From Quality to Purpose: Rethinking Groundwater Microbiological Standards for Emergency Urban Water Use
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Physical and Chemical Assessment
2.3. Microbiological Analysis
2.4. Microbial Source Tracking Assays
2.4.1. DNA Extraction from Water Samples
2.4.2. Microbial Source Tracking (MST) Analyses
3. Results
3.1. Physicochemical Results
3.2. Microbiological Results
3.3. Fungal Parameters
3.4. MST Markers
4. Discussion
4.1. Physical and Chemical Assessment
4.2. Microbiological Quality
4.3. Potential Uses and Suitability of the 21 Underground Sampling Points
4.4. Drinking Water Use
4.5. Irrigation Use
5. Conclusions
Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CFU | Colony Forming Units |
| FIB | Fecal Indicator Bacteria |
| HPC | Heterotrophic Plate Counts |
| LOD | Limit of Detection |
| MPN | Most Probable Number |
| MST | Microbial Source Tracking |
| ND | Not Detected |
| PCR | Polymerase Chain Reaction |
References
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Lee, H., Romero, J., Eds.]; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Reichard, E.G.; Li, Z.; Hermans, C. Emergency Use of Groundwater as a Backup Supply: Quantifying Hydraulic Impacts and Economic Benefits. Water Resour. Res. 2010, 46, 9. [Google Scholar] [CrossRef]
- Nydrioti, I.; Sebos, I.; Kitsara, G.; Assimacopoulos, D. Effective Management of Urban Water Resources under Various Climate Scenarios in Semiarid Mediterranean Areas. Sci. Rep. 2024, 14, 28666. [Google Scholar] [CrossRef]
- Foster, S.; Chilton, J.; Nijsten, G.-J.; Richts, A. Groundwater—A Global Focus on the ‘Local Resource’. Curr. Opin. Environ. Sustain. 2013, 5, 685–695. [Google Scholar] [CrossRef]
- INE Pordata. Available online: https://retratos.pordata.pt/populacao (accessed on 10 September 2025).
- Lisboa E-Nova Urban Water Cycle Observatories. Available online: https://observatorios-lisboa.pt/en/info_agua.html (accessed on 12 June 2025).
- Agência Portuguesa do Ambiente (APA). Relatório Do Estado Do Ambiente 2024; Agência Portuguesa do Ambiente: Lisboa, Portugal, 2024. Available online: https://rea.apambiente.pt/ (accessed on 1 October 2025).
- Environmental Protection Agency (EPA). Recreational Water Quality Criteria (RWQC); Environmental Protection Agency: Washington, DC, USA, 2012.
- Tallon, P.; Magajna, B.; Lofranco, C.; Leung, K.T. Microbial Indicators of Faecal Contamination in Water: A Current Perspective. Water Air Soil. Pollut. 2005, 166, 139–166. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Decision (EU) 2025/439 of 28 February 2025 Establishing a Watch List of Substances for Union Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC (OJ L 2025/439). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202500439 (accessed on 15 October 2025).
- José Figueras, M.; Borrego, J.J. New Perspectives in Monitoring Drinking Water Microbial Quality. Int. J. Environ. Res. Public Health 2010, 7, 4179–4202. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, H.; Schwartzbrod, L.; Dei-Cas, E. Microbial Agents Associated with Waterborne Diseases. Crit. Rev. Microbiol. 2002, 28, 371–409. [Google Scholar] [CrossRef]
- Saxena, G.; Bharagava, R.N.; Kaithwas, G.; Raj, A. Microbial Indicators, Pathogens and Methods for Their Monitoring in Water Environment. J. Water Health 2015, 13, 319–339. [Google Scholar] [CrossRef]
- Holcomb, D.A.; Stewart, J.R. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. Curr. Environ. Health Rep. 2020, 7, 311–324. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Teixeira, P.; Costa, S.; Brown, B.; Silva, S.; Rodrigues, R.; Valério, E. Quantitative PCR Detection of Enteric Viruses in Wastewater and Environmental Water Sources by the Lisbon Municipality: A Case Study. Water 2020, 12, 544. [Google Scholar] [CrossRef]
