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Abstract: Collection and investigation of flood information are essential to understand the 

nature of floods, but this has proved difficult in data-poor environments, or in developing 

or under-developed countries due to economic and technological limitations. The 

development of remote sensing data, GIS, and modeling techniques have, therefore, proved 

to be useful tools in the analysis of the nature of floods. Accordingly, this study attempts to 

estimate a flood discharge using the generalized likelihood uncertainty estimation (GLUE) 

methodology and a 1D hydraulic model, with remote sensing data and topographic data, 

under the assumed condition that there is no gauge station in the Missouri river, Nebraska, 

and Wabash River, Indiana, in the United States. The results show that the use of Landsat 

leads to a better discharge approximation on a large-scale reach than on a small-scale. 

Discharge approximation using the GLUE depended on the selection of likelihood 

measures. Consideration of physical conditions in study reaches could, therefore, 

contribute to an appropriate selection of informal likely measurements. The river discharge 

assessed by using Landsat image and the GLUE Methodology could be useful in 

supplementing flood information for flood risk management at a planning level in 
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ungauged basins. However, it should be noted that this approach to the real-time 

application might be difficult due to the GLUE procedure. 

Keywords: discharge approximation; GLUE; Landsat; likelihood measure; data-poor 

environment 

 

1. Introduction 

It is recognized that floods are one of the most severe and frequent globally-occurring natural 

hazards which can limit human activities, and, in this respect, continuous efforts and investments are 

leading to a better understanding of the nature of floods. Among flood properties, the measurement of 

river discharge provides fundamental information for flood risk management, and gauging stations 

play a critical role in collecting data of discharge, water level, and water quality, which are essential 

information to address real time flood forecasting and reservoir operation. Good gauging station 

networks allow flow estimations for various return periods, using extreme value statistics based on 

long gauge records [1,2]. However, the use of subjectivity in relation to the decision of theoretical 

probability distribution functions for data and the inference methods for parameters, can critically affect 

the estimation of flow for a rare extreme event [3–6]. Moreover, lack of the observed data gives a 

critical difficulty in planning flood risk through computer modeling, which requires hydrologic data, 

including discharge data that cannot be easily obtained in ungauged basins. 

Flood discharge estimation gives significant contribution in identifying the design flood as 

fundamental information for flood risk management at a planning level. Therefore, flood estimation 

has been conducted in ungauged basins using hydrologic approaches such as regionalization 

techniques and conceptual models. Regionalization techniques are used to apply hydrologic 

information retrieved from neighboring basins, where the required data are collected, to a targeted 

ungauged basin [7–10]. The techniques are based on the hydrologic homogeneity between neighboring 

gauged and ungauged regions. Sometimes, the rational method is also used. The rational method is a 

simple transformation process of rainfall into runoff using the relationship between the runoff coefficient, 

rainfall intensity, and basin size [11]. However, estimating the runoff coefficient is difficult because it 

can vary depending on the rainfall intensity or the geometric properties of a basin. For these reasons, 

regionalization techniques and conceptual models can only estimate the design flow, but have 

difficulties in considering distinct attributes for individual flood events.  

The availability of spatio-temporal data using remote sensing devices can provide an  

information-rich environment for analyzing flood properties [12–14]. In particular, satellite remote sensing 

imagery with specific cycles (e.g., daily or every 16 days), can be used to detect the spatiotemporal 

changes of floods [15,16]. Geographic information systems (GIS), also help to build a database, 

covering spatiotemporal flood evidence obtained from satellite imagery, and allows easy access for the 

analysis of flood properties with other geographic data (e.g., digital elevation models and land use 

maps). As a result, the extent of a flood or the water surface elevation obtained from satellite imagery, 

have played a role in the calibration of data in hydrologic and hydraulic modeling [17–20]. In addition of 

obtaining data, there have been great efforts to improve the quality of GIS and RS data in order to extend 
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their applicability [21–24]. Due to these advantages, the application of satellite imaging and GIS has 

been considered as one of the most practical and cost-effective approaches for hydraulic and 

hydrologic analysis in data-poor, or even in ungauged basins, without limitations of spatial boundaries. 

The generalized likelihood uncertainty estimation (GLUE) method, proposed by Beven and  

Binley [25], is one of the first methods to represent prediction uncertainty in hydrologic and hydraulic 

modeling. The GLUE method uses the Monte Carlo simulations in conjunction with Bayesian theory 

to produce parameter distributions conditioned on available data and associated uncertainty bounds. 

The parameter distributions are generated based on multi-parameter sets that can produce acceptable 

model outputs in comparison with observed data. The criterion for an acceptable model is based on the 

definition of a user-specified likelihood function. The GLUE method has found widespread 

implementation in various studies related to uncertainty analysis in environmental, hydraulic, and 

hydrologic modeling, including flood mapping [26–28]. However, the use of formal and informal 

likelihood measures for model calibration and uncertainty estimations have been debated in certain 

literatures [29–31]. Here, formal and informal mean statistical likelihood measure and non-statistical, 

respectively. In this study, we acknowledge limitations related to the subjectivity of GLUE’s informal 

likelihood measure, but assume that the GLUE methodology has the practical potential for incorporating 

the uncertainty in flood modeling in a data-poor environment, where a formal likelihood is not available. 

