
Water 2014, 6, 3270-3299; doi:10.3390/w6113270 
 

water 
ISSN 2073-4441 

www.mdpi.com/journal/water 

Article 

Simulating Water Resource Availability under Data  
Scarcity—A Case Study for the Ferghana Valley (Central Asia) 

Iuliia Radchenko 1,*, Lutz Breuer 1, Irina Forkutsa 2 and Hans-Georg Frede 1 

1 Landscape, Water and Biogeochemical Cycles, Research Center for BioSystems,  

Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32,  

Giessen 35392, Germany; E-Mails: Lutz.Breuer@umwelt.uni-giessen.de (L.B.);  

Hans-Georg.Frede@umwelt.uni-giessen.de (H.-G.F.) 
2 Center for International Development and Environmental Research (ZEU), Justus-Liebig-University 

Giessen, Senckenbergstr. 3, Giessen 35390, Germany; E-Mail: Irina.Forkutsa@zeu.uni-giessen.de 

* Author to whom correspondence should be addressed;  

E-Mail: Iuliia.Radchenko@agrar.uni-giessen.de; Tel.: +49-641-99-37382; Fax: +49-641-99-37389. 

External Editor: Richard Skeffington 

Received: 17 June 2014; in revised form: 29 September 2014 / Accepted: 14 October 2014 /  

Published: 30 October 2014 

 

Abstract: Glaciers and snowmelt supply the Naryn and Karadarya rivers, and about 70% of 

the water available for the irrigated agriculture in the Ferghana Valley. Nineteen smaller 

catchments contribute the remaining water mainly from annual precipitation. The latter will 

gain importance if glaciers retreat as predicted. Hydrological models can visualize such 

climate change impacts on water resources. However, poor data availability often hampers 

simulating the contributions of smaller catchments. We tested several data pre-processing 

methods (gap filling, MODAWEC (MOnthly to DAily WEather Converter), lapse rate) and 

their effect on the performance of the HBV (Hydrologiska Byråns Vattenavdelning)-light 

model. Monte Carlo simulations were used to define parameter uncertainties and  

ensembles of behavioral model runs. Model performances were evaluated by constrained 

measures of goodness-of-fit criteria (cumulative bias, coefficient of determination, model 

efficiency coefficients (NSE) for high flow and log-transformed flow). The developed data  

pre-processing arrangement can utilize data of relatively poor quality (only monthly means 

or daily data with gaps) but still provide model results with NSE between 0.50 and 0.88. 

Some of these may not be accurate enough to directly guide water management applications. 

However, the pre-processing supports producing key information that may initiate rigging 
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of monitoring facilities, and enable water management to respond to fundamentally changing 

water availability. 

Keywords: hydrological modeling; Monte Carlo simulation; MODAWEC; HBV-light model; 

lapse rate; multiple linear regression 

 

1. Introduction 

The Aral-Caspian basin is the major internal drainage area of Central Asia. Its 4,000,000 km2 are 75% 

steppe and desert [1]. However, large amounts of water are stored in glaciers, permafrost and snow on 

high mountain ridges in Kyrgyzstan and Tajikistan in the East of Central Asia. At present, these water 

storages play the key role in the water management that has to regulate the supply for the livelihood in 

the Central Asian lowlands including main parts of the Ferghana valley in Uzbekistan (Figure 1,  

39.4°–42° N, 69.2°–73.8° E) [2–5]. The valley floor at about 400 m is surrounded by the mountain 

ranges of the Tien Shan and the Alay mountain systems that reach up to 5000 m a.s.l.: the Chatkal ridge 

in the north, the Ferghana ridge in the east and the Alay ridge in the south. These orographic conditions 

protect the valley against the invasion of cold air masses from the north but open it to relatively  

moist air from the west [3,6,7]. Therefore, the Ferghana Valley has relatively warm winters and hot 

summers [8]. As the moist air from the west is forced to move upwards, which includes adiabatic cooling, 

the precipitation generally increases with elevation and reaches up to 1300 mm per year at the 

northwestern slopes of the Ferghana ridge [8,9]. 

Figure 1. The Ferghana Valley with FAO (Food and Agriculture Organization) land-use 

map and delineated upper catchments (in black) using SRTM (Shuttle Radar Topography 

Mission) DEM (Digital Elevation Model, 90 m) and ArcGIS (10) software (Redlands,  

CA, USA). 
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The Karadarya and Naryn rivers have their source in the eastern part of the Ferghana Valley and the 

Tien Shan mountain system in Kyrgyzstan, from where during summer they are mainly fed by glaciers 

and snow melt. The confluence of the two rivers in the Uzbek part of the Ferghana Valley forms the 

Syrdarya River. This river is the main water artery of the valley with a mean discharge of about  

39 km3·year−1 [10]. Kyrgyzstan and the three countries Tajikistan, Uzbekistan and Kazakhstan 

contribute 74% and 26% of the water volume of the Syrdarya River, respectively [1]. Smaller streams 

and catchments at the proximate northern, eastern and southern ridges around Ferghana Valley 

contribute water mainly from annual rain and snowfall and only a few streams to the south include some 

glacial melt. 

A data compilation of the contributions of the two main and the most relevant smaller rivers shows 

that (a) the 19 smaller catchments (individually 71–2480 km2) cover together an area of around  

23,700 km2 or 36% of the combined headwater areas of the Naryn and Karadarya catchments;  

and (b) the contribution in discharge to the Syrdarya River is around 7.7 km3 or ≈34% for the  

19 catchments (0.2%–6.6% for single catchments), whereas it is ≈13% for the Karadarya and 53% for 

the Naryn River (Table 1, data period 1980–1985). 

Based on the analysis of observed climatic data of Central Asia for the 20th century, air temperatures 

are increasing especially in the lowlands and during winter months [11]. The Intergovernmental Panel 

on Climate Change (IPCC) predicted a further increase in winter (+2.6 °C) and summer (+3.1 °C) 

temperatures by 2050 under its lowest future emission scenario B1 [12]. The same study expects 

precipitation to increase by +4% in winter seasons and to decrease by −2% to −4% in spring and  

summer seasons. 

The total area covered by glaciers in Kyrgyzstan decreased from 8076 km2 in 1960 to 7400 km2 at 

around 1980 and further to 6500 km2 in 2000 [13]. This corresponds to a 20% glacier recession for the 

period 1960–2000. The Tien Shan glaciers alone showed a reduction of 14.2% between 1943 and  

2003 [4]. According to [14] glacier recession for the period 1970–2000 varied from 9% to 19% in 

different regions of the Tien Shan. Finally, many authors assume that the rate of glacial melt in Central 

Asia has accelerated since the 1970s [4,15,16]. 