- McQuaig, S.; Griffith, J.; Harwood, V.J. Association of Fecal Indicator Bacteria with Human Viruses and Microbial Source Tracking Markers at Coastal Beaches Impacted by Nonpoint Source Pollution. Appl. Environ. Microbiol. 2012, 78, 6423–6432. [Google Scholar] [CrossRef]
- Harwood, V.J.; Levine, A.D.; Scott, T.M.; Chivukula, V.; Lukasik, J.; Farrah, S.R.; Rose, J.B. Validity of the Indicator Organism Paradigm for Pathogen Reduction in Reclaimed Water and Public Health Protection. Appl. Environ. Microbiol. 2005, 71, 3163–3170. [Google Scholar] [CrossRef]
- Bradshaw, J.K.; Snyder, B.J.; Oladeinde, A.; Spidle, D.; Berrang, M.E.; Meinersmann, R.J.; Oakley, B.; Sidle, R.C.; Sullivan, K.; Molina, M. Characterizing Relationships among Fecal Indicator Bacteria, Microbial Source Tracking Markers, and Associated Waterborne Pathogen Occurrence in Stream Water and Sediments in a Mixed Land Use Watershed. Water Res. 2016, 101, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Bonadonna, L.; Briancesco, R.; Ottaviani, M.; Veschetti, E. Occurrence of Cryptosporidium oocysts in sewage effluents and correlation with microbial, chemical and physical water variables. Environ. Monit. Assess. 2002, 75, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Arnold, B.F.; Schiff, K.C.; Griffith, J.F.; Gruber, J.S.; Yau, V.; Wright, C.C.; Wade, T.J.; Burns, S.; Hayes, J.M.; McGee, C.; et al. Swimmer Illness Associated with Marine Water Exposure and Water Quality Indicators. Epidemiology 2013, 24, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.L.; Whitlock, J.E.; Harwood, V.J. Persistence and Differential Survival of Fecal Indicator Bacteria in Subtropical Waters and Sediments. Appl. Environ. Microbiol. 2005, 71, 3041–3048. [Google Scholar] [CrossRef]
- Zhang, Q.; Eichmiller, J.J.; Staley, C.; Sadowsky, M.J.; Ishii, S. Correlations between Pathogen Concentration and Fecal Indicator Marker Genes in Beach Environments. Sci. Total Environ. 2016, 573, 826–830. [Google Scholar] [CrossRef]
- Badgley, B.D.; Thomas, F.I.M.; Harwood, V.J. Quantifying Environmental Reservoirs of Fecal Indicator Bacteria Associated with Sediment and Submerged Aquatic Vegetation. Environ. Microbiol. 2011, 13, 932–942. [Google Scholar] [CrossRef]
- Field, K.G.; Samadpour, M. Fecal Source Tracking, the Indicator Paradigm, and Managing Water Quality. Water Res. 2007, 41, 3517–3538. [Google Scholar] [CrossRef]
- Harwood, V.J.; Butler, J.; Parrish, D.; Wagner, V. Isolation of Fecal Coliform Bacteria from the Diamondback Terrapin (Malaclemys Terrapin Centrata). Appl. Environ. Microbiol. 1999, 65, 865–867. [Google Scholar] [CrossRef]
- Fujioka, R.S.; Solo-Gabriele, H.M.; Byappanahalli, M.N.; Kirs, M.U.S. Recreational Water Quality Criteria: A Vision for the Future. Int. J. Environ. Res. Public Health 2015, 12, 7752–7776. [Google Scholar] [CrossRef]
- Soller, J.A.; Schoen, M.E.; Bartrand, T.; Ravenscroft, J.E.; Ashbolt, N.J. Estimated Human Health Risks from Exposure to Recreational Waters Impacted by Human and Non-Human Sources of Faecal Contamination. Water Res. 2010, 44, 4674–4691. [Google Scholar] [CrossRef] [PubMed]
- Babič, M.N.; Gunde-Cimerman, N.; Vargha, M.; Tischner, Z.; Magyar, D.; Veríssimo, C.; Sabino, R.; Viegas, C.; Meyer, W.; Brandão, J. Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance. Int. J. Environ. Res. Public Health 2017, 14, 636. [Google Scholar] [CrossRef]