However, the use of the GLUE methodology in flood discharge estimation can make it difficult to 

forecast flood discharge in real time application. 

Informal likelihood measures to be used in the GLUE methodology can be estimated by using flood 

information derived from remote sensing and water level information. In this context, the objectives of 

this study are to: (1) identify the flooded area and the water surface elevation from satellite imagery 

(Landsat TM); (2) propose a methodology for flood discharge estimate by using satellite imagery and 

GLUE; and (3) verify the approximate flood discharge for different informal likelihood measures 

using the observed discharge from gauge stations. These three objectives are accomplished with the 

use of satellite image processing, 1D hydraulic modeling, and the informal likelihood measurement 

estimation for two study reaches in the United States, including a reach along the Missouri River near 

Nebraska City, Nebraska, and the Wabash River near Montezuma, Indiana. The selected case studies 

are characterized by the presence of gauged sections where discharge data are available and are used as 

a benchmark for verifying the discharge values provided by the proposed methodology. 

2. Study Area and Data Set 

Two river reaches are selected as case studies: one along Missouri River near Nebraska City, 

Nebraska, USA, henceforth referred to as “Nebraska reach”, and another along the Wabash River near 

Montezuma, Indiana, USA, named as “Montezuma reach”, as shown in Figure 1. The two reaches are 

selected because of the difference in their physical conditions, i.e., in their geometry, size, and 

topography (Table 1). Satellite imagery taken by the Landsat 5 Thematic Mapper (TM) imaging 

sensors are available from the USGS Landsat Missions [32] for flood events that occurred after 1982, 

including the ones corresponding to the catastrophic floods that occurred on 11 June 2008 in Indiana, 

and on 9 July 2011, in Nebraska. 
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Figure 1. Study reaches. (a) The Wabash River at Montezuma, IN, USA (The Montezuma 

reach); (b) The Missouri River at Nebraska City, NE, USA (The Nebraska reach). 

 

(a) 

 

(b) 

Table 1. Geo-morphological properties of the two selected river reaches for hydraulic modeling. 

Study Reach 
River 

length (km) 
Mean bed slope 

(m/km) 
Number of  

cross-section
Mean width of  

cross-section (km) 
Mean spacing  

cross-section (km)

Montezuma 9 0.25 18 3.61 0.53 
Nebraska 19 0.21 11 12.84 1.90 

In this study, the use of Hydrologic Engineering Center-River Analysis System (HEC-RAS), a 1D 

hydraulic model, is justified because the flood extent on the selected Landsat imagery distributes in 

both of the main channel and floodplain. The geometric data for HEC-RAS consist of eighteen cross 

sections for the Montezuma reach, and eleven cross sections for the Nebraska reach is commonly 

extracted from a 10 m × 10 m resolution USGS digital elevation model (DEM), by using  

HEC-geoRAS. The Manning’s n values for the HEC-RAS model are extracted from the National Land 

Cover Database 2001 [33]. As shown in Table 2, Moore [34] assigned Manning’s n roughness 

coefficients for each land use category in NLCD 2001, based on established literature [35,36]. 
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Table 2. Manning’s n values for 2001 National Land Cover Database (NLCD) classification. 

2001 NLCD Classification 
Manning’s n 

Source  
Minimum Normal Maximum 

Open Water 0.025 0.030 0.033 [35] 
Developed, Open Space  0.010 0.013 0.160 [36] 
Developed, Low Intensity  0.038 0.050 0.063 [36] 
Developed, Medium Intensity 0.056 0.075 0.094 [36] 
Developed, High Intensity  0.075 0.100 0.125 [36] 
Barren Land  0.025 0.030 0.035 [35] 
Deciduous Forest 0.100 0.120 0.160 [35] 
Evergreen Forest 0.100 0.120 0.160 [35] 
Mixed Forest 0.100 0.120 0.160 [35] 
Scrub/Shrub 0.035 0.050 0.070 [35] 
Grassland/Herbaceous 0.025 0.030 0.035 [35] 
Pasture/Hay 0.030 0.040 0.050 [35] 
Cultivated Crops 0.025 0.035 0.045 [35] 
Woody Wetlands 0.080 0.100 0.120 [35] 
Emergent Herbaceous Wetland 0.075 0.100 0.150 [35] 

Each reach has distinct topographic and geomorphic settings which provide good test beds for 

comparison: The Wabash River, one of the major rivers in Indiana, drains to the Mississippi River, and 

another reach, the White River, drains to Wabash River. The selected Montezuma reach along the 

Wabash River is relatively straight and has a length of about nine kilometers. The floodplain of the 

Montezuma reach is rough and bumpy and is in a relatively U-shaped valley (Figure 2a). The Missouri 

River is the longest river (3767 km) in North America, and enters the Mississippi River. The selected 

Nebraska reach along the Missouri River meanders, and is about 19 km long. It has a flat floodplain 

and lies in a relatively rectangular valley (Figure 2b). 

Discharge data are available at gauged sections, which are only used for verifying the methodology 

developed in this study. The discharge data available are from gauge stations USGS 03340500 [37] for 

the Montezuma reach, and USGS 06807000 [38] for the Nebraska reach (Table 3). In addition, both 

gauge stations provides discharge and gauge height for peak flow as well as daily, monthly, and annual 

stream flow. 

