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Abstract: An adaptive neuro-fuzzy inference system (ANFIS) was developed using the 

subtractive clustering technique to study the air demand in low-level outlet works. The 

ANFIS model was employed to calculate vent air discharge in different gate openings for 

an embankment dam. A hybrid learning algorithm obtained from combining  

back-propagation and least square estimate was adopted to identify linear and non-linear 

parameters in the ANFIS model. Empirical relationships based on the experimental 

information obtained from physical models were applied to 108 experimental data points to 

obtain more reliable evaluations. The feed-forward Levenberg-Marquardt neural network 

(LMNN) and multiple linear regression (MLR) models were also built using the same data 

to compare model performances with each other. The results indicated that the fuzzy  

rule-based model performed better than the LMNN and MLR models, in terms of the 

simulation performance criteria established, as the root mean square error, the  

Nash–Sutcliffe efficiency, the correlation coefficient and the Bias. 

Keywords: dam; fuzzy model; outlet works; reservoir; subtractive clustering;  

Takagi-Sugeno; vent air discharge 

Nomenclature 

ai = parameter of the consequent part of a rule

A = Area of gate (cm2)

OPEN ACCESS



Water 2013, 5 1442 

 

 

 = membership function 

ANFIS = adaptive neuro-fuzzy inference system

ANN = artificial neural network, also neural network

bi = parameter of the consequent part of a rule

Bias = statistic test representing the mean of all the individual errors 
β = aeration coefficient

c = parameter of the consequent part of a rule

Di = density measure
 = first cluster center

Fr = Froude number

H = Head of water (cm)

k = index of each fold in the K-fold cross-validation

K = total number of folds in the K-fold cross-validation, and the number of 

fuzzy ‘if-then’ rules

LMNN = Feed-forward Levenberg-Marquardt artificial neural network 
Mallows CP = coefficient of the Mallows statistic

MLR = multiple linear regression
 = membership degree of the jth input xj for the ith rule 

N = number of observations

NSE = Nash–Sutcliffe efficiency (%)

O = opening (%) 
Qa = air flow rate (L/s), also called air demand

Oi = measured values of a variable

Qw = Water discharge (L/s)

r = Pearson product moment correlation coefficient, also called  

correlation coefficient

R0 = positive constant called the cluster radius

ra = influential radius for clustering the data space

rb = positive constant; rb > ra, typically rb = 1.5 ra, where ra is another  

positive constant

RMSE = root mean square error

Si = computed (by model) values of a variable

Te = true error 
TS = Takagi–Sugeno model

ui = normalized degree of fulfilment of the antecedent clause of a rule 
Va = air velocity (cm/s)

X = Input vector 
 = data point with the highest density measure 

xn = Input variable 
xj = jth input variable in the n dimensional input data space 
yi = output variable
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1. Introduction 

1.1. Background 

Gated tunnels in dams can be used for various purposes, such as regulating the surface of reservoir 

water, drawdown of the reservoir, sediment flushing, and flood release [1]. For most dams, flow 

regulation can be performed from a low level outlet consisting of a closed conduit with a slide gate or 

valve. Outlet works are devices used to release and regulate water flow from a dam usually for 

irrigational purposes. Such devices may consist of one or more pipes or tunnels through the 

embankment of the dam, directing water, often under high pressure, to the river downstream [2]. When 

the outlet gate is placed inside the conduit, reduced pressure, which may causes cavitation, is often 

measured just downstream of the gate. 

Diffusing air into the flow can eliminate cavitation damages. Aeration will also improve the mean 

pressure and reduce the intensity of hydrodynamic pressure fluctuations [3]. Therefore, to minimize 

these effects, aerators are recommended just downstream of gates to introduce air into the flow [4]. 

