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Abstract: The continued depletion of fresh drinking water resources throughout the world 

has increased the need for a variety of water treatment and recycling strategies. Conventional 

wastewater treatment processes rely on extensive chemical post-disinfection to comply with 

the stringent microbiological safety for water reuse. When well designed and operated, 

membrane bioreactors (MBRs) can consistently achieve efficient removals of suspended 

solids, protozoa and coliform bacteria. Under optimal conditions, MBR systems can also 

significantly remove various viruses and phages. This paper provides an in-depth overview 

of the mechanisms and influencing factors of pathogen removal by MBR and highlights 

practical issues, such as reduced chemical disinfectant dosing requirements and associated 

economic and environmental benefits. Special attention has been paid to the aspects, such as 

membrane cleaning, membrane imperfections/breach and microbial regrowth, in the 

distribution system on the overall pathogen removal performance of MBR. 

OPEN ACCESS



Water 2014, 6 3604 

 

 

Keywords: membrane bioreactor; pathogen; virus; biofilm; membrane breach; membrane 

cleaning; disinfectant dosage 

 

1. Introduction 

The importance of preventing fecal contamination of drinking water was first recognised by the work 

of English epidemiologist, John Snow. Snow systematically demonstrated that consuming fecal 

contaminated water caused the cholera outbreak in London [1] and linked these outbreaks to the 

inefficient sewage disposal system. His book “On the Mode of Communication of Cholera”, originally 

published in 1855, was republished in 1930s as a classic work in epidemiology, resulting in lasting 

recognition of his work. Since that discovery, the process by which wastewater is treated has been 

advancing, and has come a long way from the 19th century principle of “dilution is the solution to 

pollution” [2]. Patented in 1913, the suspended growth conventional activated sludge (CAS) process is 

a long-standing wastewater treatment process that relies on microorganisms in aerated mixed-liquor to 

break down organic pollutants [2]. CAS processes rely on tertiary disinfection processes to reduce 

pathogens in treated effluent in order to prevent the spread of waterborne diseases. 

The supply of safe drinking water is vital to survival, and as the world’s population continues to grow, 

fresh water is likely to become a scarce resource within the 21st century [3]. Therefore, establishing 

suitable methods of treating wastewater and preventing pathogens from entering the drinking water 

system will be a key component of maximizing water usage in the future. Coupled with this need to 

ensure the safety of the effluent emitted by wastewater treatment plants will be the growing pressure to 

directly use treated grey and black water in non-potable applications or conduct indirect potable reuse, 

such as deposition of reclaimed water into dams and subsequent treatment for producing drinking water. 

In fact it has been argued that direct potable reuse of water, i.e., recycling water directly to the existing 

drinking water distribution system, and not just indirect potable reuse, should be considered as a viable 

water resources management strategy beside other water supply options [4]. In this context,  

a multi-barrier approach is proposed so that if there is a problem with one step in the process, one can 

still produce safe water. Membrane bioreactors (MBRs) are one technology that is highly suitable for 

wastewater reclamation [5–8]. 

The MBR process consists of a biological reactor integrated with microfiltration (MF) or loose 

ultrafiltration (UF) membranes that combine clarification and filtration of an activated sludge process 

into a simplified, single step process [9–11]. Initially used for small-scale treatment of recalcitrant 

wastewater, MBRs have seen an unprecedented growth in the last decade [2,12]. The membrane is an 

absolute barrier to solids and microorganisms in suspension and it offers the possibility of operating the 

system at higher mixed liquor suspended solids (MLSS) concentration than the CAS processes. 

The implications of maintenance of higher MLSS are—Requirement of a smaller footprint and operation 

at higher solids retention time (SRT) under lower F/M ratio, hence, yielding reduced excess sludge while 

achieving better effluent quality than CAS processes. MF or UF membranes typically used in MBRs are 

not capable of significantly retaining viruses by size exclusion [13]. However, in addition to consistent 

removal of coliform bacteria, significant removal of human enteric viruses by MBRs has been reported 
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for full-scale MBR wastewater treatment plants [14]. Virus removal in MBRs was attributed to their 

aggregation and adsorption to activated sludge followed by retention by the gel and cake layer formed 

over the membrane. The formation of a foulant layer on the membrane surface has been reported to be 

a dominating factor controlling virus removal [15], however, to date studies on interactions between 

viruses and the membrane surface or different foulant layers are rare. Furthermore, currently there is 

incomplete understanding of the impact of membrane cleaning, membrane imperfections and/or breach 

as well as regrowth of the pathogens in the distribution system on the virus removal performance of 

MBRs [14,16]. 

Low turbidity as well as low organics and pathogen-content of MBR permeate means that the 

requirement of post-disinfection and the corresponding hazards related to disinfection by-products can 

be minimized. However, given the uncertainties noted above, the potentially high quality of MBR 

effluent is often not recognized under many current disinfection requirement scenarios [17]. The aim of 

this paper is to critically review the current state of the art of pathogen removal by MBRs and identify 

the key knowledge gaps creating hindrance to harnessing the full potential of MBRs as “disinfecting 

units”. An in-depth discussion on the factors affecting the removal performance has been furnished and 

ways to achieve precise prediction of the pathogen removal at different biological and membrane 

conditions have been highlighted. It is believed that the information summarized in this paper will aid 

in making informed decisions for efficient water and wastewater management and reduction of risk of 

human exposure to waterborne pathogens. 

2. Pathogens and Indicators in Wastewater Matrices 

2.1. Waterborne Pathogens of Concern 

The majority of pathogens in wastewater are enteric, that is they affect the digestive system, and 

present a serious health risk if ingested [18,19]. The adverse health effects of ingestion of pathogens are 

serious, and especially in the case of children under five, may be fatal if appropriate medical treatment 

is not administered in a timely manner. 

Protozoa are single-cell organisms that are important to public health because they cause life threatening 

diseases including giardiasis, cryptosporidiosis, dysentery and amoebic meningoencephalitis [20]. 

Protozoan parasites are numerous in wastewater, including Cryptosporidium, Giardia, Entamoeba and 

Microsporidia. Cryptosporidium is highly resistant to chlorine-based disinfectants, and has been 

implicated in a number of gastroenteritis outbreaks around the world. Protozoa are able to survive outside 

their host under adverse conditions as cysts or oocysts that range in size from 3 to 14 μm in diameter [21]. 

Helminths are larger multicellular organisms, which when mature can generally be seen with the naked 

eye. Helminth parasites commonly detected in wastewaters include the round worm (Ascaris 

lumbricoides), the hook worm (Ancylostoma duodenale) and the whip worm (Trichuris trichura). 

