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Abstract: This paper describes the hydrological assessment of an agricultural watershed in 

the Midwestern United States through the use of a watershed scale hydrologic model. The 

Soil and Water Assessment Tool (SWAT) model was applied to the Maquoketa River 

watershed, located in northeast Iowa, draining an agriculture intensive area of about  

5,000 km
2
. The inputs to the model were obtained from the Environmental Protection 

Agency’s geographic information/database system called Better Assessment Science 

Integrating Point and Nonpoint Sources (BASINS). Meteorological input, including 

precipitation and temperature from six weather stations located in and around the 

watershed, and measured streamflow data at the watershed outlet, were used in the 

simulation. A sensitivity analysis was performed using an influence coefficient method to 

evaluate surface runoff and baseflow variations in response to changes in model input 

hydrologic parameters. The curve number, evaporation compensation factor, and soil 

available water capacity were found to be the most sensitive parameters among eight 

selected parameters. Model calibration, facilitated by the sensitivity analysis, was 

performed for the period 1988 through 1993, and validation was performed for  

1982 through 1987. The model was found to explain at least 86% and 69% of the 

variability in the measured streamflow data for calibration and validation periods, 

respectively. This initial hydrologic assessment will facilitate future modeling applications 

using SWAT to the Maquoketa River watershed for various watershed analyses, including 

watershed assessment for water quality management, such as total maximum daily loads, 

impacts of land use and climate change, and impacts of alternate management practices. 
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1. Introduction 

Hydrology is the main governing backbone of all kinds of water movement and hence of  

water-related pollutants. Understanding the hydrology of a watershed and modeling different 

hydrological processes within a watershed are therefore very important for assessing the environmental 

and economical well-being of the watershed. Simulation models of watershed hydrology and water 

quality are extensively used for water resources planning and management. These models can offer a 

sound scientific framework for watershed analyses of water movement and provide reliable 

information on the behavior of the system. New developments in modeling systems have increasingly 

relied on geographic information systems (GIS) that have made large area simulations feasible, and on 

database management systems such as Microsoft Access to support modeling and analysis. 

Furthermore, models can save time and money because of their ability to perform long-term 

simulations of the effects of watershed processes and management activities on water quantity, quality, 

and on soil quality [1]. 

Several watershed-scale hydrologic and water quality models such as HSPF (Hydrological 

Simulation Program—FORTRAN) [2], HEC-HMS (Hydrologic Modeling System) [3], CREAMS 

(Chemical, Runoff, and Erosion from Agricultural Management Systems) [4], EPIC  

(Erosion-Productivity Impact Calculator) [5], and AGNPS (Agricultural Non-Point Source) [6] have 

been developed for watershed analyses. While these models are very useful, they are generally limited 

in several aspects of watershed modeling, such as inappropriate scale, inability to perform  

continuous-time simulations, inadequate maximum number of subwatersheds, and the inability to 

characterize the watershed in enough spatial detail [7]. A relatively recent model developed by the U.S. 

Department of Agriculture (USDA) called SWAT (Soil and Water Assessment Tool) [8] has proven 

very successful in the watershed assessment of hydrology and water quality. According to [9], the wide 

range of SWAT applications underscores that usefulness of model as a robust tool to deal with variety 

of watershed problems. SWAT is a physically based model and offers continuous-time simulation, a 

high level of spatial detail, unlimited number of watershed subdivisions, efficient computation, and the 

capability of simulating changes in land management. An early application of the model by [10] 

compared the results of SWAT to historical streamflow and groundwater flow in three Illinois 

watersheds. The model was validated against measured streamflow and sediment loads across the 

entire U.S. [11]. The effect of spatial aggregation on SWAT was examined by [12,13]. The SWAT 

model was successfully applied to assess the impact of climate change in hydrology of the Upper 

Mississippi River Basin [14] and the Missouri River Basin [15]. SWAT has been chosen by the 

Environmental Protection Agency to be one of the models of their Better Assessment Science 

Integrating Point and Nonpoint Sources (BASINS) modeling package [16]. Gassman et al. [9] has 

provided a comprehensive list of SWAT model application and categorized them under major study 
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areas. A search tool is placed at the Iowa State University’s website [17] where all up-to-date SWAT 

articles could be searched and retrieved. 