A proper size for the air-vent pipe should be considered to allow for the sufficient amount of air 

flow rate. The air flow rate Qa refers to the amount of air drawn into the air vent. Air flow can be 

diffused into the water flow through turbulent mixing. The process of air and water mixing can be 

applied by utilizing a separate air phase above the water surface of the pipe outlet [4]. 

Insufficient research has been conducted on the air and water flow properties of high-velocity 

waters discharging at the downstream end of tunnels. Kalinske and Robertson [5] were one of the first 

researchers who have studied the air demand in closed conduits as a function of the Froude number. 

Other researchers proposed related but alternative methods for predicting air demand discharge [6–11]. 

1.2. Purpose, Rationale, Objectives, and Boundary Conditions 

The purpose of this study is to apply an adaptive network-based model for air demand estimations 

regarding low-level outlet works. This work also aims to determine if the use of artificial neural 

networks (ANN) and simpler models, such as multiple regression models for air demand estimations, 

could be justified. 

In this study, a fuzzy rule-based model was developed for estimating air flow rate in two stages. In 

the first stage, local sub-regions were determined by analysing the pattern of input data. The regions 

can be determined intuitively, requiring often too many trial and error attempts. Therefore, alternative 

clustering techniques were used in this study to find the sub-sets of an input space that characterized 

possible occurrences of the data. In the second stage, a local model was built for each cluster. The 

Mamdani’s model, the Takagi–Sugeno’s (TS) model, and the standard additive model can be applied 

at this stage. In this study, the TS model was chosen, because it can solve complex and  

high-dimensional problems relying only on a few rules. 

In general, artificial intelligence models such as an adaptive neuro-fuzzy inference system (ANFIS) 

and ANN do not need any a priori assumptions to be made on the nature (linear or non-linear) of the 

relationship between the response variable and explanatory variables. However, the successful 

application of artificial intelligence in modelling requires good comprehension of the effect of some 

internal parameters related to the input variables, model structure, training steps, and decision-making 
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process. The dam geometries considered in this research involved a slide gate installed on the sloping 

upstream face of an embankment dam, followed by a vertical elbow where the flow entered the 

conduit, as shown in Figure 1. The air demand varied with gate and conduit geometry, gate opening, 

and water discharge passing through the gate. Hence, these parameters were considered potential input 

variables for the ANFIS, ANN, and multiple regression models. 

Figure 1. Typical representation of a low-level outlet works. 

 

2. Materials and Methods 

2.1. Experimental Data 

The 108 data used in this study were obtained from a study published by Tullis and Larchar [4]. In 

an effort to develop a better understanding of head-discharge relationships and air-venting 

requirements for inclined slide gates, a laboratory-scale model (Figure 2) of low-level outlet works 

representative of small- to medium-sized embankment dam applications was constructed at the Utah 

Water Research Laboratory, Utah State University. A schematic representation of the experimental  

set-up is shown in Figure 2b. The model shown in Figure 2a consisted of an elevated steel tank 

(approximately 1.8 m long, 1.8 m tall and 0.9 m wide). Two acrylic slide gates (round and rectangular) 

were constructed and subsequently tested. The gate designs were based on commercially available 

slide gates. The data collected for each test condition included the area of gate (A), opening  

percentage (O%), head of water (H), and water discharge (Qw) for outlet conditions and the air velocity 

(Va) in the supply line (vented only). 

Table 1. Design parameters after [4]. 

Extremes Area (cm2) 
Gate Opening 

(%) 
Head (cm) 

Water Discharge 
(L/s) 

Air Discharge 
(L/s) 

Minimum 45.6 (round gate) 10 13.8 0.3 0.0 
Maximum 58.1 (rectangular gate) 100 168.5 25.3 7.3 

In the experiment, three different flow conditions at the downstream end of the discharge pipe were 

considered: (1) non-vented flow; (2) vented flow with a free-discharging pipe outlet; and (3) vented 

flow with a submerged pipe outlet [4]. The data were collected at 10%, 30%, 50%, 60%, 70%, 90%, 

and 100% gate openings. A gate opening value represents the proportion (%) of the total linear travel 

distance of the gate. Table 1 summarizes the minimum and maximum design parameters. 
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Figure 2. (a) Schematic of lab-scale low-level outlet works; and (b) experimental set-up 

after [4]. 