The most common microbial pathogens found in wastewater are bacteria [19]. These bacteria can be 

considered in two broad categories: enteropathogenic bacteria and opportunistic bacteria. Gastrointestinal 

diseases are one of the most common bacterial diseases contracted through wastewater [19]. These 

include diarrhea (e.g., cholera caused by Vibrio cholera and salmonelliosis caused by a number of 

Salmonella species) and dysentery (caused by various Shigella and Salmonella species). Other common 
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diseases include typhoid and paratyphoid fever (caused by Salmonella species) [18]. In addition to the 

established pathogens, a number of opportunistic pathogens (microorganisms causing infections and 

disease under optimal conditions, commonly in the very young, elderly and immune-compromised), 

including Pseudomonus and Streptococcus, can be found in wastewaters. Bacteria range from 0.6 to 1.2 μm 

in diameter and 2–3 μm in length [22]. 

Viruses are considered as one of the most infectious pathogens common to wastewater due to 

their greater resistance to treatment and a smaller dose required to cause infection [19]. More than 

100 different viruses can be found in human feces [23]. Enteroviruses, the most commonly detected 

viruses in wastewater, can cause paralysis, meningitis, respiratory disease, encephalitis and congenital 

heart anomalies, along with a range of other conditions with varying severity [19,23]. Other human 

viruses in wastewater include coxsackie A and B, reovirus, norovirus, rotavirus, hepatitis A and E, 

adenovirus, echovirus and poliovirus, which can potentially cause upper respiratory and gastrointestinal 

illness [3,20]. Gastroenteritis is the most common wastewater related illness and can be caused by 

bacteria, virus or protozoa [20,24]. The leading viruses responsible for gastroenteritis are rotavirus, 

calicivirus, enteric adenovirus and astrovirus [24]. The size of different viruses ranges within a few tens 

of nm. For example, nominal size of hepatitis A, hepatitis E, calicivirus and astrovirus has been  

reported to be around 30 nm, while the nominal size of rotavirus and enteric adenovirus can be around 

70 nm [20,24]. 

2.2. Indicator Organisms 

The wide variety of pathogens, including bacteria, viruses and protozoa present in most wastewater 

makes it impractical to test for each pathogen individually. Therefore suitable markers indicating 

microbial contamination are used. The indicator organisms themselves may not be pathogens. One 

widely used marker is the detection of coliform bacteria, either as total coliforms or fecal coliforms. 

Coliforms are common inhabitants of ambient water and may be injured by environmental stresses  

(e.g., lack of nutrients) and water treatment (e.g., chlorine disinfection) in a manner similar to many 

pathogens. Fecal coliform has been shown to correlate strongly with the presence of fresh fecal matter [25]. 

Possible indicators for protozoa suggested in the literature include aerobic spores, anaerobic spores and 

particle profiling (particle size distribution). Similarly, particle profiling has been reported as a useful 

indicator for the removal of helminths from wastewater, with a high correlation observed between 

numbers of helminth ova and the volume of particles of 20–80 µm [26]. 

Challenge testing of wastewater treatment processes for virus removal has been generally performed 

with model viruses having inactivation and adsorption behaviors similar to the native viruses under given 

conditions. Bacteriophages are viruses that infect specific bacteria and are widely considered to be 

process indicators for enteric virus removal or inactivation [27]. A coliphage is a type of bacteriophage 

that infects Escherichia coli (a fecal coliform). Coliphages those attack E. coli through the “pilli” are 

referred to as “F-specific phage” or “Male-specific phage”, while those attacking through the cell wall 

are referred to as “Somatic phage”. MS2 coliphage (an F-specific phage) appears to be the most common 

virus used in bench scale MBR studies. It is a single-stranded RNA virus, with icosahedral shape, small 

size (20–25 nm), and low isoelectric point (pH = 3.9) and relative hydrophobicity [14]. These 

characteristics are similar to some pathogenic human viruses found in water and wastewater, such as 



Water 2014, 6 3607 

 

 

hepatitis A virus and poliovirus [28], and thus make MS2 a good indicator and surrogate for virus studies 

with membrane systems [29,30]. T4 coliphage (a somatic coliphage) has also been used in bench-scale 

MBR studies since it is similar to adenoviruses, reoviruses, rotaviruses [31], and coronaviruses [32]. 

Even though the size and isoelectric point of phages are similar to those of some enteric viruses, their 

removal and transport do not necessarily relate to those of enteric viruses in wastewater systems, and 

therefore, the use of these indicators are under continuous scrutiny [14]. 

2.3. Log Removal 

Pathogen removal is expressed in terms of log removal value (LRV), which is defined as follows [33]: Log	Removal = −log concconc  

If the log removal is equal to one then there is a 90% reduction in microorganisms. If the log reduction 

is two, then there is a 99% reduction, if three, then there is a 99.9% reduction and so on. Regulations 

and guidelines for drinking water and water recycling specify a target LRV that reduces the risk 

associated with exposure to the pathogen to a tolerable level. For example, the specified inactivation or 

removal efficiencies for various pathogens defined in the United States Environmental Protection 

Agency Enhanced Surface Water Treatment Rule (USEPA-ESWTR) is two LRV (i.e., 99% removal) 

for Cryptosporidium parvum, three LRV (i.e., 99.9% removal) for Giardia lamblia, and four LRV  

(i.e., 99.99% removal) for viruses [16,34]. 

3. Removal of Microbes by Membranes 

There are two facets of treatment by MBR–activated sludge and membrane separation. The role of 

membranes alone in removal of pathogens is briefly discussed here. The membrane filtration spectrum 

for rejection of pathogenic microorganisms is illustrated in Figure 1. Two types of membranes are 

primarily used in MBRs—MF or UF. MF membranes have pore size 0.1–10 μm, while UF membrane 

pore sizes may range from 5 to 100 nm, although common UF membranes used with MBRs are of ≈0.01 

μm [35]. Membranes are primarily made of polymers including proprietary non-ionic polymers, 

polytetrafluoroethylene (PTFE), polypropylene (PP), polysulphone (PS), polyvinylidinefluoride 

(PVDF) and polyethylene (PE) [35,36]. 

Protozoan cysts or oocysts range in size from 3 to 14 μm, which is significantly larger than the pore 

size of an MF or UF membrane, so total removal of protozoa is expected [20,37]. Due to the nominal 

pore size of the MF or UF membranes used and the size of the coliform bacteria, size exclusion by 

membrane is considered the dominant mechanism for also the removal of coliforms by intact 

membranes. The pore size of common MF and UF membranes promises the removal of all bacteria from 

wastewater and no tertiary disinfection is required to adhere to the regulatory limit of 2 colony forming 

unit, CFU/100 mL in the USEPA guidelines [25,38]. Conversely, due to the much smaller size of viruses, 

there is much greater concern surrounding their removal by direct membrane filtration. For example, 

Table 1 shows MS2 phage removal by different membranes from spiked deionized water. Direct MF 

filtration may only achieve around one log removal of virus, while with the common UF membranes 
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used in MBR (i.e., ≈0.01 μm, which can be generally considered to be equivalent to 200 kDa) variable 

log removal of virus depending on factors, such as membrane pore size and material may be achieved. 