Besides successful application of physically based models, there are several issues that question the 

model output such as uncertainty in input parameters, nonlinear relationships between hydrologic input 

features and hydrologic response, and the required calibration of numerous model parameters. These 

issues can be examined with sensitivity analyses of the model parameters to identify sensitive 

parameters with respect to their impact on model outputs. Proper attention to the sensitive parameters 

may lead to a better understanding and to better estimated values and thus to reduced uncertainty [18]. 

Knowledge of sensitive input parameters is beneficial for model development and leads to a model’s 

successful application. Arnold et al. [19] performed a sensitivity analysis of three hydrologic input 

parameters of the SWAT model against surface runoff, baseflow, recharge, and soil evapotranspiration 

on three different basins within the Upper Mississippi River Basin. Spruill et al. [20] selected fifteen 

hydrologic input variables of the SWAT model and varied them individually within acceptable ranges 

to determine model sensitivity in daily streamflow simulation. They found that the determination of 

accurate parameter values is vital for producing simulated streamflow data in close agreement with 

measured streamflow data. Two simple approaches of sensitivity analysis were compared using the 

SWAT model on an artificial catchment [18]. In both approaches, one parameter was varied at a time 

while holding the others fixed except that the way of defining the range of variation was different: the 

first approach varied the parameters by a fixed percentage of the initial value and the second approach 

varied the parameters by a fixed percentage of the valid parameter range. They found similar results 

for both approaches and suggested that the parameter sensitivity may be determined without the results 

being influenced by the chosen method. The paper identified several most sensitive hydrologic and 

plant-specific parameters but emphasized that sensitivities can be different for a natural catchment 

because of oversimplification of the processes in the chosen artificial catchment. Sexton et al. [21] 

used the mean value first-order reliability method to determine the contribution of parameter 

uncertainty to total model uncertainty in streamflow, sediment and nutrients outputs in a small 

Maryland watershed. Shen et al. [22] used the First-Order Error Analysis method to analyze the effect 

of parameter uncertainty on model outputs. Zhang et al. [23] used genetic algorithms and Bayesian 

Model Averaging to simultaneously conduct calibration and uncertainty analysis. Tolson and 

Shoemaker [24] compared two approaches of uncertainty analysis and fond dynamically dimensional 

search (DDS) more efficient than traditional generalized likelihood uncertainty estimation (GLUE) 

technique. Similarly, various tools and techniques have been used to assess model parameter 

sensitivity and for uncertainty analysis. 

In this study, SWAT was applied to the Maquoketa River watershed, located in northeast Iowa 

(Figure 1). The goal of this study is to understand the complex interrelationships between topography, 

land use, soil characteristics and climate with respect to the hydrological response of the watershed. 

The specific objectives were to identify the SWAT’s hydrologic sensitive parameters relative to the 

estimation of surface runoff and baseflow, and to calibrate and validate the model for streamflow. The 

influence coefficient method was used to examine surface runoff and baseflow responses to changes in 

model input parameters. The parameters were ranked according to the magnitudes of response variable 

sensitivity to each of the model parameters, which divide high and low sensitivities. The SWAT model 

was calibrated by varying the values of sensitive parameters (as identified in the sensitivity analysis) 
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within their permissible values and then compared simulated streamflow with the measured 

streamflow at the watershed outlet. This modeling application study facilitates future applications of 

the SWAT model for watershed-based hydrological assessment and solving agricultural water quality 

problems in the agricultural region. 

Figure 1. Location of the Maquoketa River watershed (Northeast Iowa), and weather stations. 

 

2. Materials and Methods 

2.1. SWAT Model Description 

The SWAT model is a long-term, continuous simulation watershed model. It operates on a daily 

time step and is designed to predict the impact of management on water, sediment, and agricultural 

chemical yields. The model is physically based, computationally efficient, and capable of simulating a 

high level of spatial detail by allowing the division of watersheds into smaller subwatersheds. SWAT 

models water flow, sediment transport, crop/vegetation growth, and nutrient cycling. The model allows 

users to model watersheds with less monitoring data and to assess predictive scenarios using 

alternative input data such as climate, land-use practices, and land cover on water movement, nutrient 

cycling, water quality, and other outputs. Major model components include weather, hydrology, soil 

temperature, plant growth, nutrients, pesticides, and land management. Several model components 

have been previously validated for a variety of watersheds. 