(a) (b) 

2.2. Empirical Relationships for Estimating Discharge Air Vents 

Research has traditionally concentrated on the flow aeration downstream of bottom outlet gates. 

Studies are usually based on experimental information obtained from physical models. Most of the 

published air-venting studies are limited to large-dam outlet geometries [4]. In order to validate the 

experimental relationships for low-level outlets, formulas related to large dam outlets were considered 

for determining the air demand in this study. 

The Froude Number is a dimensionless parameter defined as the ratio of a characteristic velocity to 

a gravitational wave velocity [Equation (1)]. Kalinske and Robertson [5] reported results on air 

demand for situations where a hydraulic jump was formed in the downstream conduit. Based on their 

results, the aeration coefficient (β) for the condition of a hydraulic jump was suggested as a function of 

the Froude number (Fr) as shown in Equation (2). 

 (1) 

where Fr is the Froude number; V is the mean velocity of water; Yc is the flow depth at the contracted 

section; and g is the gravitational acceleration. 

 (2)

The aeration coefficient (β) can also be expressed as the vent air discharge over the water flow 

discharge (β = Qa/Qw). Campbell and Guyton [6] presented Equation (3) for the air demand ratio using 

the Froude number in the contracted section downstream of the gate [12]. 

 (3)

The U.S. Army Corps of Engineers [7] published Equation (4), which is based on prototype 

observations. Equation (4) is rather similar to Equation (3). 

 (4)

.
=

c
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( )1.4
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0.04 1β = −Fr

( )1.06
0.03 1β = −Fr



Water 2013, 5 1446 

 

 

In another experiment, Sharma [10] verified prototype data and compared results with the empirical 

equations in the water flow of conduits. Equation (5) directly relates the aeration coefficient to the 

Froude number according to Sharma’s experiments. 

 (5)

2.3. Adaptive Network-Based Fuzzy Inference System 

The ANFIS integrates the features of fuzzy systems and neural networks. Thereafter, it has the 

potential to capture the benefits of both in a single framework. Membership functions are the central 

concept of fuzzy set theory, which numerically represents the degree to which a given element belongs 

to a fuzzy set [13]. 

In order to avoid over-fitting of the ANFIS model, an early stopping technique has been applied. In 

this method, the validation set can be used to detect the time in which over-fitting starts during the 

supervised training. At this stage, training is stopped before convergence to avoid over-fitting [14]. 

2.4. Takagi–Sugeno’s Model 

The TS model was published by Takagi and Sugeno in 1985 [15]. A TS fuzzy model consists of 

four major elements of member functions, internal functions, rules, and outputs [16]. The TS fuzzy 

models are quasi-linear in nature, resulting in smooth transitions between linear sub-models [17]. 

Figure 3a illustrates the typical structure of the ANFIS model. For a multi-input and single-output 

model, the typical fuzzy rule of a TS model is shown in Equation (6). 

Figure 3. Schematic representation of the (a) adaptive neural-based fuzzy inference 

system; and the (b) feed-forward Levenberg-Marquardt artificial neural network structure. 

(a)          (b) 

 (6)

where xn is the input variable, is the membership function (MF) and K is the number of fuzzy  

if-then rules. The consequent part of the rule base shows the rule output. In a TS fuzzy model, rule 

consequents are usually taken to be either crisp numbers or linear functions of the input parameters 

[Equation (7); layer 1]. 
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where yi is the output variable, and ai and c are parameters of the consequent parts of the rule shown in 

Equation (6). The number of rules is indicated by K, and Ai is the antecedent fuzzy set of the i-th rule 

defined by the membership function (premise parameters in Figure 3a). The degree of matching 

between the input parameters and rule [Equation (6)] is called the rule firing strength (Figure 3a), which 

is normally defined as an and-conjunction by means of the product operator [Equation (8); layer 2]. 