Figure 1. Membrane filtration spectrum for rejection of pathogenic microorganisms 

(adapted from [11]). 

 

Table 1. MS2 phage removal by different membranes from spiked deionized water.  

Membrane Specification Virus Concentration in Feed (PFU/mL) LRV Reference 

RO (PA-TFC) 105–106 >6.5 [39] 
RO (PA-TFC) 105–106 5.6 [39] 
RO (PA-TFC) 105–106 2.7 [39] 

RO (CA) 105–106 >4.9 [39] 
RO (CA) 105–106 4.6 [39] 

UF 300kDa (PS) na >4 [40] 
UF 100 kDa (PS) na >4 [40] 
UF 10 kDa (PS) na 3–4 [40] 

UF 100kDa (PES) 103–106 3.54 ± 0.56 [41] 
UF 150 kDa (PES) 103–106 >4.89 [41] 
UF 100 kDa (CA) 103–106 >6 [41] 
MF 0.2 μm (PS) na <1 [40] 

MF 0.1 μm (PVDF) na <1 [40] 
MF 0.1 μm (PVDF) 103–106 1.79 ± 0.09 [41] 

Notes: PFU = plaque forming unit; LRV = log removal value; na = not available;  
MF = microfiltration; UF = ultrafiltration; RO = reverse osmosis; PA = polyamide; CA = cellulose 
acetate; PS = polysulphone; PES = polyether sulphone; PVDF = polyvinylidene fluoride. 

4. Overview of Pathogen Removal by Membrane Bioreactor 

When well designed and operated, MBRs can consistently achieve efficient removals of suspended 

solids, protozoa and coliform bacteria [14]. Under optimal conditions, MBR systems can also  

significantly remove various viruses and phages. Several biomass processes (i.e., spontaneous decay, 

aggregation/biosorption and predation/biodegradation) along with membrane rejection govern pathogen 
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removal by MBR. This section will provide an overview of the extent of pathogen removal, while 

Section 6 will detail the factors affecting pathogen removal by MBR. 

Shang et al. [30] reported outstanding removal of E. coli and fecal coliforms by MBR. Ueda and  

Horan [42] observed the removal of fecal coliforms and fecal streptococci by MBR to be at levels 

acceptable for drinking water. Krauth and Staab [43], in their study of the hydraulics of pressurized 

MBRs, reported removal of E. Coli, Salmonella and other pathogenic indicators to non-detectable levels 

from wastewater generated from the canning of sour vegetables. Their research also confirmed that the 

effluent from the MBR met the drinking water standards in terms of bacterial indicator removal. Whilst 

this was a significant demonstration of the suitability of MBR for disinfection of wastewater, because 

only a branch of microorganisms that need to be removed was considered in this study, further study 

was deemed required to gain a more complete understanding of disinfection by MBR. Francy et al. [38] 

examined the effectiveness of MBR in removal of microorganisms from wastewater by two full scale 

MBR plants, each with a capacity of 12,900 m3/d, both using 0.4 µm chlorinated-polyethylene 

membranes. The study found that for all MBR samples, there was almost complete removal of bacteria. 

The recorded concentrations of the indicator organism E. Coli and fecal coliforms in the treated 

wastewater were within the USEPA guidelines for reuse for urban and agricultural (food and non-food 

crops) purposes, with many of the samples returning values of less than 1 CFU/100 mL. It is, however, 

important to note that microbial colonies may form in the internal space of permeate pipe line and may 

cause detection of microorganisms in permeate despite the complete retention of all bacteria within the 

bioreactor [44]. Table 2 summarizes data from selected representative papers related to coliform removal 

by MBRs from wastewater. 

Due to the relative size of viruses to the MF and UF membranes commonly used with MBRs, there 

is much greater concern surrounding the removal of viruses and the implication this has on disinfection 

than the removal of bacteria or protozoa. Table 3 summarizes the findings of some key case studies 

regarding the removal of phages and other viruses by MBR. Under optimal conditions, as detailed in 

Section 6, MBR systems can also reliably remove various viruses and phages. For example, Kuo et al. [36] 

reported 4.1–5.6 log removals for human adenoviruses, whereas Simmons et al. [45] reported that 

removal efficiencies could reach 6.3, 6.8, and 4.8 logs for human adenoviruses, enteroviruses, and 

noroviruses, respectively. Cicek et al. [46], in their investigation into the use of an MBR to reclaim 

wastewater, studied the efficiency of an inorganic Al2O3-TiO2 ceramic membrane for the treatment of a 

synthetic wastewater [46]. They observed complete retention of heterotrophic bacteria and MS2 phages 

by the membrane [46]. Testing of the undiluted MBR effluent confirmed the absence of any 

heterotrophic microorganisms. Further testing of both the retentate and the effluent showed that there 

was 8200 PFU/mL in the retentate and no detectable amount in the effluent. The removal of human 

adenovirus (HAdV) by MBR was investigated by Kuo et al. [36]. The wastewater from a full scale MBR 

wastewater treatment plant was sampled at four stages, namely, incoming raw sewage, primary 

sedimentation effluent and MBR influent and effluent [36]. There was no removal of HAdV by the 

primary sedimentation, but the MBR achieved log removals at an average of 5.0 ± 0.6 between MBR 

influent and effluent. Conversely, although da Silva et al. [47] obtained high removal efficiencies for 

noroviruses in a full-scale MBR system, their data also suggested that virus removals were inconsistent. 

Different factors affecting virus removal by MBR has been detailed in Section 6. 
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Table 2. Indicator bacteria removal by membrane bioreactor (MBR). CFU: colony forming unit. 

Pathogen/Indicator 
Membrane Properties Final Concentration 

(CFU/100 mL) 
Removal (%) 

Average Log 

Removal 
Reference 

Nominal Pore Size (µm) Configuration Material 

Fecal coliforms 0.4 Flat Sheet Polyethylene 1.0 90% 6.86 [42] 

Fecal strepptococci 0.4 Flat Sheet Polyethylene ND 100% >5.83 [42] 

Fecal coliforms 100 kDa Flat Sheet - ND 100% - [48] 

Fecal strepptococci 100 kDa Flat Sheet - ND 100% - [48] 

Enterococci 0.4 - Chlorinated Polyethylene 0.63 - - [38] 

Fecal coliforms 0.4 - Chlorinated Polyethylene 0.67 - - [38] 

Fecal coliforms 0.4 Flat Sheet Chlorinated polyethylene 0.31 - - [49] 

Thermo-tolerant coliforms 0.4 Flat Sheet Chlorinated polyethylene 0–1.48 - - [49] 