In SWAT, a watershed is divided into multiple subwatersheds, which are then further subdivided 

into Hydrologic Response Units (HRUs) that consist of homogeneous land use, management, and soil 

characteristics. The HRUs represent percentages of the subwatershed area and are not identified 

spatially within a SWAT simulation. The water balance of each HRU in the watershed is represented 

by four storage volumes: snow, soil profile (0–2 meters), shallow aquifer (typically 2–20 meters), and 
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deep aquifer (more than 20 meters). The soil profile can be subdivided into multiple layers. Soil water 

processes include infiltration, evaporation, plant uptake, lateral flow, and percolation to lower layers. 

Flow, sediment, nutrient, and pesticide loadings from each HRU in a subwatershed are summed, and 

the resulting loads are routed through channels, ponds, and/or reservoirs to the watershed outlet. 

Detailed descriptions of the model and model components can be found in [8,25]. 

2.2. Maquoketa River Watershed and SWAT Input Data 

The Maquoketa River watershed (MRW) covers 4,867 km
2
 of predominantly agricultural land in 

northeast Iowa (Figure 1). The MRW is one of 13 tributaries of the Mississippi River that have been 

identified as contributing some of the highest levels of suspended sediments, nitrogen, and phosphorus 

to the Mississippi stream system [26]. These pollution loads are attributed mainly to agricultural 

nonpoint sources and result in degraded water quality within each watershed, in the Mississippi River, 

and ultimately in the Gulf of Mexico. 

Land use, soil, and topography data required for simulating the watershed were obtained from the 

BASINS package [27]. Topographic information is provided in BASINS in the form of Digital 

Elevation Model (DEM) data. The DEM data were used to generate variations in subwatershed 

configurations such as subwatershed delineation, stream network delineation, and slope and slope 

lengths using the ArcView interface for the SWAT model (AVSWAT) [28]. Land-use categories 

provided in BASINS are relatively simplistic, including only one category for agricultural land 

(defined as ―Agricultural Land-Generic‖ or AGRL). Agricultural lands cover almost 90% of the MRW; 

the remaining area is mostly forest. The soil data available in BASINS comes from the State Soil 

Geographic (STATSGO) database [29], which contains soil maps at a 1:250,000 scale. Each 

STATSGO map unit is linked to the Soil Interpretations Record attribute database that provides the 

proportionate extent of the component soils and soil layer properties. The STATSGO soil map units 

and associated layer data were used to characterize the simulated soils for the SWAT analyses. 

The daily climate inputs consist of precipitation, maximum and minimum temperatures, solar 

radiation, wind speed, and relative humidity. In case of missing observed data or the absence of 

complete data, the weather generator within SWAT uses its statistical database to generate 

representative daily values for the missing variables for each subwatershed. Historical daily 

precipitation and daily maximum and minimum temperatures were obtained from the Iowa weather 

database [30] for the six climate stations located in or near the watershed (see Figure 1). The 

management operations required for the HRUs were defaulted by AVSWAT and consisted simply of 

planting, harvesting, and automatic fertilizer applications for the agricultural HRUs. 

2.3. Influence Coefficient Method 

The influence coefficient method is one of the most common methods for computing sensitivity 

coefficients in surface and ground water problems [31]. The method evaluates the sensitivity by 

changing each of the independent variables, one at a time. A sensitivity coefficient represents the 

change of a response variable that is caused by a unit change of an explanatory variable, while holding 

the rest of the parameters constant: 
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where F is the response variable, P is the independent parameter, and N is the number of parameters 

considered. The sensitivity coefficients can be positive or negative. A negative coefficient indicates an 

inversely proportional relation between a response variable and an explanatory parameter. 
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where si is the sensitivity index, and Fm and Pm are the mean of lowest and highest values of the 

selected range for the explanatory parameter and the response variable, respectively. A higher absolute 

value of sensitivity index indicates higher sensitivity and a negative sign shows inverse proportionality. 