According to [17], the future changes in precipitation, glacial melt, groundwater extraction, reservoir 

construction, and population growth will involve only a moderate risk of water shortage in the Syrdarya 

River basin. In contrast, the IPCC emphasized with very high confidence that Central Asia is under high 

water stress, and that water resources are extremely vulnerable to climate change [12]. Accordingly, the 

further decrease of glaciers will most likely lead to runoff changes from the Naryn and Karadarya rivers. 

The volume of water discharged into the major rivers of the region may increase in the short-term but 

decrease over the long-term. With respect to climate change scenarios, a reduction in discharge by  

6%–10% in the Syrdarya River basin is projected by 2050 [1]. Thus, the contributions of small, mainly 

precipitation-driven catchments may become more important for the water balance of the Ferghana 

Valley in coming decades. As the people in the region depend on irrigated agriculture, it is of significant 

interest to assess the contribution of the small upper-catchments under current conditions, and to simulate 

the future runoff dynamics [18,19]. 
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Table 1. Comparison of discharge data (km3·year−1) of the 19 upper sub-catchments flowing into the Syrdarya in relation to the inflows from 

the Naryn and Karadarya rivers (Data compiled from [20], obtained from the Central-Asian Institute of Applied Geosciences (CAIAG),  

Kyrgyz-Russian Slavic University (KRSU), and the Global Runoff Data Center (GRDC)* [21], retrieved 19.04.2011, (D)—data with gaps). 

Catchment Area 
Elevation  

(Gauge Station)
Discharge 

Contribution  
 to Total Discharge

Temporal Resolution of Data  
(Daily = D, Monthly = M) 

Name (km2) (m a.s.l.) (km3·year−1) (%) Precipitation Temperature Discharge 
1 Gavasay 361 1716 0.13 0.6 D M D (1980–1985) 
2 Kassansay 1130 1350 0.19 0.9 D M D (1980–1985) 
3 Padshaata 366 1536 0.15 0.7 D M D (1980–1985) 
4 Aflatun 863 2000 0.29 1.4 D M D (1980–1985) 
5 Maylisuu 530 985 0.26 1.3 D M D (1980–1985) 
6 Shidansay 126 1016 0.05 0.2 D M D (1980–1985) 
7 Tentyaksay 1300 1023 0.83 4.1 D M D (1980–1985) 
8 Kugart 1010 1168 0.54 2.7 D D D (1980–1985) 
9 Changet 381 813 0.06 0.3 D M D (1980–1983, 1985) 
10 Kurshab 2010 1543 0.55 2.7 D (D) D (1980–1985) 
11 Akbura 2260 1327 0.62 3.0 D (D) D (1980–1985) 
12Aravansay 1680 1068 0.22 1.1 D M D (1980–1985) 
13 Abshirsay 230 1500 0.05 0.2 D M D (1980–1985) 
14 Isfiramsay * 2220 1017 0.59 2.9 D M D (1980–1985) 
15 Shakimardan 1180 1065 0.25 1.2 D (D) D (1980–1985) 
16 Sokh * 2480 1140 1.35 6.6 D M D (1980–1985) 
17 Isfara 1560 1283 0.43 2.1 D (D) D (1980) 
18 Khodjabakirgan 1740 1730 0.29 1.4 D M D (1980–1983) 
19 Aksu 712 1100 0.11 0.5 D M  D (1980–1983) 

Major rivers ~34    
Naryn * 58,400 498 10.7 ~53    
Karadarya * 7402 890 2.68 ~13    
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About 12 million people live in the Ferghana valley [22], and most of the local families as well as 

many other people in Central Asia depend on the agricultural production of this specific area. Thus, for 

many water-users in the Ferghana Valley and beyond, information about future water availability is of 

utmost importance. Therefore, model projections are urgently needed that capture the impact of changes 

in precipitation patterns on annual flows with sufficient accuracy to support reservoir management and 

water resource planning. However, available meteorological and hydrological data for the aforementioned 

19 catchments are limited (Table 1). For example, although temperature is important for estimating 

evapotranspiration and thereinafter for closing the water balance in semi-arid regions [23,24], daily 

temperature data sets for several years are at hand only for five weather stations. Only monthly temperature 

data exist for the rest of the stations (Figure 2). Accordingly, the term “data scarcity” in this study refers 

to insufficient climate network coverage across the Ferghana Valley, especially regarding temperature 

data where the density of stations is less than 1 per 5000 km2 [25,26]. 

Figure 2. The Ferghana Valley with available meteorological data and four studied 

catchments (in green). 

 

Widespread data scarcity cannot be gap-filled in a way that the output enables local water 

managements to rely on the synthesized data for the decisions in water allocation to users. Thus, results 

from synthesizing regional scale data with larger gaps may not be overstated. However, even rough 

estimations on the potential direction of change are highly appreciated by stakeholders and decision-makers, 

because water resources are so vulnerable in this area of the world. Hence, the scope of the present work 

was to develop an approach that can facilitate hydrological modeling of water resource availability under 

current climatic conditions based on a number of limited data sets (Figure 3). 
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Our straightforward approach to hydrological modeling agrees well with suggestions by [27,28]  

and takes into account a number of performance criteria (Nash-Sutcliffe efficiency for high and  

log-transformed flow, and difference in annual water balance), and provides a meaningful representation 

of hydrological processes, the transformation of behavioral parameter sets in time (validation), and a 

sensitivity analysis of the model’s parameters. We selected the four river catchments with the most 

complete data and tested hydrological model performance given these aspects. Moreover, we tested 

MODAWEC weather generator for its applicability in the study region. MODAWEC converts monthly 

temperature data into daily values since only several weather stations are available at daily resolution 

(Figure 2). To decide whether or not MODAWEC can be used for research on the other 15 catchments 

of the valley, the results of simulated hydrological outputs were compared, in terms of results from the 

two databases representing either generated or measured temperature (Figure 3). 

Figure 3. Schematic representation of the selected model approach. 