Total coliforms 0.4 Flat Sheet Chlorinated polyethylene 0–2.3 - - [49] 

Enterococci 0.4 Flat Sheet Chlorinated polyethylene 0.11 - 6 [49] 

Fecal coliforms 100 kDa Flat Sheet Not Specified ND 100% - [50] 

Fecal strepptococci 100 kDa Flat Sheet Not Specified ND 100% - [50] 

Fecal coliforms 0.05 Hollow fibre Polyethersulfone - - 5.5  [51] 

Fecal coliforms 0.04 Flat Sheet Polyethersulfone - - 5.4 [51] 

Fecal coliforms 0.08 Flat Sheet PVDF/PET - - 5.9 [51] 

Fecal coliforms 0.03 Tubular PVDF - - 6 [51] 

Fecal coliforms 0.1 Hollow fibre PVDF - - 5.7 [51] 

Fecal coliforms 0.1 Hollow fibre PVDF - - 5.4 [51] 

Fecal coliforms 100 kDa Tubular Polysulfone 27 (max) -  [52] 

Enterococci 0.03 - - - - 6.1 [53] 

Fecal coliforms 0.04 Hollow fibre Proprietary polymer - 100  [22] 

Total coliforms 0.04 Hollow fibre Proprietary polymer - - 5.8 [22] 

Total coliforms - - PVDF - - 6.7 ± 0.1 [54] 

Total coliforms - - PES - - 6.1 ± 0.5 [54] 
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Table 2. Cont. 

Pathogen/Indicator 
Membrane Properties Final Concentration 

(CFU/100 mL) 
Removal (%) 

Average Log 

Removal 
Reference 

Nominal Pore Size (µm) Configuration Material 

Total coliforms - - PTFE - - 6.1 [54] 

Total coliforms - Hollow fibre - - - 6.3 ± 0.6 [54] 

Total coliforms - Flat Sheet - - - 6.5 ± 0.2 [54] 

Total coliforms - Tubular - - - 6.6 [54] 

Fecal coliforms - - PVDF - - 5.9 ± 0.4 [54] 

Fecal coliforms - - PES - - 5.7 ± 0.6 [54] 

Fecal coliforms - - PTFE - - 5.6 [54] 

Fecal coliforms - Hollow fibre - - - 5.6 ± 0.2 [54] 

Fecal coliforms - Flat Sheet - - - 6.0 ± 0.5 [54] 

Fecal coliforms - Tubular - - - 6 [54] 
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Table 3. Indicator virus removal by MBR. 

Pathogen/Indicator Membrane Nominal Pore Size (µm) Final Concentration (CFU/100 mL) Removal (%) Average Log Removal Reference 

Somatic coliphage 0.4 0.32 - - [38] 

F-specific coliphage 0.4 0.51 - - [38] 

Indigenous phage 0.4 8.8 - 5.9 [42] 

Somatic coliphage 0.4 - - 2.6–5.6 [55] 

Coliphage 0.03 2.47 - 3.7 [53] 

Indigenous MS2 coliphage - - - 3.2–4.7 ± 1 [54] 

Somatic coliphage 0.4 1.11–2.18 - 4 [49] 

Bacteriophages infecting Bacteroides fragilis 0.4 0 100 - [49] 

F-specific coliphage  0.4 0–1.26 - 6 [49] 

Calicivirus 0.4 - - - [56] 

Enterovirus 0.4 - 98.4 1.79 ± 0.55 [21] 

Norovirus (Winter) 0.4 - 93 1.14 ± 0.88 [21] 

Norovirus 0.4 - - 1.3–5.2 [56] 

Sapovirus 0.4 - - >1.8–>3.3 [56] 

Overall HAdV - - - 5.0 ± 0.6 [36] 

F-specific phage 0.1 - >95% - [36] 

Somatic coliphage 0.1 - >95% - [36] 

T4 coliphage 0.1 & 0.22 - - 1.7–6.4 [32] 

Poliovirus 0.22 - 91%–99.5% - [57] 

Poliovirus 0.004 - 100% - [57] 

Coliphages 0.4 - 100% - [58] 

MS2 coliphage 0.4 - - 0.4–2.1 [30] 

F-specific phage 0.1 - - 3.3–5.7 [22] 

Somatic coliphage 0.1 - - 3.1–5.8 [22] 
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5. Membrane Bioreactor vs. other Treatment Options 

The removal efficiency of pathogens from wastewater by MBR is generally higher than that of CAS 

and has even been shown to be equivalent to a CAS system with a tertiary treatment line [21]. 

The addition of a membrane to a CAS system to form an MBR treatment system reduces the required 

footprint of the plant, as the “physical” removal of pathogens by the membrane complements the 

contribution to the removal by the “biological process”, which is the only removal mechanism in a CAS 

operation [5,6]. For example, Ueda et al. [42] found that MBR removed phages at rates one-log unit 

higher than CAS systems treating the same wastewater. 

Valderrama et al. [59] compared CAS and MBR systems treating wastewater from a vineyard and 

found that by MBR alone water reuse standards were met for permeate suitable for urban, agricultural 

and recreational reuse according to the quality criteria defined by the Spanish Royal Decree for water 

reuse. A microbial evaluation revealed that the CAS effluent was unsuitable for reuse in any capacity. 

Similarly, Francy et al. [38] found an acceptable removal of virus by MBR, but the CAS system showed 

little to no removal. In another study, complete removal of faecal coliforms and up to 5.8 log removal of 

coliphages was observed by an MBR system [22]. It was shown that the MBR system was capable of 

high removal of coliphages despite the variation in feed coliphage concentrations. The results of this 

study indicated that the MBR system can achieve better microbial removal in far fewer steps than the 

CAS process with advanced tertiary treatment. The final effluent from either treatment processes can be 

potentially reused. Ottoson et al. [21] considered the removal of protozoa, bacteria and viruses by three 

parallel treatment systems including a CAS system with tertiary filtration, a 0.4 μm MBR system and an 

upflow anaerobic sludge blanket (UASB) system. The MBR proved superior in removal of E. coli, as 

high as five-log removal was attained. CAS with sand filtration and UASB treatment lines demonstrated 

removal of the microbial indicator organisms comparable to that of the MBR [21]. Table 4 provides a 

comprehensive comparison of removal of different viruses by full-scale wastewater treatment plants 

(WWTP): overall, full-scale MBR plants achieved higher virus removals. 

Table 4. Reported virus removal in full-scale wastewater treatment plants (WWTP). 

Virus 
Log Removal 

Conventional WWTP MBR 

Adenovirus 1.3–2.4 a 3.4–5.6 b 
Enterovirus 0.44–3.6 c 3.2–6.8 d 
Norovirus I −0.2–2.7 e 0–5.5 f 
Norovirus II −1.6–3.0 g 2.3–4.9 h 

Note: a [60–62]; b[36,45,63]; c [60,61,64–67];  d [45,63]; e [60,61,68]; f [47]; g [60,61,68]; h [45,47]. 