- Ahmed, W.; Hamilton, K.A.; Lobos, A.; Hughes, B.; Staley, C.; Sadowsky, M.J.; Harwood, V.J. Quantitative Microbial Risk Assessment of Microbial Source Tracking Markers in Recreational Water Contaminated with Fresh Untreated and Secondary Treated Sewage. Environ. Int. 2018, 117, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, J.P.S.; Ahmed, W.; Gernjak, W.; Aryal, R.; McCarthy, D.; Palmer, A.; Kolotelo, P.; Toze, S. Sewage Pollution in Urban Stormwater Runoff as Evident from the Widespread Presence of Multiple Microbial and Chemical Source Tracking Markers. Sci. Total Environ. 2013, 463–464, 488–496. [Google Scholar] [CrossRef]
- Betancourt, W.Q.; Duarte, D.C.; Vásquez, R.C.; Gurian, P.L. Cryptosporidium and Giardia in Tropical Recreational Marine Waters Contaminated with Domestic Sewage: Estimation of Bathing-Associated Disease Risks. Mar. Pollut. Bull. 2014, 85, 268–273. [Google Scholar] [CrossRef]
- Ahmed, W.; Goonetilleke, A.; Gardner, T. Human and Bovine Adenoviruses for the Detection of Source-Specific Fecal Pollution in Coastal Waters in Australia. Water Res. 2010, 44, 4662–4673. [Google Scholar] [CrossRef]
- Ahmed, W.; Sritharan, T.; Palmer, A.; Sidhu, J.P.S.; Toze, S. Evaluation of Bovine Feces-Associated Microbial Source Tracking Markers and Their Correlations with Fecal Indicators and Zoonotic Pathogens in a Brisbane, Australia, Reservoir. Appl. Environ. Microbiol. 2013, 79, 2682–2691. [Google Scholar] [CrossRef]
- Chase, E.; Hunting, J.; Staley, C.; Harwood, V.J. Microbial Source Tracking to Identify Human and Ruminant Sources of Faecal Pollution in an Ephemeral Florida River. J. Appl. Microbiol. 2012, 113, 1396–1406. [Google Scholar] [CrossRef]
- Lu, J.; Ryu, H.; Hill, S.; Schoen, M.; Ashbolt, N.; Edge, T.A.; Domingo, J.S. Distribution and Potential Significance of a Gull Fecal Marker in Urban Coastal and Riverine Areas of Southern Ontario, Canada. Water Res. 2011, 45, 3960–3968. [Google Scholar] [CrossRef]
- Young, S.; Nayak, B.; Sun, S.; Badgley, B.D.; Rohr, J.R.; Harwood, V.J. Vancomycin-Resistant Enterococci and Bacterial Community Structure Following a Sewage Spill into an Aquatic Environment. Appl. Environ. Microbiol. 2016, 82, 5653–5660. [Google Scholar] [CrossRef]
- Schneeberger, C.L.; O’Driscoll, M.; Humphrey, C.; Henry, K.; Deal, N.; Seiber, K.; Hill, V.R.; Zarate-Bermudez, M. Fate and Transport of Enteric Microbes from Septic Systems in a Coastal Watershed. J. Environ. Health 2015, 77, 22–30. [Google Scholar] [PubMed]
- Percival, S.L.; Yates, M.V.; Williams, D.W.; Chalmers, R.M.; Gray, N.F. Microbiology of Waterborne Diseases; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780124158467. [Google Scholar]
- Takemura, A.F.; Chien, D.M.; Polz, M.F. Associations and Dynamics of Vibrionaceae in the Environment, from the Genus to the Population Level. Front. Microbiol. 2014, 5, 38. [Google Scholar] [CrossRef] [PubMed]
- Novak Babič, M.; Gunde-Cimerman, N. Water-Transmitted Fungi Are Involved in Degradation of Concrete Drinking Water Storage Tanks. Microorganisms 2021, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Hughes, B.; Harwood, V.J. Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters. Water 2016, 8, 231. [Google Scholar] [CrossRef]
- Harwood, V.J.; Staley, C.; Badgley, B.D.; Borges, K.; Korajkic, A. Microbial Source Tracking Markers for Detection of Fecal Contamination in Environmental Waters: Relationships between Pathogens and Human Health Outcomes. FEMS Microbiol. Rev. 2014, 38, 1–40. [Google Scholar] [CrossRef]
- Ufnar, J.A.; Wang, S.Y.; Christiansen, J.M.; Yampara-Iquise, H.; Carson, C.A.; Ellender, R.D. Detection of the NifH Gene of Methanobrevibacter Smithii: A Potential Tool to Identify Sewage Pollution in Recreational Waters. J. Appl. Microbiol. 2006, 101, 44–52. [Google Scholar] [CrossRef]