 
(8)

where xj is the j-th input variable in the n dimensional input data space and  is the membership 

degree of the j-th input xj for the i-th rule. For the input x, the total output y of the TS model is 

computed by aggregating the contributions of individual rules [17]. Therefore, the overall fuzzy system 

output can be obtained by Equation (9). Consequents and outputs are shown in Figure 3a. 

 (9)

where ui is the normalized degree of fulfilment of the antecedent clause of rule shown in  

Equation (6) [13,18]. The normalized degree of fulfilment can be expressed by Equation (10). The 

normalization layer is shown in Figure 3a. 

 
(10)

2.5. Hybrid Algorithm 

Two learning methods are generally used in the adaptive TS model to specify the relationship 

between input and output and to determine the optimized distribution of MF. The TS model utilizes a 

combination of the least-square method and the back-propagation gradient descent method for training 

the FIS membership function parameters to identify patterns hidden in a given training dataset [19–22]. 

Several methods can be utilized for setting up the MF of the ANFIS (e.g., grid partition and 

subtractive clustering). Regarding the combination of grid partition and ANFIS, grid partition divides 

the input vector into a number of fuzzy regions using paralleled axis. However, in this method, fuzzy 

rules increase exponentially when the amount of input variables increases. Therefore, the application 

of grid partition in ANFIS is not recommended for large input variable problems [23]. 

In this study, a subtractive clustering method was used to initialize the Gaussian type of MF. The 

simulation begins by generating the fuzzy rules using subtractive clustering, which is based on a 

measure of the density of data points in the feature space. This approach is applied to determine the 

number of rules and antecedent membership functions by considering each cluster centre as a fuzzy 

rule. An example of how the clusters are identified in the second (gate opening) and the fourth (water 

discharge) input dimensions as well as the third (head of water) and fourth (water discharge) input 

dimensions of the input space is shown in Figure 4. 
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Figure 4. Cluster centres using the centre of gravity method in (a) input 2 [gate  

opening (O)] and input 4 [water discharge (Qw)]; and in (b) input 3 [head of water (H)] and 

input 4 (Qw). 

 

Desirable variables of the membership functions are optimized for the identification data set 

through the back-propagation procedure while a linear least squares method is used for calculating the 

consequent parameters. Parameters associated with membership functions change through the learning 

process and the gradient vector facilitates the calculation of these parameters. Each time when the 

gradient vector is obtained, an optimization procedure is performed to adjust parameters for  

reducing errors [24]. 

2.6. Input Data Determination 

The selection of appropriate input variables is an important consideration in heuristic modeling. 

Inappropriate input variable selection may cause unsuitable effects on the modelling results. Several 

remedies were reported to overcome these problems including autocorrelation and partial 

autocorrelation function analysis, linear and non-linear cross-correlation analysis, spectral analysis, 

and partial mutual information [25,26]. 

In the study, input variables are selected using a stepwise selection procedure. A stepwise 

regression method (i.e., step-by-step iterative construction of a regression model that involves 

automatic selection of independent variables) was applied to explore relationships among the collected 

data. The Mallows statistic was used as a criterion to select a suitable multiple regression model. 

Mallows CP is a powerful selection procedure in stepwise regression [27]. The result of stepwise 

regression according to Mallows CP coefficient is tabulated in Table 2. 

According to findings shown in Table 2, the area representing the shape of the slide gate (round or 

rectangular) was found to be the most significant variable for explaining air discharge demand. 

Table 2. Stepwise regression results for the four independent variables area of gate (A), 

head of water (H), opening percentage (O) and water discharge (Qw) against the dependent 

parameter of air flow rate (Qa). 