2.4. Simulation Approach 

The AVSWAT model (ArcView interface of the SWAT model) was used in the watershed 

delineation process, which includes processing of DEM data for stream network delineation followed 

by subwatershed delineation. A total of 25 subwatersheds were delineated for the entire MRW (see 

Figure 1). The subwatersheds were then further subdivided into HRUs that were created for each 

unique combination of land use and soil. Recommended thresholds of 10% for land cover and 5% for 

the soil area were applied to limit the number of HRUs in each subwatershed. 

After the model setup, SWAT was executed with the following simulations options: (1) the Runoff 

Curve Number method for estimating surface runoff from precipitation, (2) the Hargreaves method for 

estimating potential evapotranspiration generation, and (3) the variable-storage method to simulate 

channel water routing. A simulation period of 1988 through 1993 was selected for the sensitivity 

analysis. Several model runs were executed for each input parameter with a range of values, keeping 

simulation options and other parameters’ values constant. The sensitivity index was calculated for each 

parameter from the average annual values for surface runoff and baseflow separately. The analysis 

provided information on the most to least sensitive parameters for flow response of the watershed. 

Facilitated by the sensitivity analysis, the model was calibrated for the same period against the 

measured streamflow data at the U.S. Geological Survey (USGS) stream gage (Station # 05418500). 

The model was then validated for the period 1982 through 1987. Two statistical approaches were used 

to evaluate the model performance: coefficient of determination (R
2
) and Nash-Sutcliffe simulation 

efficiency (E). The R
2
 value is an indicator of the strength of relationship between the observed and 

simulated values; and, E indicates how well the plot of observed versus simulated value fits the 1:1 

line. If the R
2
 value is close to zero and the E value is less than or close to zero, the model prediction is 

considered unacceptable. If the values approach one, the model predictions become perfect. 



Water 2011, 3                            

 

 

610 

3. Results and Discussion 

3.1. Sensitivity Analysis 

A total of eight model input parameters were selected for sensitivity analysis based on extensive 

literature review on potential sensitive parameters of the SWAT model. These were curve number 

(CN), soil evaporation compensation factor (ESCO), plant uptake compensation factor (EPCO), soil 

available water capacity (SOL_AWC), baseflow alpha factor (ALPHA_BF), groundwater revap 

coefficient (GW_RAVAP), and deep aquifer percolation coefficient (RECHRG_DP). Table 1 lists the 

model parameters along with their initial estimates and acceptable ranges. Details on the model 

parameters and their functions can be found in [20]. The initial estimate value of a model parameter is 

the average and most applicable value for that particular parameter and is defaulted by the model 

interface. Most of the model inputs in the SWAT model are process-based except for a few important 

variables such as runoff curve number, evaporation coefficients, and others that are not well defined 

physically. These parameters, therefore, must be constrained by their applicability limits. 

In the sensitivity analysis, surface runoff and baseflow were treated as the response or dependent 

variables, while model parameters were the explanatory or independent variables. The sensitivity 

coefficients and indices were examined to characterize surface runoff and baseflow under different 

parameter ranges. Table 2 summarizes the sensitivity coefficients and sensitivity indices of all 

parameters corresponding to the changes in surface runoff and baseflow volumes in response to 

changes in the model parameter. In general, the higher the absolute values of the sensitivity index, the 

higher the sensitivity of the corresponding parameter. A negative sign indicates an inverse relationship 

between the parameter and response variable. Results in Table 2 indicate that the surface runoff was 

sensitive, from most to least, to CN, ESCO, SOL_AWC, and EPCO for the selected variation range, 

while baseflow was sensitive, from most to least, to CN, ESCO, SOL_AWC, RECHRG_DP, 

GW_REVAP, ALPHA_BF, and GW_DELAY. Surface runoff was not found directly sensitive to 

ALPHA_BF, GW_REVAP, GW_DELAY, and RECHARG_DP, while baseflow was sensitive to all 

parameters considered in this study. 

Table 1. Parameter ranges and initial values used in the sensitivity analysis. 