- Scott, T.M.; Rose, J.B.; Jenkins, T.M.; Farrah, S.R.; Lukasik, J. Microbial Source Tracking: Current Methodology and Future Directions. Appl. Environ. Microbiol. 2002, 68, 5796–5803. [Google Scholar] [CrossRef]
- Bernhard, A.E.; Field, K.G. Identification of Nonpoint Sources of Fecal Pollution in Coastal Waters by Using Host-Specific 16S Ribosomal DNA Genetic Markers from Fecal Anaerobes. Appl. Environ. Microbiol. 2000, 66, 1587–1594. [Google Scholar] [CrossRef]
- Cudowski, A.; Pietryczuk, A.; Hauschild, T. Aquatic Fungi in Relation to the Physical and Chemical Parameters of Water Quality in the Augustów Canal. Fungal Ecol. 2015, 13, 193–204. [Google Scholar] [CrossRef]
- Ahmed, W.; Gyawali, P.; Feng, S.; McLellan, S.L. Host Specificity and Sensitivity of Established and Novel Sewage-Associated Marker Genes in Human and Nonhuman Fecal Samples. Appl. Environ. Microbiol. 2019, 85, e00641-19. [Google Scholar] [CrossRef]
- Teixeira, P.; Dias, D.; Costa, S.; Brown, B.; Silva, S.; Valério, E. Bacteroides Spp. and Traditional Fecal Indicator Bacteria in Water Quality Assessment—An Integrated Approach for Hydric Resources Management in Urban Centers. J. Environ. Manag. 2020, 271, 110989. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lin, Y.; Ge, Y.; Zhu, Z.; Yuan, J.; Yin, Q.; Liu, B.; He, K.; Hu, M. Meta-Analysis of Microbial Source Tracking for the Identification of Fecal Contamination in Aquatic Environments Based on Data-Mining. J. Environ. Manag. 2023, 345, 118800. [Google Scholar] [CrossRef]
- International Society for Infectious Diseases (ISID). Fungal Infections: A Rising Global Concern. Available online: https://isid.org/fungal-infections-a-rising-global-concern-by-isid-emerging-leader-afreenish-amir/ (accessed on 1 October 2025).
- APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- NP EN 27888:1996; Water Quality—Determination of Electrical Conductivity. Portuguese Institute for Quality (IPQ): Caparica, Portugal, 1996.
- ISO 8467:1993; Water Quality—Determination of Permanganate Index. International Organization for Standardization: Geneva, Switzerland, 1993.
- Bio-Rad IQ-Check Legionella Real-Time PCR Kits. Available online: https://www.bio-rad.com/en-pt/product/iq-check-legionella-real-time-pcr-kits?ID=LS5I7MLPT (accessed on 1 September 2025).
- Valério, E.; Santos, M.L.; Teixeira, P.; Matias, R.; Mendonça, J.; Ahmed, W.; Brandão, J. Microbial Source Tracking as a Method of Determination of Beach Sand Contamination. Int. J. Environ. Res. Public Health 2022, 19, 7934. [Google Scholar] [CrossRef] [PubMed]
- Ohad, S.; Ben-Dor, S.; Prilusky, J.; Kravitz, V.; Dassa, B.; Chalifa-Caspi, V.; Kashi, Y.; Rorman, E. The Development of a Novel QPCR Assay-Set for Identifying Fecal Contamination Originating from Domestic Fowls and Waterfowl in Israel. Front. Microbiol. 2016, 7, 145. [Google Scholar] [CrossRef]
- Portuguese Republic Decree-Law No. 152/2017 of 7 December. Amends the Regime for the Quality of Water for Human Consumption, Transposing Directives 2013/51/EURATOM and 2015/1787. Diário da República, 7 December 2017; p. 235.
- European Parliament and Council Directive (EU). 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast). Off. J. Eur. Union 2020, L 435, 1–62. [Google Scholar]
- Portuguese Republic Decree-Law No. 236/98 of August 1—Establishes Standards, Criteria and Quality Objectives for Water to Protect the Aquatic Environment and Improve Water Quality. Diário da República, I Series-A, 1 August 1998; p. 176.