6. Factors Affecting Pathogen Removal by Membrane Bioreactor 

6.1. Effect of Membrane Material, Pore Size and Flux 

The membrane material properties may play an important role in the pathogen removal by  

MBR, particularly in absence of a significant amount of biofilm on membrane surface (Table 1). 

Gander et al. [69] tested submerged MBRs equipped with polypropylene or polysulphone membranes 
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and observed total coliform removal of five-log and nine-log, respectively. Although the pore-size and 

flux varied between the compared membranes, this observation indicated the impact of membrane 

material properties (e.g., hydrophobicity). Studies show that the membrane material, and, more 

specifically, its surface charge, influences also virus removal efficiency. Removals of MS2 

bacteriophage virus using RO membranes of different materials under different operating pressures were 

investigated by Hu et al. [70]. The results obtained by Hu et al. [70] revealed that a better log removal 

in terms of MS2 bacteriophage could be achieved using polyamide RO membrane under the optimum 

operating pressure of 100 psi. Antony et al. [16] also reported higher virus rejection by polyamide RO 

membranes (slightly negative charge) compared with that of cellulose acetate and polysulfone 

membranes (neutral charge). MS2 bacteriophages have an isoelectric point at pH 3.9 [71], suggesting 

that the charge will be negative above this pH. Therefore, when the membrane and the virus particles 

hold a negative charge, these repulsive forces could assist with the rejection of viruses. Zheng and 

Liu [31] investigated virus rejection by PVDF and PP membrane modules, with the pore sizes of 0.22 

and 0.1 μm, respectively. In tap water system, 2.1 log removal of coliphage T4 could be achieved by the 

PVDF membrane compared with complete rejection by the PP membrane, while for coliphage f2 with 

smaller diameter, 0.3–0.5 log rejection of the influent virus was achieved by the two membranes. 

Similar to membrane material, membrane pore size has been reported to impose case-specific 

influence on pathogen removal by MBR (Figure 2). DeCarolis et al. [44] explored 4 different MBRs 

with membranes possessing pore sizes varying from 0.04 to 0.4 μm. Fecal coliforms are much larger 

than viruses and can be filtered by 0.45 μm membranes. Therefore the data did not show any trend 

between fecal coliform removal efficiency and pore size. Given the smaller size of viruses, membrane 

pore size may be a more important determinant of virus removal efficiency than bacteria. For example, 

Madaeni et al. [57] reported that hydrophobic PVDF membrane (pore size = 0.22 μm) could remove 

about 99% of poliovirus, whereas ultrafiltration membranes with pore sizes smaller than the virus 

achieved complete rejection. Mechanical sieving of virus by membrane may be significantly related to 

the size of phages [72]. For example, Wu et al. [73] found LRV to be in good correlation with the ratio 

of phage size/pore size. On the other hand, indigenous MS2 was undetectable in the effluent of all tested 

MBR systems with a range of membrane pore sizes (0.03–0.1 μm), suggesting that removal mechanisms 

other than straining may exist in MBRs [51]. However, when MS2 coliphage (0.03 μm) was spiked to 

an MBR treating municipal wastewater, pore size effect became more apparent [51]. The MF membrane 

with 0.1 μm pore size showed a log removal of 1.7, but the membranes with 0.03 μm pore size showed 

a log removal of 4.4. The authors explained that unlike the indigenous viruses, the spiked foreign viruses 

may not have had enough time to be embedded in microbial floc and get removed by a dynamic 

membrane formed by the cake layer over the membrane (See Section 6.2). Lv et al. [32] indicated that 

for an MBR with 0.1 μm membrane, the membrane alone played a major role in phage removal. 

By contrast, for the 0.22 μm membrane, the importance of the cake/gel layer formed on the membrane 

surface was evident. Pan et al. [74] investigated removal of white spot syndrome virus by three parallel 

submerged MBRs equipped with membrane of different pore sizes. When fed with phosphate buffer 

spiked with the virus, the MBRs equipped with membranes of 0.45, 0.22 and 0.1 µm achieved log 

removals of 0.6, 1.18 and 5.5, respectively. However, when fed with aquaculture wastewater containing 

the virus, the removal efficiency of the larger pore membranes (0.22 and 0.45 µm) continued to increase 



Water 2014, 6 3615 

 

 

with the filtration resistance. It was revealed that the biofilm accumulating on the surface of the 

membrane made a major contribution to the removal. 

Figure 2. Virus Removal as a function of membrane pore size in bench and pilot-scale 

MBRs. Data source: [28,30–32,51,53,70,73,75–77]. 

0.01 0.1 1
0

1

2

3

4

5

6

7

8

9

C
ol

ip
ha

ge
 r

em
ov

al
 (

L
R

V
)

 MS2
 T4 coliphage
 Somatic coliphage
 F-specific coliphage

Nominal pore size (μm)  

In a study conducted by Ueda and Horan [42], the membrane flux showed negative correlation to 

phage removal by MBR. This has implications for scaling up as lower flux implies requirement of higher 

membrane surface area [42]. On the other hand, based on their 18-month study, Hirani et al. [51] found 

no correlation between peak flux and LRVs. Over a tested range of 7.5–12.5 L/m2·h, Wu et al. [73] 

observed little effect of flux of a 0.4 µm clean membrane on LRV. However, during MBR operation, 

higher permeate flux led to higher LRV followed by a drop in LRVs with further increases in permeate 

flux. The initial improvement in LRV with flux-rise was attributed to development of a biofilm over the 

membrane. The impact of biofilm formed on membrane on pathogen removal is discussed in Section 6.2. 

It is noted that the aspect of disinfection has been scarcely studied in conjunction with the recently 

developed high retention MBRs equipped with nanofiltrtaion, membrane distillation or forward osmosis 

membranes [78], and future studies must assess this aspect. Furthermore, incorporation of antimicrobial 

or photoactive nanomaterials can make membranes “reactive” instead of a simple physical barrier, 

achieving multiple treatment goals, such as pathogen inactivation and resistant pollutants degradation, 

while minimizing fouling [79–83]. Several nanomaterials, such as Ag, chitosan, TiO2, ZnO, carbon 

nanotube and various polymers, can induce good antimicrobial properties to membranes. While varieties 

of anti-microbial membranes with encouraging results have been reported (Table 5), these are yet to be  

well-integrated to MBR format, and further research in this line is deemed imperative. 
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Table 5. Different types of functionalized anti-microbial filters/membranes. 