 

Preference was given to a lumped hydrological model for the hydrological simulation because of the 

limited quality of forcing data, i.e., referring to the completeness of observed daily meteorological data 

for the study period. Amongst others, models from the HBV (Hydrologiska Byråns Vattenavdelning) 

family have proven to provide reliable results for mountainous catchments of Central, East and South 

Asia, and have recently been used for climate change impact studies in the region [29–35]. We used the 

recently upgraded version of the HBV-light model for the water balance investigation of the Ferghana 

Valley, because this version is capable of simulating glacial melt [36,37]. We used a Monte Carlo 

approach to investigate the effect of model parameter uncertainty [38,39], which is only one part of the 

global model uncertainty that can arise from errors in input data, the model parameters, or the model 

structure [38,40–42]. In addition, the influence of the input parameters on the model’s output was 

assessed using sensitivity analysis [43,44]. 
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2. Materials and Methods 

2.1. Study Area 

The four pilot watersheds with the most comprehensive data sets are the Kugart River, the Akbura 

River, the Kurshab River and the Shakhimardan River basins. A complete record of daily air temperature 

was available only for one weather station (Jalal Abad) provided by the NCDC (National Climatic Data 

Center), while for four other stations (Osh, Gulcha, Ferghana, Isfara) there are temporal gaps in the 

database (Figure 2). The average monthly temperature for the period 1980–1985 at lower elevations 

(Ferghana, El. 577 m a.s.l.) varies from −0.4 °C in January to 28.9 °C in July. At medium elevations 

(Gulcha, El. 1542 m a.s.l.) temperatures range from −4.5 to 20.3 °C and decreases to between −8.3 to 

15.8 °C at high elevations (Kichik Alay, El. 2360 m a.s.l.) (Figure 2). The patterns of monthly mean 

temperature are similar for the four studied catchments, with warm periods starting in April–May and 

ending in September–October (Figure 4). Likewise, annual precipitation patterns are comparable 

between locations with maximum precipitation occurring during April–May and a secondary peak in 

October–November (Figure 4). 

Figure 4. Hydrometeorological regime for the four studied catchments for the period  

1980–1985 (constructed based on the available database). 

 

Hydrometeorological and land-use characteristics of the studied catchments are presented in Table 2. 

The annual discharge varies from 274 (Akbura) to 537 mm (Kugart) for the studied period with 

rainfall/runoff ratios of 0.48 (Shakhimardan) to 0.86 (Akbura). The Kugart River basin is mainly precipitation 

and snowmelt fed, while the other three studied basins are primarily snow and glacial-melt fed. 
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Table 2. Hydrometeorological and land-use characteristics of the four studied catchments. 

River Catchments Kugart Akbura Kurshab Shakhimardan 
Annual discharge, mm 537 274 277 251 

Annual precipitation, mm 710 319 530 527 

Average annual temperature, °C 11.0 4.2 8.3 7.0 

Forest, % 21.0 2.5 14.0 0.1 

Grassland/Cropland, % 79.0 52.0 58.0 65.4 

Sparsely vegetated/Bare lands, % - 45.5 28.0 34.4 

The dominant vegetation zones were classified based on FAO land-use/land-cover data [45].  

Forests cover up to 21% (Kugart), while the largest portions of the catchments are made up of 

grassland/cropland (52%–79%) and sparsely vegetated and bare lands. Based on the World Reference 

Base for soil resources [46], the prevalent soils in the research area are Leptosols, Cambisols and 

Fluvisols, whereby the first and the latter two correspond roughly to sparsely vegetated/bare lands and 

grassland/cropland, respectively. In addition, the river terraces along the studied catchments are often used 

for agriculture, producing cotton, cereals, grapes, sugar beets, fruits and nuts. 

Information about the distribution of glacial and snowfield areas in different elevation ranges is 

presented in Table 3. Glacier and permanent snow cover are illustrated in Figure 5. 

Table 3. Distribution of the glacier and permanent snow covered area at different elevations 

in the Akbura, Kurshab and Shakhimardan river basins (Kugart river basin is non-glaciated). 

Elevation Zone Akbura Basin Coverage, 1975 Kurshab Basin Coverage, 1972 Shakhimardan Basin Coverage, 1978 

(m a.s.l.) (km2) (%) (km2) (%) (km2) (%) 

5000–5500 - - - - 0.6 0.05 

4500–5000 46.5 2.06 0.2 0.01 8.4 0.71 

4000–4500 124.5 5.51 33.7 1.68 18.7 1.58 

3500–4000 16.9 0.75 43.2 2.15 6.8 0.58 

3000–3500 0.5 0.02 3.1 0.15 0.2 0.02 

2500–3000 1.8 0.08 - - - - 

2000–2500 1.4 0.06 - - - - 

Sum 191.6 8.48 80.2 3.99 34.7 2.94 

Figure 5. The Landsat MSS (Multispectral Scanner System) satellite images (79 m) with 

delineated glacial and snowfield area. 
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For the Akbura River basin the glacial and snowfield area is 8.5% (192 km2), in the Shakhimardan 

watershed the glacial and permanent snow cover extends over ≈3% (≈35 km2) and for Kurshab  

over ≈4% (80 km2) of the catchment’s area. 

2.2. Glacial and Snowfield Area 

As the HBV-light model requires more detailed information on vegetation and glacial coverage for 

different elevation ranges within a catchment, the area of glacier and snowfield was derived from 

Landsat 1–3 MSS satellite images for the Akbura (1975), Kurshab (1972) and Shakhimardan (1978) 

(Figure 5). The geo-referenced satellite images were obtained from the United States Geological Survey 

(USGS). The images were chosen based on their availability in the archive and cloud cover criteria. 

Snow and glaciers are represented in white color in visible bands due to high reflectivity [47]. Different 

methods for glacial and snow cover mapping exist, e.g., visual, normalized difference snow index, 

supervised and unsupervised classification. We distinguished the snow covered area based on satellite 

images using the spectral reflectance characteristics of snow. Hence, a threshold method was 

implemented using the brightness values (0–255) in properties of the images. The glacial and permanent 

snow cover areas were reclassified in ArcGIS (10) based on the different thresholds (as natural break) 

for the three images due to quality differences in the images. Instead of ground truth data we used soft 

information from published data on glacier extent close to the period when images were taken [48]. 

Additionally, glacier and snowfield borders were defined by visual interpretation using scanned, published 

physical maps from archives. Finally, elevation zone maps of the Akbura, Kurshab and Shakhimardan 

river basins were derived from DEM and overlapped with glacial and snowfield cover maps to calculate 

the areas on each elevation zone (Figure 5). 