Table 3. The observed discharge at USGS gauge stations for flood discharge on Landsat 
and peak flow in a flood event. 

Study Reach 
USGS gauge 

station 

For flood discharge on Landsat imagery For a peak flow of the flood event 

Date of Landsat 

image 

Discharge at gauge 

station (m3/s) 

Date of peak 

flow 

Discharge at gauge 

station (m3/s) 

Montezuma 03340500 11 June 2008 1450 8 June 2008 2197 

Nebraska 06807000 9 July 2011 6031 7 July 2011 6258 

Note: the peak flow belongs to a flood event including the flood discharge on Landsat image. 
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Figure 2. Geometric shape of cross-sections for study reaches. (a) Montezuma reach;  

(b) Nebraska reach. 

(a) (b) 

3. Methodology 

The proposed methodology involves the following steps: (1) identifying the flooded area from 

Landsat 5 TM satellite imagery using Iterative Self-Organizing Data Analysis (ISODATA);  

(2) running Monte Carlo simulations with the HEC-RAS model; and (3) approximating the flood 

discharge using different likelihood measures in the GLUE framework. A brief description of each 

process used in our methodology follows. 

3.1. Extraction of the Observed Data from Landsat 5 TM Satellite Imagery 

Image classification categorizes values, which indicate specific properties of pixels in a digital 

image. There are two main methods of classification used for image processing: supervised 

classification and unsupervised classification. In this study, the process of extracting the water-body 

from Landsat imagery is conducted using the image processing algorithm ISODATA (Iterative  

Self-Organizing Data Analysis), which is one of the unsupervised classification methods that uses 

cluster algorithms to categorize unknown pixels in the image data, without any foreknowledge of the 
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classes [39–43]. In the processes of ISODATA, a number of points indicating cluster centers are 

randomly placed on the imagery. The pixels are then located within the given Euclidean distance from 

the placed points, and a cluster is developed. If the standard deviation for the pixel values in a cluster 

is greater than a certain threshold, the clusters are split, and if the distance between two clusters is less 

than the threshold, the clusters are merged. The iterative new cluster centers work as a standard to 

further divide or merge the cluster in the next iteration. Iterations are performed until: (1) the mean 

distance between adjacent clusters falls to a threshold in a successive iteration; or (2) the maximum 

number of iterations is reached. However, it should be noted that there are a few subjective decisions, 

which need to be made, such as the number of classifications and the number of iterations when using 

ISODATA. In this study, ISODATA classification is performed for 20 classes and 3 iterations [44]. 

Landsat 5 TM image has seven spectral bands with different wavelengths, and the resolution of all 

bands is 30 m, except band 6 with a resolution of 120 m. Bands in Landsat imagery can also be 

differently combined to classify a specific category, such as a water-body, urban land and farmland. In 

this study, the ISODATA technique was applied to a combination of the spectral bands 1, 4, and 7 of 

the Landsat 5 TM image, which was categorized into the 20 groups of land use. This specific 

combination of the spectral bands is considered for the water-body extraction due to the following 

reasons: (1) blue light (band 1) with the shortest wavelength penetrates clear water; (2) near infrared 

(band 4) is strongly absorbed by water, and reflected for soil and vegetation; and (3) mid infrared 

(band 7) has the distinct nature of absorption of water and reflectance for soil and rock [45]. The 

classified groups are then compared with the satellite imagery and visible spectral bands (bands 1–3), 

and the colors placed in water-bodies such as lakes, rivers, and reservoirs are then selected as the 

water-bodies to be extracted from the imagery. Among the selected clusters, ones, which are falsely 

classified as water-bodies were manually removed, compared with orthography data, and the rest are 

merged using the GIS tool. In this study, the water-bodies extracted are considered as a flood inundation 

map for a flood event, and are used to estimate the water surface elevation at each cross-section with 

DEM. The flood inundation map and the water surface elevation are then used as observations to 

estimate the likelihood measures in the approximation of flood discharge using the GLUE methodology. 

3.2. Approximation of Flood Discharge Using HEC-RAS and the GLUE Methodology 

3.2.1. Monte Carlo Simulation Using HEC-RAS 

The Hydrologic Engineering Center-River Analysis System (HEC-RAS) is a one-dimensional (1D) 

model developed by the Hydrologic Engineering Center (HEC), of the United States Army Corps of 

Engineers (USACE) [46]. The HEC-RAS has the ability to simulate water surface elevation for both 

steady and unsteady flow conditions in a river channel. Water surface elevations using HEC–RAS are 

calculated using the energy equation [Equation (1)] and the Manning’s equation [Equation (2)]:  
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where: Y1, Y2 are the depth of water; V1, V2 are the average velocities; Z1, Z2 are the elevation of the 

main channel; α1, α2 are the velocity weighting coefficients; g is the gravitational acceleration;  
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and he is the energy head loss. In addition, 1 and 2 refer to the upstream and downstream cross  

section, respectively. 

 (2) 

where, n is manning’s roughness coefficient; A is the flow area; Sf is the friction slope; and R is the 

hydraulic radius.  