Type of 

Functionalization 
Functionalized Anti-Microbial Filter/Membrane Reference 

Nanoparticles 

Ag nanoparticles-coated polyurethane foam [84] 

TiO2—entrapped PVDF MF membrane [85] 

Ag-TiO2/hydroxyapatite/Al2O3 MF membrane [86] 

Ag nanoparticles-coated polysulfone UF membrane [87,88] 

Biogenic Ag immobilization in PVDF MF membrane [89] 

Ag nanoparticles-coated PA NF membrane [90] 

Ag nanoparticles-coated PAN UF hollow fiber membrane [91] 

Ag nanoparticles-coated cellulose acetate UF hollow fiber membrane [92] 

Nanofiber 

Thin-film nanofibrous composite UF membrane containing cellulose–chitin blend [93] 

Thin-film nanofibrous composite UF membrane containing  

polycarbonate–quaternary ammonium salt 
[94] 

Nylon 6 nanofiber membranes with N-halamine [95] 

Polysulfone-Ag nanocomposite UF membrane [96] 

Carbon nanotube 
Single and multi-walled carbon nanotube hybrid filter [97] 

Anodic multi-walled carbon nanotube microfilter [98] 

6.2. Relative Contributions of Biomass Processes and Membrane Rejection 

In the MBR system, the biomass processes (i.e., spontaneous decay, aggregation/biosorption and 

predation/biodegradation) dominate pathogen removal; however, as already noted in Section 6.1, 

biofilm/membrane rejection is an essential supplement of biomass processes for removal. For example, 

MF and some UF membranes will not retain many viruses due to the virus size (as small as few tens 

of nm) relative to the pore size. However, even if the target virus is smaller than the membrane pore size, 

virus removal by MBR may occur via biodegradation following biosorption and membrane retention, in 

addition to spontaneous decay [73]. During the start-up period, adsorption and bacterial acclimation 

leads to a significant increase in biological removal of virus until it stabilizes. The removal by membrane 

increases with time as fouling develops. The fouling layer gradually forms on the membrane surface, 

physically blocking the membrane pore, allowing chemical adsorption, and biological predation of 

phages [30,42,99,100]. Thus the removal of virus may be initially governed by adsorption on membrane 

surface or in membrane pores, but as the membrane gets fouled, the virus removal will be primarily 

governed by direct interception on the cake and gel layer formed on the surface of the membrane. 

Ueda and Horan [42] found significant (5.9 log) phage removal although the phage size was smaller 

than the membrane pore size. They concluded that this removal was due to a biofilm layer forming on 

the membrane, which allowed for chemical, physical and biological removal of the phage [42]. 

Wu et al. [73] went further and measured the removal of virus indicators at each step of the MBR 

process. They observed a log removal of 1.85 by the biomass processes (e.g., biodegradation and 

biosorption), while membrane rejection was responsible for a log removal of 0.96, which increased with 

the development of a biofilm over the 0.4 µm membrane. Gander et al. [101] considered the use of MBR 

for treating domestic wastewater and found that bacterial and phage removal was increased by both the 

build-up of the biofilm and a high turbidity influent, which is also clarified by MBR systems to levels 

acceptable for various reuse applications [101]. Lv et al. [32] considered two membranes-one with a 
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nominal pore size smaller than the T4 phage, the other with a larger pore size - and found that the role 

of the membrane relied on the pore size, with no T4 detected in the effluent of the 0.1 μm membrane 

system. The 0.22 μm membrane system removed inadequate amounts of T4, which, however, gradually 

increased as the cake layer formed on the membrane surface, further reducing the effective pore size. 

Kuo et al. [36] also reported that HAdVs were associated with the biomass and were subsequently 

retained by the membrane. Mass balance analysis carried out by Lu et al. [15] showed a high percentage 

of MS-2 in the concentrate for the fouled membrane as compared with the pristine membrane. Quartz 

crystal microbalance (QCM) results showed faster kinetics of MS2 adhesion to the pristine membrane 

than to the SMP-fouled membrane. Furthermore, an attractive force between MS2 and the pristine 

membrane was detected using an atomic force microscope (AFM), whereas a repulsive force was 

detected for the interaction between MS2 and the fouled membrane. The presence of soluble microbial 

product (SMP) on the membrane surface led to higher rejection of MS2 due to both pore blocking and 

repulsion between MS2 and the SMP layer [15]. 

A few studies have systematically investigated the contribution to virus removal of the membrane as 

well as the sludge cake layer and the gel layer that forms on the membrane. Wu et al. [73] found that the 

gel layer contributed more to somatic coliphage removal than the cake layer, especially at high flux 

conditions. The gel layer is mainly formed by deposition and accumulation of the dissolved organic 

matter on the membrane surface, which is more compact than the cake layer. Therefore, its ability to 

entrap and accumulate virus-sized particles would be significantly higher, even though the gel layer 

contribution to filtration resistant is much lower than the cake layer [73,102,103]. 

Through the studies discussed in this section, it is clear how vital the membrane biofilm is to the 

removal of pathogens, especially for microbes smaller than the membrane pore size, and that without it 

the removal efficiency would be considerably less and likely insufficient for water reuse. On the other 

hand, because viruses tend to attach to solid surfaces, most viruses that survive wastewater treatment are 

likely associated with waste-activated sludge and may be present in biosolids [14,56,104]. This warrants 

safe disposal of potentially pathogen-containing biosolids. 

6.3. Impact of Membrane Cleaning 

As discussed in Section 6.2, several studies have shown the role of membrane biofilms as a secondary 

barrier to microbial contaminants. Although pore blocking, pore constriction, and biofilm formation on 

the membrane surface by organic foulants enhance the removal of microbes, they also reduce the 

permeability of the membranes. The slimy gel layer formed during the filtration process on the 

membrane surface often cannot be removed by physical means of cleaning, such as backwashing and air 

scour [35,73,101,105,106]. Chemical cleaning is conducted to recover the permeability of the 

membranes and it removes a portion of these foulants from the membrane pores and surfaces and may 

reduce the effectiveness of the MBR process in rejecting microorganisms [17]. For example, 

Farahbakhsh et al. [107] reported that increases in feed coliphage concentrations resulted in the passage 

of larger numbers of coliphages when an MF membrane was clean, but had little impact on the passage 

of coliphages when the membrane became fouled. Liu et al. [108] reported a 0.5 log reduction in removal 

by a membrane immediately after backwash, which increased until the next backwash. 

Jacangelo et al. [109] noted that the virus removal by MF/UF membranes was low at the beginning of 
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filtration and increased with time with accumulation of foulants. However, in that study, the removal 

rate did not decrease after hydraulic backwash, indicating that the irreversible membrane fouling 

maintained the virus removal. Shang et al. [30] observed that a biofilm formed over 21 d achieved a 

much higher log removal than that formed over 9 h, which has strong implications when designing 

cleaning cycles in an MBR treatment plant. If the water is to be reused, microbial removal rates need to 

remain stable and within reuse limits, so an appropriate membrane cleaning protocol must be 

established [73]. Additionally, the effect of membrane cleaning on subsequent disinfectant requirements 

needs to be evaluated. This aspect has been discussed in Section 7. 