2.3. Data Gap Filling 

A major problem for many Central Asian study regions is data limitation. The best data coverage 

available for the catchments is for 1980–1985 (Table 1), but even these time series have gaps of many 

days in the temperature records and for April, 1985 in the precipitation records. Gap filling details 

relative to the two parameters are explained hereinafter. 

2.3.1. Temperature 

A linear regression method was used in order to bridge the gaps in the temperature records [49–51]. 

The best data set within the study area refers to the Jalal Abad climate station, which has only small gaps 

(0.5%) in the temperature records. Here we used a within-station method based on the averaging of 

previous and following days of the temperatures. The daily temperature data for the Ferghana climate 

station contains 0.3%–4.4% gaps, which were filled using the within-station and linear interpolation 

methods. The temperature records for the Osh climate station cover 64%–92% of a year, and this is 

respectively 9%–61% for the Gulcha climate station. The monthly correlation coefficients of the 

temperature data between the Jalal Abad and Osh climate stations span from 0.70 to 0.97, and between 

the Gulcha and Osh climate stations the coefficients range from 0.60 to 0.92. 
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Temperature data of each station were allocated to the centroids (i.e., mean elevation) of the four 

respective basins (Figure 2) considering monthly temperature lapse rates [52–54]. Allocation to the 

centroids worked well, as they represent the mean elevations in the catchments. The HBV-light model 

further corrects temperature and precipitation at different elevation zones using lapse rates based on the 

reference elevation [55]]. Since the model uses an annual lapse rate, we calculated monthly ones to 

allocate and correct temperature. The monthly lapse rates were estimated based on the available annual 

average temperature data (1980–1985) from 17 climate stations in the Ferghana Valley (Figure 2), 

ranging in elevation from 577 to 2360 m a.s.l. The temperature lapse rates vary from 0.34 °C/100 m 

(December) to 0.82 °C/100 m (June), and the average lapse rate is 0.58 °C/100 m. 

2.3.2. Precipitation 

Within the study area five weather stations with complete precipitation time series (except for  

April 1985) are available for the period 1980–1985. These climate stations were tested for correlation 

with the other 15 stations to select the most suitable weather station based on the highest correlation 

coefficient (0.45–0.96) in order to fill the gaps for April 1985 using the linear regression method. 

Similar to the temperature data, precipitation data were also corrected for altitude when allocating to 

the centroids. A stepwise multiple linear regression (MLR) method [56–60] using R 2.15 [57] was used 

considering annual data from 20 precipitation gauges (ranging in elevation from 826 to 1551 m a.s.l., 

1980–1985, Figure 2), including information on altitude, latitude and longitude. The resulting equation 

was p (mm) = −8531 + 211.2 Lat + 0.219 Alt, with r = 0.70. For quality control, we checked correlation 

coefficients between measured precipitation at neighboring weather stations and generated precipitation 

for the centroids (r = 0.65–0.84; p ≤ 0.05). 

2.4. Weather Generator 

Weather generators produce data that can be used as inputs for hydrological models [61–63]. 

MODAWEC was chosen for the required input data (mean monthly precipitation, mean monthly 

maximum and minimum temperature, and number of wet days) corresponding to the data available for 

the study area. According to [64,65], precipitation is considered as an independent variable and it is 

calculated using a first-order Markov chain approach. The Markov chain model describes the  

occurrence of precipitation based on the probability that a dry day is followed by a wet day and a wet 

day occurs after previous wet days [64,65]. The amount of precipitation is calculated using a modified 

exponential distribution considering the status (wet or dry) of the previous day [64,65]. Temperature is 

dependent on precipitation insofar that during rainy days the temperature is usually lower than in dry 

days. Therefore, the daily temperature was generated based on correlations with rainfall events [65]. 

MODAWEC-derived data were tested for their applicability in replacing measured daily temperature in 

running the HBV-light model. 

2.5. The HBV-Light Model, Calibration and Validation 

The conceptual, lumped HBV-light model [37,55] simulates daily discharge using daily precipitation, 

temperature and potential evapotranspiration (PET) as input data. In depth details and descriptions on 
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the model are available [37,66–68]. Briefly, the model includes four different routines: snow, soil, 

groundwater and routing. The snow routine is based on a degree—day method, where precipitation is 

considered to be rain or snow with respect to a threshold temperature, TT (°C) [37,67,69]. The soil 

routine simulations depend on actual evaporation and water storage properties [69,70]. The groundwater 

routine is governed by percolation rate (PERC) and recession coefficients (K1, K2) [37,70]. Finally, the 

runoff generation is characterized by the shape of a triangular weighting function [67,69]. 

This study used the most recent version of the HBV-light model, which differs from the previous 

versions by being able to reflect glacial melt [36]. The glacial melt is calculated after snowpack 

disappearance using a degree-day factor method and depending on slope and exposition [36,37]. In our 

set-up we separated catchments into 500 m elevation zones, resulting in 6, 8, 7 and 9 zones for Kugart 

(elevation range 1118–3717 m a.s.l.), Akbura (1395 to 4977 m a.s.l.), Kurshab (1562 to 4623 m a.s.l.), 

and Shakhimardan (1213 to 5316 m a.s.l.), respectively. 

The HBV-light model considers temperature and precipitation changes with elevation. We used the 

annual average temperature lapse rate of 0.58 °C 100 m−1 calculated for the study area. We further used 

a straightforward 10% increase in precipitation for every 100 m increase in elevation as suggested by [55]. 

A more complex MLR for precipitation, which considers the elevation and latitude as described above, 

is not readily compatible to HBV-light inputs. Reference evapotranspiration was calculated based on the 

FAO Penman-Monteith approach [71,72] using the CROPWAT 8.0 model [73]. The CROPWAT model 

requires input data on elevation, latitude, longitude, and daily means of maximum and minimum 

temperature [73]. It further requires a crop coefficient for calculation of PET [71]. In this study, the crop 

coefficient was averaged for the different vegetation types in the region. 

HBV-light is a conceptual model and its parameters are not physically-based. We used a lumped 

model set up with up to nine elevation bands and three vegetation zones, but no additional sub-catchments 

or spatially variable model parameters due to missing hydrological data. Apart from a manual calibration, 

the model allows for a Monte Carlo (MC)-based random allocation of parameters from pre-defined 

parameter ranges. According to the equifinality concept, there is no optimal parameter set but several 

behavioral sets [41,74,75]. This concept best matches the uncertainty of the model set-up that is 

characterized by relatively poor quality forcing data. We thus used the MC-based parameter estimation 

technique. The available time series was split into calibration (1980–1983) and validation (1984–1985) 

periods. Initially, the model was run 10,000 times with broader parameter ranges to identify suitable 

parameter bounds for each catchment. Afterwards, 500,000 model runs within these parameter bounds 

were used to derive behavioral parameter sets for 12 (Kugart; excluding glacial melt parameters) and 14 

(Akbura, Kurshab, Shakhimardan) parameters considering both measured and MODAWEC-generated daily 

temperature data. 