In this study, the hydraulic model HEC-RAS is used assuming that the main river and the 

floodplains can be simulated as a single channel and that the floodplain only provides a path of flow 

parallel to the river centerline not acting as a storage area. As with all the hydraulic models, HEC-RAS 

needs boundary conditions and input data, including cross-section geometry, roughness coefficients, 

and river discharge. The HEC-RAS needs boundary conditions and input data, including cross-section 

geometry, roughness coefficients and flow. HEC-GeoRAS, a GIS tool, helps with preprocessing to run 

the HEC-RAS model. The HEC-GeoRAS can extract the geometry of digitized cross sections with 

DEM, and export this geometric information to HEC-RAS.  

In Monte Carlo simulations using HEC-RAS, A total of 10,000 HEC–RAS simulations are 

conducted by assuming a steady-state flow condition for each study reach. The model set-up is 

performed as follows: (1) Discharge is considered as a single input to the model, and, thus, only one 

random discharge value is generated to conduct one simulation; (2) The prior probability distribution 

function (PDF) of unknown discharge are assumed as a uniform because there is no available 

information on discharge in places where no gauge station exists [47–49]; (3) The random discharge 

for the Monte Carlo simulation is uniformly generated in ranges from 100 m3/s to 5000 m3/s for the 

Montezuma reach, and from 1000 m3/s to 10,000 m3/s for the Nebraska reach. Here, the ranges of 

discharge for both study reaches are determined to sufficiently cover the discharge on the target  

flood events, by considering the flood extend width and the water depth obtained from satellite 

imagery and DEM; (4) Manning’s n value is generally considered as a primary parameter in calibrating 

HEC-RAS [50,51]. However, in this study, the roughness coefficients extracted from NLCD 2001 

(Table 2) are used for calculation of the water surface elevation without calibration of the model, due 

to the assumption that there is no gauged information regarding the discharge relationship. 

Downstream boundary condition is represented by normal depth. 

3.2.2. Approximation of Flood Discharge Using the GLUE Methodology 

The concept of the GLUE methodology is the basis of the Hornberger-Spear-Young (HSY) global 

sensitivity analysis [52,53], which involves Monte Carlo simulations using different datasets randomly 

selected from a feasible range. The GLUE methodology has the objective of classifying behavioral and 

non-behavioral models with feasible parameter datasets [25]. The results from Monte Carlo 

simulations are used to calculate likelihood measures, which describe the degree of fitness between the 

simulations and the observations. Generally, likelihood measures in the GLUE methodology are based 

on the Bayes equation [Equation (3)], and are estimated using several likelihood functions, including 

the inverse of the sum of the squared error, the inverse of the sum of absolute error, and the  

Nash-Sutcliffe efficiency: 
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(3) 

where: PL is posterior likelihood values; and X is the value of x simulated by model; L[M(Θ,I)] is a 

likelihood measure by model prediction (M) for given parameter (Θ) and set of input data (I); Pi is a 

penalty function; i is iteration; and r is a cut-off threshold. 

As shown in Equation (3), a high likelihood measure means a good fit between the simulation and 

the observations, and vice versa. The classification of either a behavioral model or a non-behavioral 

model among likelihood measures is determined by the user-specific cutoff threshold. However, there 

is no obvious definition or criteria to select the cut-off threshold for classifying simulations into 

behavioral and non-behavioral datasets [54]. The cut-off threshold can be determined in terms of an 

absolute value (e.g., Nash Sutcliffe Efficiency >0.5), or as a percentage of total simulation (e.g., a top 

30% of the 10,000 likelihood measures sorted from the highest to the lowest value). The selected 

likelihood measures as behavioral models are then rescaled from 0 to 1 by Equation (4): 

 (4) 

where, the ith rescaled likelihood measure (RSLi) is calculated by the ith likelihood measure (Li), the 

minimum likelihood measure (LMIN), and the maximum likelihood measure (LMAX). 

The rescaled likelihood measures are used to obtain the probability density function (PDF) and 

cumulative density function (CDF) of the output prediction. Generally, the median of the CDF based 

on the rescaled likelihood measures, represents the deterministic model prediction, and the uncertainty 

bound can be represented with the 90% confidence interval bounded by 5% and 95% confidence  

levels [55–57]. In this study, the behavioral model is based on a cut-off threshold, by taking the top 

30% of likelihood measures [58], and is used to estimate 90% of uncertainty bounds for approximation 

of a flood discharge. 

In this study, the informal likelihood measure in the GLUE methodology is based on water surface 

elevations and continuous flood extents obtained from Landsat imagery and GIS. Equation (5) means 

the sum of the squared error (SSE) of the water surface elevations used in the GLUE methodology to 

calculate likelihood measures (E likelihood measure), using the difference between the observations 

and the simulations in flood modeling [59–62]. 

 (5) 

where, Em,i and Eo represent the ith iteration of the modeled water surface elevation and the observed 

water surface elevation, respectively, for the jth among a total N of cross-sections. 

