at the maximum ebb period. This is because the tidal level at the 

maximum flood period (0.95 m) is higher than that at the maximum ebb period (0.64 m), so more salt 

water is brought into the bay at the maximum flood period. 

Figure 4. Vertical profile validation of model results at S7. (A) the current velocity at the 

maximum flood period at 11:00, on 17 October (a,b) and the maximum ebb period at 4:00, 

on 18 October (c,d); (B) the sediment concentration at the maximum flood period at 11:00, 

on 17 October (a,b) and the maximum ebb period at 4:00, on 18 October (c,d); (C) the 

salinity at the maximum flood period at 11:00, on 17 October (a,b) and the maximum ebb 

period at 4:00, on 18 October (c,d). Notes: a, c representing the measured profiles and b, d 

representing the simulated profiles. 

 
(A)     (B)     (C) 

4.2. Assimilation Result Analysis 

4.2.1. Sediment Correction at the Data Assimilation Time 

In order to choose an optimal forecast error correlation length, a series of data assimilation 

experiments were repeatedly conducted by changing the correlation length, trying 250, 500,  

750, …, 2500 m. It is found that when the correlation length is 1500 m, a minimum RMSE of 

13.8mg/L was obtained by comparing with in situ measurements at the assimilation time. Therefore, 

we use 1500 m as the correlation length in the assimilation.  

Figure 5 shows the comparison of sediment concentration from in situ, model and OI results at the 

two assimilation times. It shows that the model overestimated the surface sediment concentration at 
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most of the sites, and they are clearly improved by OI. The improvement is also pronounced for the 

underestimated sediment concentration at sites S4, S6 and S8 at the second assimilation time. For all 

validation sites, the relative errors of the model vary from 4.3% to 68.1%, and for OI, results vary from 

0.8% to 31.9%. The OI results reduce the errors by 36%–91%. 

Optimal interpolation is expected to improve the prediction of the spatial distribution of the 

sediment concentration by correcting the model results with remote sensing data by capturing their 

error information. Figure 6 shows the spatial distribution of sediment concentration from model, 

remote sensing images and OI results at the two assimilation times. It is observed that the OI results 

display a better spatial consistency with remote sensing sediment distribution. More detailed surface 

sediment distributions are captured in the OI results, and it is particularly evident in the shallow inner 

region of Deep Bay. The comparisons reveal that both the information from the model results and the 

remote sensing sediment concentration is retained in the OI results. This is obvious in coastal areas, 

where the sediment concentration is filled up by interpolating remote sensing sediment and model 

results. Table 3 displays the statistical characteristics of sediment concentration difference between OI 

and model results and between OI and remote sensing results. It can be seen that the mean value and 

variance of difference between OI and remote sensing results are smaller than those between OI and 

model results. This indicates that more information in the OI results comes from the remote sensing 

image. This is possibly because the remote sensing sediment concentration is more accurate than the 

model results.  

Figure 5. Surface sediment concentration from in situ, model and optimal interpolation 

(OI) results at all sites at the first assimilation time (13:30, on 17 October) and the second 

assimilation time (13:30, on 18 October). Note that because the in situ measurements were 

collected hourly and there are no in situ sediment measurements during the satellite image 

acquisition time, therefore in situ measurements at the assimilation time used in this figure 

are the average values of the in situ sediment concentration of a half an hour before and a 

half an hour after the assimilation time. 
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Figure 6. Comparison of the sediment spatial distribution from those retrieved from  

(A) model results (Model); (B) remote sensing images (RS); and (C) OI results at the first 

assimilation time (13:30, on 17 October) and from (D) model results (Model); (E) remote 

sensing images (RS); and (F) OI results at the second assimilation time (13:30, on 18 October). 

 

Table 3. The mean value and variance of the spatial difference between OI results and 

model results and the spatial difference between OI results and remote sensing sediment at 

the two assimilation times. 

Assimilation time Difference Mean (mg/L) Variance (mg/L) 

AT1 
OI-RS 2.5 21.16 

OI-Model 7.8 492.84 

AT2 
OI-RS 1.4 8.41 

OI-Model −10.6 979.69 

4.2.2. Temporal Effect of Data Assimilation 

Figure 7 shows the time series of the surface sediment concentration of in situ measurements, model 

results with and without data assimilation, together with the remote sensing sediment at the 

assimilation time at sites S5, S7 and S8. The figure shows that the effect of remote sensing sediment 

assimilation on the model result was limited, because the remote sensing image was only a snap shot 

of the surface sediment concentration at a short period of time. It is found that, after assimilating the 

first sediment image into the model, the temporal effect lasts about four and half hours, until the water 

level reached its lowest; while the temporal effect of assimilating the second sediment image lasts 

about two hours, until the water level reaches its highest. This suggests that the temporal effect ends at 

the time when tidal currents alternate their flow directions. At the same time, the direction of 

horizontal sediment transport also tends to change. Thus, the disappearance of the temporal effect 

brought by remote sensing data assimilation may be owed to the rapid dynamic behavior of sediment 

transport in a tidal cycle of the bay. However, more powerful data assimilation schemes, like  

the four-dimensional variational method, which can handle observations that are distributed within a 
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time interval, can be used to achieve a global optimization or correction of the whole model  

forecasted state. 

Figure 7. The time series of in situ measured surface sediment (half hourly) and forecasted 

sediment from the model with and without assimilation (half hourly) at sites S5 (A); S7 (B); 

and S8 (C). The remote sensing sediment at the assimilation time is also shown. 