6.4. Impact of Membrane Imperfections/Breaches 

Membranes are a mechanical form of disinfection that works by physical separation of the target 

pathogen. However, the complete removal of microorganisms will be achieved only when the membrane 

system is intact. Any anomaly with the membrane surface (e.g., abnormally large pores, compromised 

glue line, holes) and the filtration system (e.g., compromised O-rings, broken mechanical seals) will 

result in microbial contamination risk of the product water [16,110]. In routine operation, a breach in the 

membrane system can take many forms, namely, pore expansion through incompatible chemical 

cleaning [111]; damage by mechanical forces, such as shear forces and vibrations [112]; oxidation due 

to disinfection and higher operating pressures than specified by the manufacturer [113]. 

Several studies analyzing virus penetration incidents in terms of integrity of UF membranes 

(not coupled with a bioreactor) [70,114,115] showed that the abnormally large pores and membrane 

imperfections at the membrane surface and glue lines and seal breaches could be the reason for varying 

degrees of virus penetration. For example, Urase et al. [114] reported that although the ratio of abnormal 

to normal pores was less than 1/109, virus rejection was strongly affected by large pores. However, 

the significant penetration of viral particles during the challenge tests could also be due to their 

concentration in the feed water, which is much higher than under typical treatment train conditions, and 

thus the presently accepted practice is to use the lowest seeding dose possible to demonstrate the required 

log removal values. The presence of MS2 bacteriophage in the effluent of a polyamide RO membrane 

was attributed to leakage of bacteriophages through the membranes structure—investigations using 

scanning electron microscope (SEM) and AFM showed that there were gaps or pores present in the 

membrane structure, which were sufficiently large for the MS2 viruses to pass through. 

Only a few studies have investigated the implications of membrane breach on passage of pathogen 

through a membrane within MBR. A loss of membrane integrity can result in a spike in both turbidity 

and microorganisms in the MBR filtrate. Under breached conditions, the filtrate turbidity typically 

increases immediately after relaxation/backwash and gradually reduces to a previously observed value 

once the membrane plugs with activated sludge after a few minutes of filtration [116]. Since filtrate 

turbidity for MBR systems is not always monitored continuously at all MBR facilities, such a breach 

can result in passage of microorganisms, thereby posing a challenge for the downstream disinfection 

process. Hirani et al. [17] characterized effluents produced from an MBR system operating under routine 

and challenged conditions, and reported that the membrane (0.1 µm) under breached conditions 

(turbidity > 0.5 Nephelometric Turbidity Units, NTU) resulted in an increase in a total coliform bacterial 

concentration up to 8500 CFU/100 mL. Passage of MS2 bacteriophage through the breached membrane 
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was lower compared to total coliform bacteria, indicating that indigenous MS2 bacteriophage are more 

likely to be particle-associated compared to coliform bacteria and thereby consistently rejected by the 

membrane even in the event of a loss of membrane integrity. On the other hand, although 

Cryptosporidium oocysts were not detected in the filtrate, Giardia cysts were detected at a low 

concentration (1/10 L). 

Notably, depending on the membrane type and the nature of the feed water foulants, membrane 

fouling may in fact prevent penetration of pathogens due to membrane imperfections/breaches. For 

example, in the aforementioned study of Hirani et al. [17], the highest concentration of coliform bacteria 

was observed at the beginning of the filtration cycle suggesting plugging of the breach by mixed liquor 

solids as the filtration cycle progressed. If the fouling, however, is reversible, the membrane healing will 

revert with chemical cleaning. Furthermore, while the development of increased irreversible fouling may 

enhance virus removal, progressive reduction of flux due to fouling is not a sustainable mode of 

operation and currently it is unknown if general decay or decomposition of the membrane may result in 

decreased rejection over the long-term operation [16]. 

Additional concern has been raised regarding the limitations of existing membrane integrity 

monitoring techniques. Existing techniques are either only reliable for detecting contaminants of 1 μm 

or larger, or provide low resolution (one to two log) even if capable of detecting a membrane breach less 

than 1 μm [16]. This is a significant limitation given that, for example, enteric virus particles are in the 

size range 0.01–0.04 μm. Similarly, the process control monitoring parameters lack sensitivity and 

therefore virus breakthrough may occur even before a loss of integrity is detected. 

7. Requirement of Post-Disinfection 

Although MBRs produce high quality effluent, and it can be potentially used as a pre-disinfection or 

disinfection unit [30], a post-disinfection process is still used to ensure the effluent quality for reuse. 

As the reuse application changes, the disinfection requirement will change, so that the MBR effluent, 

which may regularly meet the requirement for one application will no longer be adequate. The only 

quantitative virus content value in the USEPA water reuse guidelines is the North Carolina agricultural 

reuse for non-processed food guide that allows a maximum of 25 plaque forming unit, PFU/100 mL and 

a monthly average of 5 PFU/100 mL [25], and most of the MBR studies reviewed here appear to meet 

this requirement. No extra disinfection may be required for the aforementioned MBR case studies to 

remove total and fecal coliforms for restricted urban, environmental of industrial reuse. Despite the 

success of the process in pathogen removal, and therefore the potential reuse of MBR effluent in 

irrigation, it may not be sufficiently effective for reuse as drinking water, or other purposes requiring 

higher disinfection standards [38]. 

Although post-disinfection is still recommended, the higher removal of pathogens by MBR as 

compared to CAS or other treatment processes means chemical disinfection is required at a lower dosage 

to reach the reuse standard [117]. For example, Francy et al. [38] reported that because of significant 

removal by MBR, ultraviolet disinfection after MBR treatment provided little additional log removal of 

any organism except for somatic coliphage (>2.18), whereas ultraviolet or chlorine disinfection after 

CAS treatment provided significant log removals (above the analytical variability) of all bacterial 

indicators (1.18–3.89) and somatic and F-specific coliphage (0.71 and >2.98). In another study, the 



Water 2014, 6 3620 

 

 

chlorine required to remove 100% of fecal coliform from MBR effluent was 2.9 mg/L, less than for the 

sand filtration process that required 8 mg/L, and less than the typical dose of 5–20 mg/L, although  

some viruses have been known to survive disinfection in low doses [52,117,118]. The study by 

Natvik et al. [119] suggested a minimal requirement for post-MBR disinfection, which can be achieved 

using a reduced ultraviolet irradiation. In another study, complete removal of a viral indicator from the 

effluent of an MBR treating grey water via UV irradiation was reported [120]. Mansell et al. [121] 

reported achievement of five-log virus inactivation with free chlorine dosing to MBR effluent at 

concentrations one-tenth of 450 mg Cl2-min/L, which is the minimum value required by California Water 

Recycling Criteria (Title 22) for all chlorine disinfection processes. Li et al. [122] found that after 

treatment by MBR with a short HRT of less than an hour, the required dose of chlorine for the effluent 

to reach the drinking water standard was reduced from 22.3 ± 5.1 to 0.5 ± 0.1 mg/L. Hirani et al. [17] 

reported that despite the passage of microbes in higher concentrations through a breached membrane 

(filtrate turbidity of 1.0 NTU) of an MBR, a free chlorine dose of 30 mg-min/L was sufficient to achieve 

greater than five-log removal of seeded MS2 bacteriophage and removal of total coliform bacteria at or 

below the detection limit. It was suggested that if such a lower dose were to be employed, a significant 

decrease in plant footprint and operational costs could be realized. 