Despite the limitation that water surface level at gauge stations as an observation cannot capture the 

spatial distribution of flooding, the water surface level still plays an important role, within a spatial  

data-poor area, in estimating the likelihood measure for the observed flood inundation maps, (due to 

the lack of observed flood inundation maps). In recent decades, the extent of flood inundation 

extracted from satellite imagery has been used as observations for capturing the spatial uncertainties in 
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flooding [44,63–65]. F-statistic [Equation (6)] is a typical likelihood function using the spatial 

distribution of flooding, which means the goodness of fit between the observed flood area and the 

simulated flood area, based on their overlapped area [66–70]. 

 (6) 

where Ao indicates the observed inundation area; Ap refers to the predicted flood inundation area; and  

Aop represents an overlap of both the observed and the predicted inundation areas. 

In this study, the simulated flood area (Ap) of Equation (6) is based on results obtained from  

HEC-RAS, which provides water surface elevations only along cross sections. To produce the flood 

inundation area from these discrete model outputs, the DEM is subtracted from the water surface area, 

which is derived by the inverse distance weight (IDW) interpolation of the water surface elevations at 

each cross section. Equation (7) (EF likelihood measure) is a likelihood measure proposed in this 

study, which considers both the vertical and spatial differences due to the availability of the water 

surface elevation and the flood extents as observations.  

 (7) 

where, EF indicates the coupled likelihood measure based on the rescaled E likelihood measure 

(RSLE) and the rescaled F-statistic (RSLF); i is iteration; and α is the weight coefficient ranging from 0 

to 1.  

In this study, the value of α in Equation (7) is selected with 0.5, under the condition that the vertical 

and spatial effects of likelihood measure are the same on the extracted flood inundation map. As 

mentioned in the Introduction, the use of informal likelihood measure in the GLUE methodology has 

been criticized due to its subjectivity, but different informal likelihood functions, based on the water 

surface elevation and the extent of flood inundation, can be used to approximate flood discharge 

bounds, due to the unavailability of formal likelihood measure in this study. 

4. Results and Discussion 

4.1. Extraction of the Observed Data from Landsat 5 TM Satellite Imagery 

The water-bodies for both study reaches are extracted from spectral imageries consisting of bands 1, 

4, and 7 of the Landsat 5 TM data. Figure 3 shows the water bodies extracted using the ISODATA 

technique. Considering the distribution of the flood extent for both study reaches, the result shows that 

the flow direction does not follow the original river center for extreme flood events because the flood 

streamflow flowed over the main channel and the floodplain, while the original flow direction in only 

main channel located inside floodplain is relatively meandering (Figure 4). This restrains the 

application for high flow conditions using the model calibrated for low flow conditions, because the 

downstream slope of flow can be changed by water level corresponding to the magnitude of 

streamflow. The total area of the extracted water-body is 13.2 km2 for the Montezuma reach and 105.0 km2 

for the Nebraska reach, and is used as the observed flood inundation maps to estimate the F likelihood 

measures in the GLUE methodology.  

 

,

, ,

1
100op i

i
i o p i op i

A
F

P A A A

 
= = ×  + − 

iii RSLFaRSLEaEF ×−+×= )1(



Water 2013, 5 1608 

 

 

Figure 3. Three-dimensional representations of water-body overlaid on DEM extraction 

using ISODATA (Montezuma reach, 11 June 2008). Water-body (blue solid) extracted 

from Landsat image on DEM. 

  

Figure 4. Intersection points for reading water surface elevation from DEM (Montezuma 

reach, 11 June 2008). 

 

Another observation data obtained from Landsat image is the water surface elevation at each cross 

section used in the 1D model. To derive the water surface elevation from DEM, the intersection points 

between boundaries of the flood inundation extents and the cross-sections are required, because the 

water surface elevation simulated by HEC-RAS is calculated for each cross-section. The use of GIS 

enhances the accuracy of point locations and reduces the time in finding the intersection points and in 

reading the elevations of those points from the DEM. Figure 4 shows the cross-sections, extracted 

flood extent boundary, and intersections between the two overlaid features on DEM of the Montezuma 

reach. The results for the observed water surface elevations are shown in Figure 5. As a result, there is 

fluctuation in elevations of intersection points belonging to a cross-section. Thus, an observed water 
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surface elevation at each cross-section is determined by taking an average of elevations of intersection 

points at the cross-section. Points at which the water-body is too small, or which cloud covers 

completely, are excluded in the calculation of the average elevation. For 18 cross-sections of the 

Montezuma reach, the average elevations range from 144.47 m to 148.00 m, and the standard 

deviations range from 0.03 m to 2.62 m. In the case of the Nebraska reach, the average elevations are 

in the range of 277.45 m to 281.27 m, and the standard deviations are between a minimum of 0.82 m 

and a maximum of 1.42 m, respectively. As a result obtained from Landsat and DEM, the Montezuma 

reach, with its relatively narrow and rough floodplain has a greatly fluctuating water level from 

upstream to downstream, compared with the Nebraska reach which has a wide and flat floodplain. 