Step 1 2 3 4 

Parameter A (cm2) H (cm) Qw (L/s) O (%)
Mallows CP 35.3 25.2 17.9 5.0 
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However, water head and water discharge followed by gate opening percentage were also found to 

be significant as input variables. Therefore, both artificial intelligence models (fuzzy and ANN) as 

well as the regression model were tested using all available explanatory variables. 

2.7. Comparing Model Performance 

The performance of the developed models can be evaluated using several statistical tests that 

describe the errors associated with the model. After calibrating each model structure using the testing 

data set, the performance can then be evaluated in terms of statistical measures of goodness of fit. In 

order to provide an indication of goodness of fit between the observed and estimated values, the root 

mean square error (RMSE), correlation coefficient (r), Nash–Sutcliffe efficiency (NSE), and Bias were 

calculated and evaluated. The RMSE evaluates the variance of errors independently from the sample 

size, which is given by Equation (11). 

 (11)

where Si and Oi represent the model computed and measured values of the variable; and N indicates the 

number of observations. The smaller the RMSE, the better is the performance of the model. The Bias 

represents the mean of all the individual errors and indicates whether the model overestimates or 

underestimates the dependent variable. This statistic is calculated as shown in Equation (12) [28,29]. 

 (12)

The NSE, which is a normalized statistic, determines the relative magnitude of residual variance 

compared to the observed variance and gives an indication of how well the observed and simulated 

results fit to a 1:1 line (line of agreement). This statistic can be obtained via Equation (13) [30]. 

 
(13)

NSE ranges from −∞ to 1. Essentially, the closer NSE is to 1, the more accurate the model is likely 

to be. The correlation coefficient (r) is based on the Pearson product moment correlation coefficient of 

the simulated and observed flow series, which is obtained via Equation (14). 

 
(14)

The correlation coefficient is a measure of strength of the model in developing a relationship 

between input and output variables. The higher the r value (with 1 being the maximum value), the 

better is the performance of the model. 

2.8. K-fold Cross-Validation 

Cross validation techniques tend to focus on not using the entire data set when building a model. 

They are applied for assessing how the results of statistical analysis would generalize to an 
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independent data set. In addition, they are applied for the settings in which the goal is estimating how 

accurately a predictive model would perform in practice. In K-fold cross-validation, the data are split 

into K parts (folds) with K-1 parts as the training set and one part as the testing set. 

The cross-validation process is then repeated K times. Once the model is built using the left cases 

(often called the training data set), the cases that are removed (referred to as the testing data set) can be 

used to test the performance of the model on the ‘unseen’ data (i.e., the testing set). The K results from 

the folds can then be averaged (or otherwise combined) to produce a single estimation [31]. 

The advantage of this strategy is that all data have the chance to be trained and evaluated, giving the 

true error (Te) for each error criterion (RMSE, Bias, NSE, and r). Equation (15) shows the true error of 

the RMSE: 

 (15)

where K is the total number of folds and k is the index of each fold. In this study, the data set was 

divided randomly into four training and testing sub-sets by the cross validation method as a systematic 

process to obtain effective and sensitive modelling results. 

3. Results and Discussion 

3.1. Applications 

It is expected that training data sets should cover all the characteristics of the scientific problem to 

obtain correct model estimations. Therefore, the data set was divided into four training and testing  

sub-sets by using the cross validation method as a systematic methodology to obtain effective and 

sensitive model findings. To get more reliable evaluations of performance of the ANFIS model, MLR 

given in Equation (16) was established for the 108 experimental data [32]. As with the fuzzy approach, 

the four-fold cross validation method was used again. 