MBRs can efficiently remove pathogens with no or reduced chemical oxidative disinfection,  

thus, with minimized associated problems and costs of storing and using corrosive agents. However, 

the regrowth of pathogens, such as Aeromonas, Mycobacterium, and Legionella, has been reported in 

the distribution system irrespective of the treatment technology used, including CAS processes and 

MBRs [123,124]. Thus, the post-treatment of MBR effluents as well as effective effluent monitoring to 

confirm the integrity of the process is necessary in order to ensure environmental and public 

health protection. 

8. Emerging Concerns in Accurate Assessment of Disinfection by Membrane Bioreactor 

8.1. Seeded vs. Indigenous Microbes 

Noting that as much as 95.5% of the seeded phage was lost before reaching the MBR, Cicek et al. [46] 

underscored the importance of considering processes other than membrane filtration (e.g., predation, 

biosorption or spontaneous decay), particularly when the removal is assessed based on seeded phage and 

not the ones occurring naturally in wastewater. In order to avoid overestimation of membrane 

contribution to total virus removal, Ueda et al. [42] also expressed similar concerns. 

8.2. Quantification Methods and Indicator—Pathogen Correlation 

Different indicator organisms have been considered in the literature reviewed, but there has been 

some concern recently regarding the correlation between indicators and the presence of actual 

viruses [125]. Ottoson et al. [21] note that the presence of indicator organisms does not always indicate 

the presence of pathogens. Conversely, it has been suggested that much of the controversy with regards 

to indicator and pathogen correlations is the result of studies with insufficient data for assessing 

correlations [56,126] and these problems can be rectified by taking the appropriate quality control 

measures. On the other hand, Sima et al. [56] pointed out potential pitfalls of the RT-PCR method of 
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quantifying virus genomes due to compounds present in wastewater samples, which may interfere with 

extraction efficiencies, and raised the importance of careful quality control measures also in this respect. 

8.3. Case-Specific Suitability of Indicators 

Some indicators may be more suitable than others for a particular treatment train. Wu et al. [126] 

noted that no single indicator could be identified as the most correlated with pathogens, however, 

coliphages, F-specific coliphages, Clostridium perfringens, fecal streptococci and total coliforms were 

more likely than other indicators to be correlated with pathogens. De Luca et al. [127], observed the 

traditional bacterial indicators to be almost totally removed by biofiltration, and thus recommended 

somatic coliphages as best indicators to evaluate the microbiological risk when MBR effluent is 

discharged into natural waters or reused. Based on reductions of organisms throughout treatment 

processes, Francy et al. [38] reported that somatic coliphage may best represent the removal of viruses 

across secondary treatment in both MBR and conventional secondary plants, while F-specific coliphage 

and E. Coli may best represent the removal of viruses across the disinfection process in MBR facilities. 

Ottoson et al. [21] observed a marked variation in the removal of the tested indicator organisms. 

bacterial indicators were more efficiently removed than coliphages, which were more efficiently 

removed than enterovirus and norovirus genomes. Similarly, while looking at the removal of human 

enteric viruses from a full scale MBR plant, Simmons et al. [45] found that compared to human 

adenovirus (5.5 log removal), human enterovirus (5.1 log removal) and norovirus (3.9 log removal) were 

removed with lower efficiencies. In a study by Hirani et al. [51] the log removal of total and faecal 

coliform varied from 5.8 to 6.9 and 5.5 to 6.0, respectively, showing some impact of the indicator 

organism chosen on the perceived bacteria removal efficiency. Notably, the lower LRVs of faecal 

coliform, despite the generally expected similar removal of total and faecal coliforms due to the 

similarity of their particle sizes, was attributed to lower influent concentrations of the former.  

Passage of MS2 bacteriophage through a breached membrane was not substantial, indicating that 

indigenous MS2 bacteriophage are more likely to be particle-associated compared to coliform bacteria 

and thereby consistently rejected by the membrane even in the event of a loss of membrane integrity [17]. 

9. Concluding Remarks 

MBRs have been proven to consistently deliver complete removal of protozoa and around six-log 

reduction of bacteria, and are therefore accepted, as a single step, capable of meeting the high regulatory 

standards. Although MF or UF membranes commonly used with MBRs cannot be expected to be an 

effective barrier for virus-sized particles based on the nominal pore size, under optimal conditions, 

MBR systems can also reliably remove various viruses and phages. This is a marked improvement over 

the CAS processes that can achieve very low virus removal if not complemented with a tertiary filtration. 

However, reported MBR virus removal has been observed to vary significantly depending on the type 

of the virus (e.g., human adenovirus vs. norovirus) or the indicator (e.g., F-specific coliphage vs. somatic 

coliphage) monitored and also on the issue whether indigenous or spiked viruses are being probed. 

Furthermore, MBR systems require periodic backwash and chemical cleaning of the membrane to 

prevent blockages and excessive build-up of biofilm. But this disruption of the biofilm layer may 

adversely affect virus removal. It is also important to note that passage of pathogens through the 
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membrane can occur as a result of a membrane breach. Additionally, the regrowth of pathogens in the 

distribution system may lead to microbial contamination of the permeate. Thus post-disinfection of MBR 

effluent is recommended for water reuse purposes. Nevertheless, the higher removal of pathogens by 

MBR as compared to CAS or other treatment processes means chemical post-disinfection is required at 

a lower dosage to reach the reuse standard, reducing the problems and costs associated with storing and 

using corrosive disinfection agents. Indeed recent studies, following rigorous monitoring campaigns, 

suggest that a significant decrease in plant footprint and operational costs could be realized by  

applying such lower post-disinfection dosages. Apart from the concept of post disinfection via classical 

disinfectants or advanced oxidation processes, an elegant approach could be to develop  

MBR-compatible functionalized membranes with anti-microbial coating. In addition to the safety of 

recycled water, it is highly important to ensure proper disposal or reuse of biosolids originating from 

MBR plants. Most wastewater virus studies report virus concentrations in influent and effluent, but 

because viruses tend to attach to solid surfaces, monitoring for enteroviruses in biosolids warrant 

careful consideration. 
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