The parameter sets were treated as being behavioral in calibration and validation periods according 

to three goodness-of-fit criteria: (1) The Nash Sutcliff efficiency (NSE) which needs to be ≥0.50 to 

consider the model efficient in matching dominant runoff events; (2) The Nash-Sutcliffe efficiency of 

log-transformed flow (NSElog) ≥0.50 was used to assess the model’s capability in simulating recession 

flow periods; (3) The cumulative mean difference between observed and simulated runoff predictions 

for the entire simulation period shall not be outside the range of 0 ± 20 mm as a measure of the model’s 

suitability for simulating overall available water resources (e.g., for agricultural production). The same 

objective functions have been applied in other studies [76–80]. In addition, NSE results were 
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crosschecked using the coefficient of determination (R2). Three months were selected as a model  

warm-up period so that evaluated simulation starts in April 1980. During the validation the year 1983 

was used for warm-up. 

3. Results and Discussion 

MODAWEC was tested using the database of the four studied catchments for its applicability in the 

region as the converter from monthly into daily temperatures. Results reveal that measured and generated 

mean maximum, minimum and average temperature data for corresponding weather stations (Figure 2) 

are highly correlated (0.80 to 0.91). Figure 6 shows generated and measured average temperature values 

at the four corresponding weather stations of the studied basins. Thus, the generator is capable of 

representing the main features and fluctuations that are similar to the observed temperatures. 

Figure 6. Time series plots of generated and measured temperature at the corresponding 

weather stations (WS) of the four studied river catchments. 

 

The corrected precipitation for the mean elevations of the studied catchments using MLR method and 

measured precipitation at the neighbor stations (Figure 2) are presented in Figure 7. The correlation 

coefficients vary from 0.65 in the Kugart river basin to 0.84 in the Shakhimardan river basin. It can be 

assumed that the calculated and measured precipitation time series are mostly similar and the main 
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precipitation events occur in both cases at the same time. PET rates were calculated for the temperature 

data allocated to the centroids of each catchment. Correlation coefficients of PET calculated based on 

measured versus MODAWEC temperatures vary from 0.84 to 0.92 for the researched basins. 

Figure 7. Time series plots of allocated precipitation to the centroids and measured 

precipitation at neighboring weather stations of the four river catchments. 

 

Results of the HBV-light model using both measured as well as MODAWEC input data for the 

calibration (1980–1983) and validation (1984–1985) period for the four different catchments are 

presented in Table 4. In general, the HBV-light model is able to replicate the main peaks of discharge 

(NSE = 0.50–0.88) and simulate the base flow (NSElog = 0.50–0.85) in the study area (Figure 8). Higher 

NSE coefficients were often found for the validation than the calibration period. Similarly, the coefficient 

of determination (R2) is higher for the validation (0.51–0.89) than the calibration (0.50–0.79) period. Some 

extreme discharge peaks are underestimated throughout all catchments, which is mainly attributable to 

an underestimation of snowmelt in late spring or early summer. From a visual inspection of hydrographs 

(Figure 8) as well as from the statistical performance criteria (Table 4) we did not find large differences 

between MODAWEC and measured temperature data-driven HBV-light simulations. Even though in 

some cases (e.g., Shakhimardan) the NSE dropped slightly, there were other cases where efficiency even 
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increased (e.g., NSElog for Akbura). For three of the four catchments the number of overall accepted 

model runs during calibration period increased when MODAWEC data were used. 

Overall, the simulation of hydrological fluxes using HBV-light in combination with MODAWEC 

input data provided encouraging results, which suggests that using MODAWEC derived data represents 

a suitable method for water balance assessment in the data-scarce region. The MODAWEC weather 

generator was also used successfully as pre-processing tool for environmental modeling including the 

EPIC (Environmental Policy Integrated Climate) model [65]. In the same study, crop yield and 

evapotranspiration were similar using measured and generated daily meteorological data. Various other 

studies employed MODAWEC and report acceptable to very good results (NSE = 0.55–0.93) [81–84]. 

Table 4. Results of calibration and validation of the HBV-light model using allocated 

measured and generated temperature data, and MLR-calculated precipitation of the four  

pilot catchments. 

Goodness-of-Fit 
Calibration, Allocated 

Measured Data 
Validation 

Calibration, Allocated Generated 
Temp. Data (MODAWEC) 

Validation 

1980–1983 1984–1985 1980–1983 1984–1985 

Kugart river basin 
No. Parameter sets 2556 47 6973 14 

NSE  0.50–0.63 0.50–0.88 0.50–0.61 0.50–0.65 

NSE_log  0.50–0.71 0.50–0.77 0.50–0.69 0.50–0.67 

R2 0.50–0.65 0.65–0.89 0.50–0.63 0.54–0.65 

Cumulative mean 

difference, mm 
−20 to 20 −20 to 6 −20 to 20 −20 to 8 

Akbura river basin 
No. Parameter sets 79 14 540 12 

NSE  0.50–0.61 0.50–0.68 0.50–0.65 0.50–0.60 

NSE_log  0.50–0.72 0.50–0.72 0.50–0.77 0.50–0.77 

R2 0.50–0.67 0.51–0.72 0.50–0.69 0.52–0.61 

Cumulative mean 

difference, mm 
−20 to 20 −20 to 19 −20 to 20 2 to 19 

Kurshab river basin 
No. Parameter sets 55 19 449 18 

NSE  0.50–0.65 0.50–0.65 0.50–0.66 0.50–0.58 

NSE_log  0.50–0.71 0.50–0.81 0.50–0.71 0.50–0.76 

R2 0.51–0.68 0.52–0.70 0.50–0.66 0.54–0.69 

Cumulative mean 

difference, mm 
−20 to 20 −17 to 18 −20 to 20 −1 to 20 

Shakhimardan river basin 

No. Parameter sets 174 66 102 64 

NSE  0.50–0.70 0.50–0.80 0.50–0.64 0.50–0.80 

NSE_log  0.50–0.76 0.50–0.85 0.50–0.77 0.50–0.85 

R2 0.51–0.79 0.52–0.87 0.53–0.73 0.52–0.82 

Cumulative mean 

difference, mm 
−20 to 20 −20 to 19 −20 to 20 −17 to 20 
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Figure 8. Observed (black line) and simulated (grey lines) discharge series for calibration 

and validation periods (separated by vertical dashed line) using allocated measured (left) and 

generated (right) temperature and precipitation data for the studied basins. 