 (16)

The best model structure having four input variables was also trained and tested by ANN. The  

feed-forward Levenberg-Marquardt ANN network (LMNN) was used in this study. The LMNN model 

was trained and tested using the same non-transformed data set. The error back-propagation algorithm 

and tangent activation function were used for the training/testing of the LMNN model. Figure 3b shows 

the typical schematic representation of a LM back-propagation neural network. The number of hidden 

layers and the hidden neurons within a layer, the learning rate (0.1), the coefficient of momentum (0.5) 

and epochs (1000) were selected by applying a trial and error method during the model training phase. 

The structure of the LMNN model consisted of eleven hidden neurons within one hidden layer. Details 

on the development of the LMNN model were presented in previous reports [14,33]. Table 3 

summarizes the comparison of results of the ANFIS, LMNN, MLR, and empirical models. 

Comparing the estimation models from Table 3, it can be seen that RMSE values with respect to the 

ANFIS model were much lower compared to the MLR and empirical models for each fold. The RMSE 

values of the ANFIS model were also lower than those for the LMNN model. In addition, values for 

the NSE efficiency and correlation coefficients of the ANFIS model were higher than those for the 
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LMNN, MLR and empirical models for each fold. However, it should be noted that a trial and error 

procedure had to be performed for the LMNN model to develop the best network structure while such 

a procedure was not required for developing the ANFIS model. Moreover, in this study, the ANFIS 

model was trained using just 30 epochs while the LMNN model required 60 epochs. The results 

suggest that the ANFIS method was superior to the LMNN method in estimating the vent  

air discharge. 

Table 3. Values of model performance indices and error functions for the testing. 

Error 
Criteria 

Testing 
Data Set 

ANFIS LMNN MLR Sharma U.S. Army Campbell 
Kalinske and 

Robertson 

RMSE 1st fold 0.242 0.359 1.024 6.628 2.233 2.03 3.325 
 2nd fold 0.221 0.315 0.734 5.957 1.912 1.669 3.147 
 3rd fold 0.286 0.469 0.867 7.291 2.272 1.992 3.661 
 4th fold 0.265 0.436 1.361 5.608 2.096 1.963 2.976 

NSE 1st fold 0.959 0.912 0.269 −29.608 −2.474 −1.873 −6.707 
 2nd fold 0.912 0.871 0.453 −52.135 −4.48 −3.175 −13.834 
 3rd fold 0.923 0.855 0.326 −78.614 −9.233 −6.868 −25.577 
 4th fold 0.923 0.850 0.440 −9.777 −0.506 −0.321 −2.036 

Bias 1st fold −0.025 0.021 −0.193 4.994 1.142 0.965 2.083 
 2nd fold −0.091 −0.183 0.236 4.497 1.210 1.023 2.152 
 3rd fold 0.123 −0.338 0.053 5.357 1.321 1.119 2.358 
 4th fold −0.072 −0.099 −0.131 4.099 0.763 0.588 1.668 

r 1st fold 0.981 0.949 0.546 −0.137 −0.145 −0.134 −0.16 
 2nd fold 0.981 0.965 0.678 0.063 0.046 0.068 0.009 
 3rd fold 0.962 0.942 0.654 −0.182 −0.174 −0.164 −0.188 
 4th fold 0.972 0.93 0.632 0.139 0.142 0.145 0.125 

Notes: ANFIS, adaptive neural-based fuzzy inference system; LMNN, feed-forward Levenberg-Marquardt 

artificial neural network; MLR, multiple linear regression; RMSE, root mean square error; NSE, Nash–Sutcliffe 

efficiency; Bias, test statistic representing the mean of all the individual errors; r, Pearson product moment 

correlation coefficient. 

Scatter plots are displayed in Figures 5 and 6 for the training and testing data sets, respectively. 

Figure 6 shows the observed vent air discharge on the x-axis against the simulated vent air discharge 

on the y-axis for the Campbell and Kalinske-Robertson’s empirical relationships. 