Model parameter 
Variable 

name 
Range 

Model initial 

estimates 

Curve Number (for AGRL) CN 69–85 77 

Soil evaporation compensation factor ESCO 0.75–0.95 0.95 

Plant uptake compensation factor EPCO 0.01–1 1.0 

Soil available water capacity (mm) SOL_AWC ±0.04 - 

Baseflow alpha factor ALPHA_BF 0.05–0.8 0.048 

Groundwater revap coefficient GW_REVAP 0.02–0.2 0.02 

Groundwater delay time  (day) GW_DELAY 0–100 31 

Deep aquifer percolation fraction RECHRG_DP 0–1 0.05 

Further analysis was conducted for the top three most influencing parameters: CN, ESCO, and 

SOL_AWC. CN, an empirically established dimensionless number, is related to land use, soil type, and 

antecedent moisture condition, and is well-accepted for rainfall-runoff modeling. Figure 2(a) shows the 
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response of surface runoff and baseflow when CN was changed from −10% to +10% with an 

increment of 5%. As expected, higher CN values resulted in increased surface runoff and decreased 

baseflow, and vice versa; but the rate of change of surface runoff was not consistent with that of 

baseflow. Baseflow was found to be affected more than surface runoff for different CN values. 

Figure 2(b) shows the impact of ESCO on surface runoff and baseflow as its value decreased from 

defaulted 0.95 to lower values. ESCO adjusts the depth distribution for evaporation from the soil to 

account for the effect of capillary action, crusting, and cracking. Decreasing ESCO allows lower soil 

layers to compensate for a water deficit in upper layers and causes higher soil evapotranspiration, 

which in turn reduces both surface runoff and baseflow. ESCO was found to have a higher impact on 

baseflow than surface runoff as evident by the rate of decrease in flow values (Figure 2(b)). 

Figure 2. Sensitivity of surface runoff and baseflow to (a) CN, (b) ESCO, and (c) SOL_AWC. 
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Table 2. Sensitivity indices of model parameters. 

Parameter 
Initial 

value 

Parameter Response variable (Surface Runoff) Response variable (Baseflow) 

P1 P2 ΔP 
Mean 

Pm 
F1 F2 ΔF 

Mean 

Fm P

F



  

 

P

F

F

P

m

m





 

F1 F2 ΔF 
Mean 

Fm P

F




 P

F

F

P

m

m





 

CN 77 85 69 16 77 310 173 137 241 8.57 2.73 21 181 −160 101 −10.0 −7.63 

ESCO 0.95 0.5 1 0.5 0.75 214 249 −34 231 −68.9 −0.22 69 110 −41 90 −82.2 −0.69 

EPCO 1 0.01 1 0.99 0.505 264 249 15 256 15.09 0.03 124 110 14 117 14.1 0.06 

SOL_AWC  0.04 −0.04 0.08 0.04 232 259 −27 246 −336 −0.05 95 135 −40 115 −503 −0.17 

ALPHA_BF 0.048 
0.04

8 
0.8 0.75 0.424 249 249 0 249 0 0 110 114 −4 112 −4.7 −0.02 

GW_REVAP 0.02 0.02 0.2 0.18 0.11 249 249 0 249 0 0 110 95 15 102 85.6 0.09 

GW_DELAY 31 0 100 100 50 249 249 0 249 0 0 108 106 1 108 0.0 0.01 

RECHARG_DP 0.05 0 1 1 0.5 249 249 0 249 0 0 113 91 22 102 22.3 0.11 
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Similarly, sensitivity of the model to SOL_AWC values from the default is shown in Figure 2(c). 

Higher values of SOL_AWC means higher capacity of soil to hold water and thereby causing less 

water available for surface runoff and percolation, and vice versa. As can be seen in Figure 2(c), 

increase in values of SOL_AWC leads to decrease in both surface runoff and baseflow. Opposite trend 

can be seen for decrease in SOL_AWC values, but the rate of change was found to be different. While 

surface runoff was found to be affected same way for both increase and decrease of SOL_AWC, 

baseflow was found to be affected more for decreasing SOL_AWC. In any case, baseflow was again 

found to be affected more than surface runoff. 

While sensitivity analysis is a routine process, it is imperative for successful calibration and 

application of the model. Sensitivity of a parameter in one watershed may not reflect the same level of 

sensitivity on another watershed. It can vary from watershed to watersheds and therefore needs to be 

examined thoroughly before the calibration starts. 