From these results, the coarse resolution of Landsat imagery produces relatively greater uncertainty in 

reading the elevation from DEM in a small reach than in a large reach. In particular, compared with the 

Nebraska reach, rough floodplain of the Montezuma reach (Figure 2) would lead to high storage effect or 

water level deviation from the extracted flood inundation and DEM because the coarse resolution of 

Landsat data and the horizontal and vertical error of DEMs can be more propagated to the rough 

floodplain than to flat floodplain. With coarse resolution of Landsat data and horizontal and vertical 

errors in DEM, various uncertainty sources, such as the image processing technique, and the geometric 

characteristics in the processes of flood information acquisition should be considered to improve the 

accuracy of the flood information obtained from GIS and RS data. 

Figure 5. The water surface elevation (WSE) obtained from Landsat image and water 

surface elevation from Monte Carlo (MC) simulations. (a) For the Montezuma reach;  

(b) For the Nebraska reach. 
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4.2. Approximation of Flood Discharge Using HEC-RAS and the GLUE Methodology 

Results from Monte Carlo simulations for river discharge are presented in Figure 5. Results show 

that the water surface elevations obtained using satellite Landsat image and DEM for each study reach, 

are contained within boundaries of minimum and maximum outputs, based on a total of 10,000 

simulations carried out by randomly sampling the steady discharge from the identified variation range 

and assuming a uniform probability distribution. The simulated water surface elevations over all  

cross-sections range from 143.26 m to 149.28 m for the Montezuma reach, and from 276.52 m to 

281.86 m for the Nebraska reach, respectively. The simulation for the Nebraska reach is conducted 

with a wider range of discharge than that of the Montezuma reach, but results in a smaller deviation of 

the simulated water surface elevations. These surface elevations obtained from each simulation are 

used to calculate E likelihood measures [Equation (5)]. Water surface elevations produced from  

HEC-RAS are used to produce flood inundation areas using IDW interpolation. The minimum and 

maximum areas are 7.2 km2 and 16.8 km2 for the Montezuma reach, and 63.9 km2 and 144.1 km2 for the 

Nebraska reach, respectively. The Nebraska reach has a twice-longer river than the Montezuma reach. 

However, although minimum random discharge (1000 m3/s) in the Nebraska reach is much less than 

maximum (5000 m3/s) in the Montezuma reach, the minimum inundated area (63.9 km2) of the 

Nebraska reach is about four times larger than the maximum (16.8 km2) of the Montezuma reach. 

From these results, it can be expected that the flood inundation depth in the Nebraska reach is 

shallower than that in the Montezuma reach.  

This study used NED DEMs with 10 m resolution for estimation of flood discharge, but available 

DEMs in most ungauged basins all over the world have low resolutions. Therefore, application using 

satellite-based DEMs such as SRTM, ASTER can enhance the value of the suggested methodology in 

ungauged basins for flood discharge estimation. In this context, Sanders [71] evaluated the effect of 

on-line DEMs such as NED (3 m, 10 m, and 30 m), SRTM (1 s and 3 s), IfSAR (3 m), and LiDAR (3 m) 

for flood inundation modeling, and obtained the result that the 3 s SRTM (90 m) produced a flood 

zone only 12% larger than NED DEMs (3 m, 10 m, and 30 m) predictions in the unsteady flow, and a 

25% larger flood zone in the steady flow. In addition, the effect of DEM on flood inundation maps 

could further decrease when the discharge is high or inundated area is large. Thus, the topographic 

details extracted from high resolution DEM can over-estimate or under-estimate floodwater [72]. 

These results support the applicability of other satellite-based DEMs in the suggested methodology for 

flood inundation. However, it should be noted that this methodology has limitations corresponding to 

the uncertainty sources such as assumption of flow condition and the use of normal roughness values. 

If errors in the roughness value and flow condition are added, the range of the estimated discharge will 

be much wider due to uncertainty propagated from them. The assumption of flow condition that the 

main river and the floodplains can be simulated as a single channel leads to no storage effects in flood 

inundation modeling. Although the assumption is applied to the flood inundation modeling using 

hydraulic models [73–75], it still has a weakness that the simulated water levels using 1D hydraulic 

model can be overestimated or underestimated because the stored water in floodplain is not considered. 

In addition, the roughness is a key uncertainty source in flood inundation modeling. In particular, the 

HEC-RAS model is based on the Manning’s equation [Equation (2)], in which roughness is one of 

variables. In this study, normal roughness values [34] are used because calibration of the roughness is 
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difficult without the observed discharge. However, we can expect that lower roughness will typically 

produce lower water level by Manning’s equation. In addition, there are additional uncertainty sources 

such as DEM, rating curve, modeling type, model set-up and assumption, model parameter, and lack of 

model calibration data in flood inundation modeling [76,77]. 

The results from Figure 6 show the PDF based on the rescaled likelihood measures of discharge 

based on three different likelihood functions (F, E, and EF) through the MC simulations. The rescaled 

value indicates the probability of discharge weighted by each likelihood measure.  

Figure 6. PDFs of discharge based on the rescaled likelihood measure. F likelihood 

measure: (a1) Montezuma Reach; (b1) Nebraska Reach; E likelihood measure:  

(a2) Montezuma Reach; (b2) Nebraska Reach; The combination of E and F likelihood 

measure (EF likelihood measure): (a3) Montezuma Reach; (b3) Nebraska Reach. 