In each of the scatter plots, a perfect estimation was placed on the 1:1 line. The ANFIS simulation 

(Figure 6) fell relatively close to the 1:1 line, except for two points of the testing data set. It is 

interesting to note that air discharges below 1 L/s were over-simulated by empirical and MLR models 

whereas air discharges above 2 L/s were under-simulated. The LMNN (no figures shown) and ANFIS 

estimated air discharges were distributed evenly on both sides of the line of agreement. However, the 

data spread was more pronounced for the LMNN than for the ANFIS method. 
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Figure 5. Comparing the results of Campbell and Kalinske-Robertson’s empirical models 

versus the observations (1st fold). 

 

Figure 6. Comparing the results of adaptive neural-based fuzzy inference system (ANFIS) 

and multiple linear regression (MLR) models versus the observations (testing set of 1st fold). 

 

3.2. Assessing Empirical, ANFIS, MLR, and LMNN Models 

For comparison, performance data of the ANFIS model against the corresponding MLR and 

empirical models are presented in Table 4 using true error values. It is evident that the ANFIS model 

was by far more accurate than the empirical models and considerably more accurate than the MLR and 

LMNN models in terms of their simulation accuracy of the true error criteria. The ANFIS model 

simulated the significant air discharge parameters with an acceptable accuracy. The result of the Bias 

index indicated that all empirical relationships highly overestimated air discharges (e.g., BiasTE for 

Sharma = 4.7) while the LMNN model slightly underestimated air discharges (BiasTE = −0.15). ANFIS 

and MLR had normal tendencies with negligible magnitude for Bias. The overall average values for 

NSE were slightly negative. 

Comparing the estimation models with each other, it can be seen that the values of RMSETe for the 

ANFIS model (test/0.254 and train/0.186) were lower than those for the LMNN (0.395/0.192) and 

MLR (0.997/0.907) models and much lower than those for the empirical models (e.g., Sharma: 6.37) 

for both the testing and training data sets. It appears that the NSETe of the ANFIS model (test/0.929 

and train 0.982) was higher compared to the LMNN, MLR, and empirical models. In addition, the 

correlation coefficients of the ANFIS model (0.974/0.991) were higher than those of the LMNN 

(0.946/0.987), MLR (0.627/0.612) and empirical (e.g., Sharma: −0.029) models for both the testing 

and training sets. It should be noted that a trial and error procedure has to be performed for the LMNN 

model in order to develop the best network structure, while such a procedure is not required when 

developing the ANFIS model. 
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Table 4. Performance statistics for the adaptive neural-based fuzzy inference system 

(ANFIS), feed-forward Levenberg-Marquardt artificial neural network (LMNN), multiple 

linear regression (MLR), and empirical models using true error (Te). 

Model 
Testing set Training set 

RMSETe NSETe BiasTe rTe RMSETe NSETe BiasTe rTe 

ANFIS 0.254 0.929 −0.016 0.974 0.186 0.982 −0.0003 0.991 

LMNN 0.395 0.872 −0.150 0.946 0.192 0.971 −0.0007 0.987 

MLR 0.997 0.372 −0.009 0.627 0.907 0.375 −0.003 0.612 

Sharma 6.371 −42.534 4.737 −0.029     

U.S. Army 2.128 −4.173 1.109 −0.033     

Campbell 1.914 −3.059 0.924 −0.021     

Kalinske and Robertson 3.277 −12.039 2.065 −0.053     

Notes: RMSE, root mean square error; NSE, Nash–Sutcliffe efficiency; Bias, test statistic representing the 

mean of all the individual errors; r, Pearson product moment correlation coefficient. 

For the ANFIS model, NSETe is 0.93, which corresponds to a perfectly modeled match to the 

observed data, indicating the superiority of the ANFIS model compared to both the LMNN and MLR 

approaches. Negative values of NSE indicated that the observed mean was a better predictor than the 

model. Thereafter, all the empirical models failed to simulate the air discharges properly according to 

the NSE criteria. In general, the results suggested that the ANFIS method is superior to the LMNN, 

MLR, and empirical methods for the purpose of simulating vent air discharges. 