3.2. Calibration and Validation 

Calibration of the model was performed by comparing the simulated streamflow with the 

monitoring data from the field. Measured data at the watershed outlet (USGS gaging station  

# 05418500, Maquoketa River near Maquoketa, Iowa) was divided into two groups including 

variations of wet, dry and normal years. Years 1988 to 1993 were selected for calibration while years 

1982 to 1987 for validation. During the calibration process, the model’s input parameters were 

adjusted, as guided by the sensitivity analysis, to match the observed and simulated streamflows. Table 

3 lists the final calibrated values of the model variables. A time-series plot of the measured and 

simulated monthly streamflows (Figure 3) shows that the magnitude and trend in the simulated 

monthly flows closely followed the measured data most of the time. The measured and simulated 

average monthly flow volumes were 22.28 and 24.08 mm, respectively. The statistical evaluation 

yielded an R
2
 value of 0.86 and an E value of 0.85, indicating a strong correlation between the 

measured and predicted flows. 

Table 3. Final calibrated values of SWAT parameters for Maquoketa River watershed. 

Parameter Value 

CN (for AGRL only) 72 

ESCO 0.85 

SOL_AWC −0.04 

GW_REVAP 0.15 

GW_DELAY 50 

RECHRG_DP 0.5 
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Figure 3. Monthly time series of predicted and measured streamflow at USGS gauge 

05418500 (watershed outlet) for the 1988-93 calibration period. 

 

Figure 4. Monthly time series of predicted and measured streamflow at USGS gauge 

05418500 (watershed outlet) for the 1982-87 validation period. 

 

During the validation process, the model was run with input parameters set during the calibration 

process without any change. All input data including land use and soil was considered stationary 

except the meteorological inputs. Figure 4 shows the time-series plot of simulated versus measured 

monthly streamflow. The measured and simulated average monthly flow volumes for the validation 

period were 23.40 and 23.44 mm, respectively. The R
2
 and E values between the measured and 

simulated streamflows were 0.69 and 0.61, respectively. Statistical evaluation of the model output for 

both calibration and validation was found to satisfy the criteria suggested by Moriasi et al. [1]. 

It is emphasized that the hydrological calibration is the first step in understanding the complex 

hydro-geological process of the watershed. Sensitivity analysis of model parameters helps understand 

response behavior of the watershed due to complex hydro-geologic interactions. Once the hydrologic 
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condition represented by the model is satisfied, the model can be taken to a next level for water  

quality analyses. 

4. Conclusions 

Information about a model’s sensitivity to input parameters benefits model development and leads 

to its successful application to solve water resources problems. This study assessed and identified 

sensitive hydrologic parameters of the SWAT model to using the influence coefficient method, as 

determined in an application to the agriculture dominated watershed (Maquoketa River watershed) in 

the Midwest United States. Surface runoff was found to be sensitive, from most to least, to CN, ESCO, 

SOL_AWC, and EPCO for the selected variation range, while baseflow was found to be sensitive, 

from most to least, to CN, ESCO, SOL_AWC, RECHRG_DP, GW_REVAP, ALPHA_BF, and 

GW_DELAY. Model sensitivities to the three most influencing parameters for both surface runoff and 

baseflow—CN, ESCO, and SOL_AWC—were further evaluated. Sensitivity analysis provides good 

insight into the model input parameters and demonstrates that the model is able to simulate 

hydrological processes very well. The output of this study is consistent with other studies which tested 

sensitivity of SWAT parameters. Among several studies, Arnold et al. [18] and Spruill et al. [19] also 

found the same top three parameters, CN, ESCO and SOL_AWC, to be the most sensitive parameters 

to consider for hydrological response of the watershed. 

Based on the assessment of model parameters to which the model is most to least sensitive, SWAT 

was calibrated and validated for streamflow at the watershed outlet. The calibration process used 

measured data for the period 1988–1993 and yielded a strong correlation (R
2
 = 0.86 and E = 0.85) 

between measured and simulated flow volumes. Model validation was performed for the period  

1982–1987 and generated an R
2
 value of 0.69 and E value of 0.61. This study indicates that the SWAT 

model can be an effective tool for accurately simulating the hydrology of the Maquoketa River 

watershed. Accurate flow simulations are required to accurately predict sediment loads and chemical 

concentrations, and to simulate various scenarios related to cropping and alternative management to 

mitigate water quality problems in the region. 
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