(a1) (b1) 

(a2) (b2) 

(a3) (b3) 

0

0.5

1

0 2,000 4,000 6,000

F
 li

ke
li

h
oo

d
 M

ea
su

re
 

Streamflow (m3/s) 

0

0.5

1

0 2,000 4,000 6,000 8,000 10,000

F
 li

ke
li

h
oo

d 
m

ea
su

re
 

Streamflow (m3/s) 

0

0.5

1

0 2,000 4,000 6,000

E
 li

ke
li

ho
od

 M
ea

su
re

 

Streamflow (m3/s) 

0

0.5

1

0 2,000 4,000 6,000 8,000 10,000

E
 li

ke
li

ho
od

 m
ea

su
re

 

Streamflow (m3/s) 

0

0.5

1

0 2,000 4,000 6,000

E
F

 li
ke

li
h

oo
d

 M
ea

su
re

 

Streamflow (m3/s) 

0

0.5

1

0 2,000 4,000 6,000 8,000 10,000

E
F

 li
ke

li
h

oo
d 

m
ea

su
re

 

Streamflow (m3/s) 



Water 2013, 5 1612 

 

 

For both reaches, the distribution of F likelihood measure, considering only spatial distribution of 

flood extents, commonly show that they slope very steeply upwards in low discharge and very mildly 

downward (or almost constant) in high discharge (Figure 6a1,b1). This result is related to the shape of 

the valley in both study reaches. The U-shaped or rectangular valley has geometric characteristics 

where a variation of discharge leads to an abrupt change in the inundation area in low flow conditions 

and a slight change in high flow conditions. For E likelihood measure, considering only elevational 

differences, likelihood measures of discharge turn very steeply upwards in low discharge, and after the 

peak they turn very steeply downward in high discharge (Figure 6a2,b2). In this study, the peak in 

distribution of the E likelihood measure is obviously detected. The distribution of the likelihood 

measures is almost symmetrical for the Nebraska reach and positively skewed for the Montezuma 

reach. The distribution of the likelihood measures are likely to be skewed due to the side slope of the 

valley and the observed surface elevations. The EF likelihood measure of discharge are calculated by 

taking α of 0.5 in Equation (7), which is the average of F and E likelihood measures rescaled from 0 to 

1. Figure 6a3,b3 shows that the PDFs of discharge based on EF likelihood measures follow the shape 

of the ones based on the E likelihood. In actual, α in EF likelihood measures can be another 

uncertainty source in the GLUE methodology. However, research about α will be performed in future 

because α is a factor to explain how physical characteristics of flood inundation affect to informal 

likelihood measure. For example, α in U-shaped valley will be greater than 0.5 for more accurate flood 

discharge approximation because the variation in discharge around fully filled water in the U-shaped 

valley brings very small change in flood inundation area.  

Figure 7 and Table 4 show the results from GLUE that the boundaries of the approximated flood 

discharge is compared with the observations including water surface elevation and flood extents 

obtained from Landsat 5 TM imagery. The flood discharge is approximated on the CDFs of discharge, 

which are based on the behavioral models selected by taking the top 30% of each likelihood measure [52]. 

Figure 7 and Table 4 show the 5%, 50%, and 95% boundaries of the approximated flood discharge using 

different likelihood measures. The approximation boundary for the Nebraska reach is in the range of 6938 

to 8862 m3/s for the F likelihood measure, 4471 to 6344 m3/s for the E likelihood, and 4576 to  

6412 m3/s for the EF likelihood measure. The 50% of the CDF giving the deterministic model output, 

ranges from 5346 to 7911 m3/s. Considering the gauged discharge of 6030 m3/s, the relative errors of 

approximated discharge are in the range of 10% (617 m3/s) to 31% (−2830 m3/s). In the case of the 

Montezuma reach, the flood discharge over all likelihood measures is approximated in the range of 

687 m3/s to 2769 m3/s. Considering the gauged discharge of 1450 m3/s, the relative errors range from 

14% (205 m3/s) to 55% (−797 m3/s). From these results, E likelihood based on the elevational 

difference, commonly produced a much better approximation of discharge than the F likelihood 

measure, based on spatial differences for both study reaches. The use of the EF likelihood measure 

improves the approximation of discharge, by reducing the relative error of 1% for the Nebraska reach 

and 4% for the Montezuma reach. A relative error of 10% in the Nebraska reach indicates a better 

approximation of discharge than the 14% in the Montezuma reach. The gauged discharge used in this 

study is estimated from a stage-discharge rating curve involving uncertainty. For comparing results 

from the suggested method with uncertainty in rating curves, the regression equation for the  

stage-discharge rating curve based on peak flows provided by USGS is developed assuming a 

Student’s t-distribution (Figure 8). Using a 95% confidence interval, uncertainty for discharge of 1450 m3/s 
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at USGS gauge station in Montezuma ranges from 938 to 2241 m3/s and uncertainty for discharge of  

6030 m3/s at USGS gauge station in Nebraska city rages from 2263 to 16,048 m3/s. These results show 

that almost all discharge estimated by the suggested method are in the bound of uncertainty in 

discharge estimated from rating equations (Table 4). Figure 9 shows the simulated flood inundation 

maps for the approximated discharge, which are deterministic representation values (50% of CDF) based 

on the EF likelihood measure. Among the three different likelihood measures used in this study, EF 

likelihood measures commonly produced the best approximation of discharge for both study reaches. 