3.3. Comparison between Empirical and Computational Methods 

According to empirical relationships, the air demand flow at different gate opening scenarios was 

determined as function of the Froude number at a contracted section according to Equations (2–5). 

Findings have subsequently been compared with computational relations. 

Results indicate that there are considerable differences between empirical and computational methods. 

This could be explained by differences in the input variables used by each method. The Froude number 

[Equation (1)], which is used by all empirical methods as the basic parameter for estimating the air 

demand, includes velocity (V) as a dependent parameter of water discharge, gate opening, and vent area (ܸ = ܳ௪/ܣ ∙ ܱ) and the flow depth at the contracted section, which is a dependent parameter of water 

depth and gate opening  ( ௖ܻ = ܻ ∙ ܱ). Therefore, the empirical relationships are a function of four 

parameters: 	݂(ܳ௪, ,ܣ ܱ, ܻ). According to the stepwise regression results (Table 2), the second most 

effective input variable of estimating air flow rate is head of water (H), which is not an input variable for 

the empirical relationships. This could be the reason for inferior results associated with the empirical 

relationships in comparison to the computational methods. 

In addition to the empirical relationships, experimental data were used to assess the relationship 

based on non-linear regression between the Froude number (Fr) and the aeration coefficient (β). 

Equation (17) shows the best power relationship for the applied experimental data (Figure 7). 

(17)
  

1.850.08( 1)Frβ = −
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Figure 7. Illustration of the power relationship between the Froude number (Fr) and the 

aeration coefficient (β) of the applied experimental data. 

 

In order to evaluate the validity of the above relationships, the statistical measures RMSE, NSE, 

Bias and r were calculated. Results show that the RMSE = 1.24, NSE = −0.14, Bias = −0.00036 and  

r = −0.045. Comparing the performance of the obtained relationships to the empirical ones  

[Equations (2–5)] indicates their superiority (lower RMSE, r and normal tendency for Bias) to other 

empirical power relationships discussed in this study. However, it should be noted that artificial 

intelligence models (e.g., ANFIS and ANN) do not provide an explicit expression relating the 

independent with the dependent variables. 

4. Conclusions 

Fuzzy modelling and identification of measured data are effective tools for the approximation of 

uncertain non-linear systems. In this paper, a TS fuzzy inference system was successfully developed 

and applied for the simulation of air demand discharge in low-level dam outlet works. The subtractive 

clustering algorithm was utilized to extract the fuzzy model structure. In order to verify the 

performance of the proposed approach, empirical methods (Shrama, Campbell, Kalinske-Robertson, 

and U.S. Army), a traditional MLR model and the more recent LMNN model were successfully built 

using the same data and subsequently compared with each other. The data were randomly separated 

into four sub-sets using the K-fold cross validation method. 

The performances of the empirical models were inferior to the MLR model. The Bias index values 

indicated that empirical methods highly over-estimated the air demand discharges while the ANFIS 

model had a normal tendency. The average RMSE of four folds was 0.25 for the ANFIS model 

compared to 0.40 for the LMNN model, which was considered acceptable. The performance of the 

ANFIS model was satisfactory, considering that the average NSE efficiency values of 0.98 and 0.93 

were recorded for the training and testing data sets, respectively. Lower corresponding values of NSE 

efficiency were computed for the LMNN (0.97/0.87) and MLR (0.38/0.37) models. 

The considerable difference between the results of empirical and computational methods indicates 

the high degree of a non-linear relationship between water discharge and air flow rate. The use of only 

the Froude number as an input parameter for estimating the air flow rate was unreliable. Alternatively, 

the proposed fuzzy rule-based model can be used at least complementary to the empirical relationships, 
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MLR, and artificial neural network models to assess the interactions between air demand discharge and 

hydro-structural parameters of low-level outlet works for dams. 
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