 

Despite the limited temporal effect on the model forecast brought by remote sensing data 

assimilation, the results have been improved to a large extent at the affected time. It could be seen in 

Figure 7 that the model with data assimilation improved the forecasts results, to agree better with the  

in situ measurements. In particular, it can be apparently observed at S7 and S8 after the first 

assimilation time (between 14 h and 18 h) that the model forecast with data assimilation caught the 

oscillation of sediment concentration, which was not seen from the model results without data 

assimilation. It is observed that, although the assimilated remote sensing sediment showed greater 

deviation from in situ measurement at S7 at the first assimilation time, the improving of assimilation 

results is still obvious. This reveals the validity of data assimilation for providing a more accurate state 

by catching the errors from remote sensing data and model results. Table 4 tabulated the RMSE 

statistics of the simulated surface sediment concentration from the model with and without remote 

A 

B 

C 
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sensing data assimilation at S5, S7 and S8. It shows that the model with data assimilation reduces the 

RMSE of the forecasted surface sediment concentration by at least 47.8% over the model without data 

assimilation. In short, the data assimilation scheme shows the validity of improving model forecasting 

on the whole. 

Table 4. Statistics of RMSE (mg/L) over surface sediment concentration and  

the depth-averaged sediment concentration from the model results with and without 

assimilation in the limited effect time (four and a half hours after the first assimilation time 

and one and a half hours after the second assimilation time, along with the relative RMSE 

reduction) a. Note that the RMSEs of the simulated surface sediment at S4 and S6 were not 

calculated, because no in situ surface sediment concentration was taken at the two sites. 

Sites Model without OI Model with OI Relative RMSE Reduction 

surface sediment  
S5 18.2 7.5 58.8% 
S7 13 6.1 53.1% 
S8 25.1 13.1 47.8% 

depth-averaged sediment 
S4 17.5 11.2 36.0% 
S5 25.2 9.3 63.0% 
S6 29.4 15.4 47.6% 
S7 15.5 9.7 37.4% 
S8 21.7 11.9 45.2% 

Note: a relative RMSE reduction = (RMSE_Model-RMSE_OI)/RMSE_Model. 

The temporal ability produced by assimilating the surface sediment concentration is not limited to 

the upper surface layer. As an integral part of the sediment distribution in the water column, the 

surface sediment is involved in sediment settling and vertical mixing in the sediment transport model. 

Therefore, updating the surface sediment concentration by assimilation has the potential to change the 

sediment movement trend, hence affecting all of the simulated sediment vertical profiles. In this study, 

such a temporal ability in the vertical column has been observed. However, the temporal effect of data 

assimilation still did not remain too long in the water column and, at most, lasted for one hour. In 

consideration of the small effect caused by a very small amount of discharged sediment from the rivers 

(see Table 1), this may be owed to the rapid sediment exchange between the sea bed and the water 

column. However, from the RMSE statistics of simulated depth-averaged sediment concentration in the 

limit effect time, it can be seen that the model with data assimilation reduced the RMSE of the 

simulated depth-averaged sediment concentration by 36% against the model without data assimilation. 

This reveals the potential ability of surface sediment data assimilation to improve three-dimensional 

sediment concentration forecasting. Figure 8 demonstrates the comparison of the vertical sediment 

profile from measurements, the model with and that without data assimilation at S7 half an hour after 

the first assimilation time and the second assimilation time. A positive change of sediment distribution 

from the model with data assimilation can be seen in the figure. Effective schemes on how to improve 

the sediment modeling in the lower layer within a longer forecast time by assimilating surface sediment 

should be further explored. 
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Figure 8. Vertical distribution comparison at site S7 at half an hour after the first 

assimilation time (A) and at half an hour after the second assimilation time (B). 

 

5. Conclusions and Outlook 

The present study explored the integration of remote sensing data with a three-dimensional 

sediment transport model to improve model prediction. Two scenes of surface sediment data derived 

from MODIS satellite images were sequentially assimilated into the sediment transport model of Deep 

Bay in a tidal cycle. The results showed that the data assimilation can improve the sediment transport 

modeling. The model with remote sensing sediment data assimilation produced more accurate 

sediment dynamics than the model without data assimilation. The temporal ability of the data 

assimilation on both the surface transport and the vertical mixing were observed. Due to the rapid 

sediment transport and resuspension induced by the current flows in this tidally-dominated bay, the 

temporal ability of data assimilation was limited to a maximum of four and a half hours. In a future 

study, multi-platform remote sensing data could be employed to narrow the gap of assimilation time to 

achieve a long-term effect on the model forecast and prediction. Further work can also explore 

assimilation schemes to improve the sediment prediction of the entire vertical water column by 

assimilating the surface sediment concentration. The error correlation of the computed sediment 

concentration between the surface layer and the lower column can be considered in the improved 

schemes. Other sophisticated assimilation methods, like the ensemble Kalman filter and the variational 

scheme, could also be alternatives. To conclude, this work provides an insight into improving sediment 

transport prediction in highly dynamic coastal zones using remote sensing data assimilation. The 

present method can be applied to other coastal and inland water areas of interest for monitoring and 

modeling of the suspended sediment concentration, as well as other ocean color parameters, such as 

chlorophyll. Moreover, the combination of assimilating both remote sensing sediment concentration 

and field measured current velocity into a three-dimensional model may also be a promising idea. 

Because current dynamics largely govern the sediment movements in coastal waters, it is likely  
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that the improved current circulation will result in a better prediction of the suspended  

sediment concentration.  
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