 

Furthermore, the results show that HBV-light is an acceptable model to be used in the data  

scarce application of this study. Similar results for HBV-light have been found by others with NSE 
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ranging between 0.49 and 0.85 in catchments of Central Asia, China, Central and Northern Europe, and 

Ethiopia [2,36,39,69,85]. For mountainous catchments in the Himalayan and Central Tibetan Plateau, 

reported NSE values also vary in comparable ranges of 0.43–0.95 [86] and 0.67–0.82 [33], respectively. 

Different versions of the HBV models were applied in Central Asia. The HBV-ETH model was used in 

glacial catchments of Kyrgyzstan [34] and in the Amu-Darya River basin in Tajikistan [87]. Their results 

showed accurate runoff simulations with NSE coefficients between 0.83–0.89 and 0.86–0.94, respectively. 

For the HBV-IWS version applied in Uzbekistan (Chirchik River) NSE ranged between 0.69 and 0.94 [88]. 

The reasons for differences in model performance are manifold, including divergent model structures 

(HBV-light versus HBV-ETH and HBV-IWS), varying geographical and meteorological conditions (i.e., 

a direct comparison of model performance is only valid if different model structures are applied to the 

same catchment and same boundary conditions), length and split of calibration and validation periods, 

methods of calibration, and types of efficiency criteria (we used three validation criteria that must be 

met by the HBV-light model at the same time, while others used single or different combinations of 

performance criteria). 

The majority of the HBV-light model’s parameters were calibrated within moderate parameter ranges 

comparable to other studies [36,38,39] (Tables 5 and 6). The SFCF (Snowfall correction factor) and 

CFMAX (Degree-day factor) parameters were calibrated within wider ranges. SFCF depends on wind 

speed and temperature, the greater the wind speed, the greater the SFCF [89,90]. In addition, [91] showed 

that the gauge catch efficiency ranges between 23% and 106% due to gauge type and wind speed. Thus, 

SFCF can reach large values of 1.5 or greater, which was also shown by others [36,87,89,92,93]. 

CFMAX is low in forested areas [94] and high in glacial regions and zones with high elevation and 

incoming solar radiation [95]. For example, high values of CFMAX in the Himalayan ranged from 7 to 

37 mm·day−1·°C−1 on debris cover, and 17 mm·day−1·°C−1 over pure ice [96,97]. Other findings of 

CFMAX were 10 mm·day−1·°C−1 in Austria and Switzerland [36] and 14 mm·day−1·°C−1 for west  

China [98]. Reference [95] reviewed a number of studies and reported maxima of up to 20 

mm·day−1·°C−1 in Sweden and Greenland. Overall, the ranges used in the present study are relatively 

high but still in agreement with other published values. 

Table 5. Description of model parameters and their ranges for allocated measured 

temperature data and calculated precipitation of the four studied catchments. 

Parameter Description/Unit 
Kugart  
River  

Akbura  
River 

Kurshab 
River 

Shakhimardan 
River 

Min Max Min Max Min Max Min Max 
Snow Routine          

TT Threshold temperature/°C −0.5 1 −0.5 0.5 −0.5 0.5 −0.5 0.5 

CFMAX 
Degree-day 

factor/mm·°C−1·d−1 
2 15 2 15 2 15 1 12 

SFCF Snowfall correction factor/- 0.5 3 0.1 1.5 0.1 1.5 0.3 1 

CWH Water holding capacity/- 0.2 0.5 0.05 0.5 0.05 0.5 0.2 0.5 

CFR Refreezing coefficient/- 0.2 0.9 0.05 0.6 0.05 0.6 0.05 0.5 

CFGlacier Glacier correction factor/- - - 0.9 1.2 0.8 1.2 0.4 1.3 

CFSlope Slope correction factor/- - - 1 1.1 1 1.1 0.6 1.3 
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Table 5. Cont. 

Parameter Description/Unit 
Kugart  
River 

Akbura  
River  

Kurshab 
River  

Shakhimarda
n River 

Min Max Min Max Min Max Min Max 
Soil and  

evaporation Routine 
 

FC Field capacity/mm 50 350 100 350 50 350 250 550 

LP 
Threshold for reduction 

of evaporation/-
0.4 1 0.4 1 0.3 1 0.3 1 

BETA Shape coefficient/- 0.3 3 1.5 2.5 1 5 1.5 5 
Ground water and 
response routine 

 

K1 
Recession coefficient 

(upper box)/d−1 
0.001 0.03 0.01 0.04 0.01 0.04 0.02 0.1 

K2 
Recession coefficient 

(lower box)/d−1 
0.005 0.03 0.001 0.01 0.001 0.01 0.001 0.01 

PERC 
Maximal flow from 

upper to lower 
box/mm·d−1 

>0 4 1 4.5 1 4.5 >0 4 

MAXBAS 
Routing, length of 

weighting function/d 
1 5 1 5 1 5 1 5 

Table 6. Parameter ranges for the MODAWEC-generated temperature data allocated to  

the centroids. 

Parameter 
Kugart River Akbura River Kurshab River Shakhimardan River 

Min Max Min Max Min Max Min Max 
Snow routine         

TT * −0.5 0.5 −0.5 0.5 −0.5 0.5 −0.5 0.5 

CFMAX 2 15 1 15 2 12 1 12 

SFCF 1 3 0.1 1.5 0.5 1.5 0.4 1.2 

CWH 0.2 0.5 0.1 0.5 0.05 0.5 0.1 0.5 

CFR 0.2 0.7 0.3 0.5 0.05 0.6 0.05 0.5 

CFGlacier - - 0.9 1.2 0.9 1.2 0.5 1.4 

CFSlope - - 1 1.06 1 1.1 0.6 1.3 

Soil and evaporation routine    
FC 150 350 50 350 150 350 250 550 

LP 0.5 1 0.4 0.7 0.5 0.9 0.3 1 

BETA 0.3 2.5 3 5 1.5 2.5 2 7 

Groundwater and  
response routine 

   

K1 0.01 0.02 0.01 0.03 0.01 0.04 0.02 0.06 

K2 0.009 0.03 0.001 0.003 0.001 0.005 0.001 0.003 

PERC >0 4 0.5 3 >0 3 >0 2 

MAXBAS 1 3 1 4 1 5 1 4 

Note: * Parameter’s description see in Table 5. 