Figure 7. Cumulative density function (CDF) obtained by taking top 30% of likelihood 

measure and the 5%, 50%, and 95% boundaries of the approximated flood discharge. 

Based on F likelihood measure: (a1) Montezuma Reach; (b1) Nebraska Reach; Based on E 

likelihood measure: (a2) Montezuma Reach; (b2) Nebraska Reach; Based on the 

combination of E and F likelihood measure (EF likelihood measure): (a3) Montezuma 

Reach: (b3) Nebraska Reach. 
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Table 4. Boundaries of the approximated discharge for each likelihood measures. 

Likelihood 
Measure 

CDF 
Discharge (m3/s) 

Montezuma Nebraska 

F 
0.05 1752 6938 
0.50 2247 7911 
0.95 2769 8862 

E 
0.05 687 4471 
0.50 1179 5346 
0.95 1788 6344 

EF 
0.05 801 4576 
0.50 1245 5413 
0.95 1827 6412 

Observation 1450 6030 

Figure 8. Stage-discharge rating curve based on peak flows provided by USGS. (a) 

Montezuma reach; (b) Nebraska reach. 

(a) (b) 

Figure 9. The simulated flood inundation maps for the approximated discharge (50% of 

CDF based on EF likelihood measure). (a) Montezuma (Q = 1245 m3/s); (b) Nebraska  

(Q = 5413 m3/s). 
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5. Summary and Conclusions 

Obtaining flood information in data-poor regions is a difficult and uncertain task, but is very 

valuable for flood risk management in order to protect human civilization and the environment. The 

development of GIS, launching devices, and optical sensors have helped to investigate and analyze 

spatiotemporal flood attributes for past flood events, and the use of remote sensing data can therefore 

supplement flood information in poorly gauged area. In this paper, we have demonstrated the potential 

of Landsat image and the GLUE methodology in obtaining hydro-information in an ungauged basin, 

where formal likelihood measures are unavailable. To demonstrate the approach suggested in this 

study, Landsat images and the GLUE methodology are used to approximate the flood discharge 

without information from the gauge stations, which existed in the area.  

The following conclusions are drawn from this study: 

• This study demonstrates that Landsat imagery can be used as secondary source for discharge 

estimation in a data-poor environment. The water-body extracted from the Landsat imagery 

can be used in conjunction with a hydraulic model to estimate flood discharge. However, the 

use of Landsat imagery in a small-scale study can produce relatively more uncertainty in 

reading water surface elevation from a DEM (10 m × 10 m) than in a large-scale study, due to 

the coarse resolution (30 m × 30 m) of a Landsat image. Therefore, flood information obtained 

from Landsat imagery in planning flood risk management in a data-poor environment is more 

appropriate for larger rivers. The approximated flood discharge estimated for the Nebraska 

reach is 5413 m3/s, and 1245 m3/s for the Montezuma reach. The relative errors between the 

gauged data and the approximations are 10% for the Nebraska reach and 14% for the 

Montezuma reach, respectively.  

• In the GLUE methodology, the different results between E Likelihood measure and F 

likelihood measure showed subjectivity on the selection of criteria meeting informal likelihood 

measure. However, when considering the physical conditions of the study reach, such as the 

shape of the valley, size of the reach, and the flood intensity, the informal likelihood measure 

in the GLUE methodology can enhance the ability of finding improved flood information in 

data-poor environment. In addition, each likelihood measure is differently responded 

corresponding to the random discharge, but produces common results in flood discharge 

estimation for both study reaches. For example, the approximated discharge for both reaches is 

overestimated for F likelihood measure on the spatial flood extent and underestimated for E 

likelihood measure on the observed water surface elevation. In addition, the combination (EF 

likelihood) of two likelihood measures estimates discharge closest to the observed discharge at 

gauge station.  

This study shows that the use of satellite imagery provides an economical way of obtaining flood 

information at a planning level in ungauged basins. The approach suggested in this study uses 

relatively high quality DEM in flood discharge approximation at only two study reaches. Therefore, 

application of this methodology using available DEMs, such as STRM and ASTER, in most ungauged 

areas all over the world would give a significant contribution to the applicability of the suggested 

method. In addition, understanding uncertainty source such as roughness and channel geometry will 
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enhance the accuracy of flood damage estimation in ungauged basin. Moreover, Sufficient RS data 

with high quality for flood events will provide useful information such as the relationship between 

flood inundation area and flood level to flood risk management in ungauged basin [16,78]. In this 

regard, it needs the improvement in sensors and easy access in stationary satellites. Although the use of 

GLUE involves uncertainty in the subjective decisions on the selection of informal likelihood, the 

effect of the uncertainty can be reduced by combination of informal likelihood measures considering 

the surrounding conditions (e.g., EF likelihood measure). The approach suggested in this study is 

based on flood discharge approximation at only two study reaches. Therefore, more case studies with 

various physical conditions, higher dimensional hydraulic models, and different remote sensing data, 

would be helpful in generalizing the role of remote sensing data and GLUE in estimating flood 

discharge in data-poor environments. 
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