Scatter plots for all parameters and NSE coefficients of the four catchments were drawn using  

results of the MODAWEC-driven HBV-light application to perform sensitivity analysis, as suggested 

by [40,44,99]. Examples of two parameters for the studied basins are presented in Figure 9. While PERC 
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was rather constrained for Kugart and Akbura, it was less clear to find optimal parameter values for 

PERC in the Kurshab and Shakimardan catchments. MAXBAS on the other hand was not constrained 

for any of the four catchments. We further tested the importance of model parameters for the model 

outputs by a regression analysis [40,100], for which results are given in Table 7. The importance of the 

predictors indicates the influence of the parameters on the model’s efficiency coefficients (NSE, NSElog). 

The regression technique is used among other studies for evaluation of parameter influence on the  

results [44,101,102]. In addition, [44] noticed that parameter sensitivity analyses contribute to output 

uncertainty reduction and identifiability of parameters which require additional research. The stepwise 

regression models were calculated using dependency of NSE and NSElog coefficients on HBV-light 

parameters accordingly for different vegetation zones [103], since the snow and soil routine are 

calculated individually for each vegetation zone [55]. The adjusted coefficients of determination for the 

NSE and NSElog vary from 0.25 to 0.86 and from 0.26 to 0.98 (Table 7). In general, the adjusted 

coefficients of determination are higher in validation, which indicates better explanation of the variability 

in the model’s efficiency coefficients because of parameter combination [104]. The total number of 

parameters in the regression models varies from 2 to 18 (Table 7). The standardized beta coefficients are 

included in the table only if they are statistically significant (p-value ≤ 0.05). The beta values determine 

how strongly the parameters affect the dependent variable. The higher the beta value the greater the 

contribution of a parameter to model results [104]. In addition, [105–107] reported that the standardized 

beta coefficients vary from −1 to 1 and show the decrease or increase in the dependent variable 

accordingly. Thus, in the studied catchments PERC and K1 have significant influences on the goodness-

of-fit coefficients with inverse relationship (0.412–0.936) and positive direction (0.548–0.730) 

accordingly. In general, the following parameters are relevant for high-flow simulations: PERC, 

CFMAX, SFCF, CWH, K1, and LP. The most important parameters responsible for recession flows are 

PERC, CFMAX and TT, followed by K1, Alpha, LP and CWH. 

Reference [66] carried out a parameter sensitivity analysis of HBV-light in Sweden and reported that 

SFCF, MAXBAS, CFMAX and K1 were the most sensitive parameters. [108] applied HBV-light in 

North-Eastern Germany, and revealed that the most sensitive parameters were SFCF, CFMAX, FC 

(Field capacity), LP (Limit for potential evaporation), BETA (Shape coefficient), Alpha, K1 and 

MAXBAS (Length of triangular weighting function). In an Ethiopian case study [85] derived FC, PERC, 

BETA and K2 as most sensitive, while K1, MAXBAS, PERC, FC, BETA and LP proved to be relevant 

for a US catchment [109]. Reference [110] used the HBV-96 model in four different climate zones and 

found out that the most important parameters for the model are the routing parameter MAXBAS and the 

recession coefficient KHQ, whereas FC and PERC were insensitive. Obviously, there is not a single 

most important parameter for HBV applications, but MAXBAS was most often found to be sensitive 

followed by FC, BETA, K1, as well as LP, SFCF and CFMAX. Surprisingly, MAXBAS was a rather 

insensitive parameter in our model application. We explain this by the importance of snow and glacial 

melt that drives the hydrology in the studied catchments. 

Finally, we investigated the interaction between the parameters using correlation analysis [111]. 

Correlations between parameters were analyzed for each catchment with both measured and 

MODAWEC-generated time series. Instead of many pages of tables, Table 8 summarizes the ranges of 

all correlation coefficients for each catchment. The linear relationship among parameters was mainly 

weak. Moderate correlations (0.4–0.6) were mainly found between PERC and K2, Alpha and K1, SFCF 
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with CWH (Water holding capacity), BETA, LP, and CFMAX with SFCF, CFGlacier, TT and CFR for 

the studied catchments. These results indicate a large equifinality of parameters [71] and many 

unconstrained parameters. 

Figure 9. Examples of scatter plots with sensitive (PERC) and insensitive (MAXBAS) 

parameters for the four studied catchments with MODAWEC generated temperature data. 
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Table 7. Contribution of parameters in HBV-light model for the four studied catchments based on the adjusted coefficient of determination and 

standardized beta coefficient (VZ * = vegetation zone). 

 
Kugart WG Akbura WG Kurshab WG Shakhimardan WG 

Calibration Validation Calibration Validation Calibration Validation Calibration Validation 
Dependent NSE NSElog NSE NSElog NSE NSElog NSE NSElog NSE NSElog NSE NSElog NSE NSElog NSE NSElog 
R2 adjusted 0.25 0.38 0.75 0.52 0.28 0.77 0.86 0.98 0.30 0.44 0.64 0.95 0.29 0.26 0.76 0.86 

No Parameters Standardized Beta Coefficient 
1 PERC −0.412 −0.368   −0.201 −0.826  −0.493 −0.127 −0.579 −0.851 −0.887  −0.432 −0.819 −0.936 
2 Alpha  0.326     −0.453 −0.382  −0.116       

3 K1 0.029 0.195 0.730 0.508  −0.067 0.548  −0.183 −0.258       

4 K2 0.166 0.027   −0.201    −0.090 0.095      0.133 

5 MAXBAS  −0.019               

6 TT_VZ*1 −0.085 −0.120 −0.598 −0.646     −0.088        

7 CFMAX_VZ1 0.029 0.407               

8 SFCF_VZ1 0.043 −0.155       0.186        

9 CFR_VZ1  −0.042 −0.027      −0.134 0.116 0.089       

10 CWH_VZ1 −0.043 −0.047               

11 CFGlacier_VZ1 − − − −       −0.515  0.229    

12 CFSlope_VZ1 − − − −      −0.072       

13 FC_VZ1  −0.026       −0.095        

14 LP_VZ1 0.060           0.164  −0.258 −0.193 −0.132 

15 BETA_VZ1  0.073       0.085  −0.381      

16 TT_VZ2 −0.046 −0.062   −0.173    −0.275 −0.073       

17 CFMAX_VZ2 −0.297 0.068   0.162 −0.103 −0.403 −0.549 0.353        

18 SFCF_VZ2 0.231 0.116   −0.194            

19 CFR_VZ2 −0.076                

20 CWH_VZ2 0.036    −0.174    −0.357 −0.135       

21 CFGlacier_VZ2 − − − −             

22 CFSlope_VZ2 − − − −             

23 FC_VZ2  −0.062   −0.087 −0.103   −0.206        
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Table 7. Cont. 

 
Kugart WG Akbura WG Kurshab WG Shakhimardan WG 

Calibration Validation Calibration Validation  Calibration Validation Calibration 

Dependent NSE 
NSElo

g 
NSE NSElog NSE NSElog NSE NSElog NSE NSElog NSE NSElog NSE NSElog NSE NSElog 

R2 adjusted 0.25 0.38 0.75 0.52 0.28 0.77 0.86 0.98 0.30 0.44 0.64 0.95 0.29 0.26 0.76 0.86 
No Parameters Standardized Beta Coefficient 
24 LP_VZ2 0.148     0.077   −0.128 −0.131       

25 BETA_VZ2 −0.180 0.175       0.100 0.110       

26 TT_VZ3 − − − − 0.247            

27 CFMAX_VZ3 − − − − −0.400    −0.258 −0.079     0.449 0.341 

28 SFCF_VZ3 − − − − 0.335 −0.050   0.171   −0.129 0.293    

29 CFR_VZ3 − − − −         −0.198    

30 CWH_VZ3 − − − − 0.270 −0.097           

31 CFGlacier_VZ3 − − − −             

32 CFSlope_VZ3 − − − −             

33 FC_VZ3 − − − −  −0.064   −0.112 −0.099       

34 LP_VZ3 − − − −    0.166 −0.096 −0.092   0.395    

35 BETA_VZ3 − − − −  0.045       0.202    

 Total 16 17 2 2 11 9 3 5 18 13 3 3 5 2 3 4 
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Table 8. The range of correlation coefficients among the parameters generated using the MC method for the studied basins. NA = not available, 

parameter is only needed for glaciered catchments. 

Parameters 
Akbura Akbura_WG Kugart Kugart_WG Kurshab Kurshab_WG Shakhimardan Shakhimardan_WG 

max min max min max min max Min max min max min max min max min 
PERC 0.4 −0.2 0.4 −0.1 0.3 −0.1 0.4 −0.1 0.3 −0.2 0.3 −0.1 0.3 −0.1 0.4 −0.3 

Alpha 0.2 −0.3 0.1 −0.1 0.1 −0.6 0.0 −0.3 0.3 −0.3 0.1 −0.4 0.1 −0.1 0.3 −0.2 

K1 0.3 −0.3 0.1 −0.2 0.1 −0.2 0.0 −0.1 0.2 −0.3 0.1 −0.1 0.3 −0.2 0.3 −0.2 

K2 0.2 −0.3 0.1 −0.3 0.2 −0.3 0.1 0.0 0.2 −0.3 0.1 −0.3 0.3 −0.3 0.1 −0.3 

MAXBAS 0.2 −0.2 0.1 −0.1 0.0 0.0 0.0 0.0 0.3 −0.3 0.1 −0.1 0.2 −0.2 0.2 −0.1 

TT 0.3 −0.3 0.1 0.0 0.0 −0.1 0.0 0.0 0.3 −0.3 0.1 −0.1 0.2 −0.2 0.2 −0.2 

CFMAX 0.4 −0.2 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.3 −0.3 0.1 −0.1 0.2 −0.1 0.2 −0.2 

SFCF 0.2 −0.3 0.1 −0.1 0.1 −0.6 0.3 −0.3 0.5 −0.6 0.1 −0.2 0.2 −0.3 0.4 −0.1 

CFR 0.2 −0.1 0.1 −0.1 0.0 −0.1 0.0 0.0 0.2 −0.4 0.1 −0.1 0.2 −0.1 0.2 −0.1 

CWH 0.2 −0.2 0.1 −0.1 0.0 0.0 0.0 0.0 0.2 −0.3 0.1 −0.1 0.1 −0.1 0.2 −0.1 

CFGlacier 0.2 −0.2 0.1 0.0 NA NA NA NA 0.4 −0.4 0.1 −0.1 0.1 −0.1 0.2 −0.3 

CFSlope 0.2 −0.3 0.1 −0.1 NA NA NA NA 0.4 −0.2 0.1 −0.1 0.1 −0.1 0.1 −0.1 

FC 0.2 −0.2 0.1 −0.1 0.0 0.0 0.0 0.0 0.2 −0.2 0.1 −0.1 0.1 −0.2 0.2 −0.1 

LP 0.2 −0.3 0.1 −0.1 0.1 0.0 0.1 0.0 0.3 −0.3 0.1 −0.2 0.2 −0.2 0.3 −0.2 

BETA 0.1 −0.2 0.1 −0.1 0.0 −0.1 0.1 −0.1 0.2 −0.3 0.1 0.0 0.1 −0.1 0.2 −0.2 
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4. Conclusions 

We have developed a stratified approach to overcome data scarcity and investigate water resource 

availability for an agricultural hot spot within semi-arid Central Asia. The data scarcity problem associated 

with shortages in complete temporal coverage and spatial coverage in the studied mountainous area was 

resolved by inserting a sequence of pre-processing steps including application of lapse rate, simple linear 

and multiple linear regression methods. In addition, the MODAWEC weather generator was tested for 

its applicability as a converter of monthly temperature data into daily values for further research in the 

study area (i.e., catchments with only monthly temperature data). The uncertainty arising from possible 

errors in hydrometeorological data, gaps filling procedure, parameters identification was reduced using 

a Monte Carlo simulation approach, the equifinality concept, and a number of goodness-of-fit criteria 

(NSE, NSElog, mean difference in annual water balance, coefficient of determination) with acceptable 

thresholds. With respect to the relatively short validation period the results indicated acceptable 

goodness-of-fit. Therefore, the study suggests that HBV-light in combination with MODAWEC input 

data proves to be an applicable tool to simulate water resources for the four river catchments in the 

Ferghana Valley. Accordingly, we aim at applying the developed approach to the remaining catchments 

in the area in the near future. Future research would profit from more thorough definitions of the ranges 

of parameters during calibration. This will allow narrowing of behavioral parameter sets and thus 

improvement of model output. 
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