- European Parliament and Council Directive. 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities 2000, L 327, 1–73. [Google Scholar]
- Niegowska, M.; Pitkänen, T.; Sommer, R.; Brandão, J.; Bonadonna, L.; Baudišová, D.; Burlion, N.; Gassilloud, B.; Pissarides, N.; Prokšová, M.; et al. Recast Drinking Water Directive, State of Play: Guidance Note for the Analysis of Microbiological Parameters; Publications Office of the European Union: Luxembourg, 2022; ISBN 9789276536888. [Google Scholar]
- Carreira, P.M.; Marques, J.M.; Nunes, D. Source of Groundwater Salinity in Coastline Aquifers Based on Environmental Isotopes (Portugal): Natural vs. Human Interference. A Review and Reinterpretation. Appl. Geochem. 2014, 41, 163–175. [Google Scholar] [CrossRef]
- Liu, C.; Hou, Q.; Chen, Y.; Huang, G. Hydrogeochemical Characteristics and Groundwater Quality in a Coastal Urbanized Area, South China: Impact of Land Use. Water 2022, 14, 4131. [Google Scholar] [CrossRef]
- Cruz, S.; Cordovil, C.M.d.S.; Pinto, R.; Brito, A.G.; Cameira, M.R.; Gonçalves, G.; Poulsen, J.R.; Thodsen, H.; Kronvang, B.; May, L. Nitrogen in Water-Portugal and Denmark: Two Contrasting Realities. Water 2019, 11, 1114. [Google Scholar] [CrossRef]
- Bain, R.; Cronk, R.; Wright, J.; Yang, H.; Slaymaker, T.; Bartram, J. Fecal Contamination of Drinking-Water in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. PLoS Med. 2014, 11, e1001644. [Google Scholar] [CrossRef]
- Genter, F.; Willetts, J.; Foster, T. Faecal Contamination of Groundwater Self-Supply in Low- and Middle Income Countries: Systematic Review and Meta-Analysis. Water Res. 2021, 201, 117350. [Google Scholar] [CrossRef] [PubMed]
- Bagordo, F.; Brigida, S.; Grassi, T.; Caputo, M.C.; Apollonio, F.; De Carlo, L.; Savino, A.F.; Triggiano, F.; Turturro, A.C.; De Donno, A.; et al. Factors Influencing Microbial Contamination of Groundwater: A Systematic Review of Field-Scale Studies. Microorganisms 2024, 12, 913. [Google Scholar] [CrossRef] [PubMed]
| Site | MC | CG | EF | CV | MM | VG | CC | Drinking Water Concentrations | Irrigation Water Concentrations | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Parameter | Admittable | Recommended | Admittable | Recommended | ||||||||||||||
| Total Coliforms (MPN/100 mL) | 2.0E+03 | (n = 6) | 9.0E+00 | (n = 7) | 9.6E+01 | (n = 7) | 1.1E+03 | (n = 6) | 1.9E+01 | (n = 8) | 2.4E+03 | (n = 7) | 1.4E+03 | (n = 7) | 0 | - | - | |
| E. coli (MPN/100 mL) | 4.0E+00 | (n = 6) | <1 | (n = 7) | 9.0E+00 | (n = 7) | 3.0E+00 | (n = 6) | <1 | (n = 8) | 2.3E+01 | (n = 7) | <1 | (n = 7) | 0 | - | - | |
| Fecal Coliforms (MPN/100 mL) | 7.5E+00 | (n = 6) | <1 | (n = 8) | 2.0E+00 | (n = 7) | 1.5E+00 | (n = 6) | <1 | (n = 8) | 5.2E+01 | (n = 7) | <1 | (n = 7) | - | - | - | 100 |
| Enterococcus (MPN/100 mL) | 3.7E+01 | (n = 6) | <1 | (n = 7) | 7.5E+00 | (n = 7) | 7.2E+01 | (n = 6) | <1 | (n = 8) | 4.4E+01 | (n = 7) | 3.1E+01 | (n = 7) | 0 | - | - | - |
| Legionella pneumophila (NMP/mL) | <1 | (n = 1) | <1 | (n = 2) | <1 | (n = 2) | 1.0E-01 | (n = 3) | <1 | (n = 2) | 5.5E-01 | (n = 3) | <1 | (n = 1) | - | - | - | - |
| Pseudomonas aeruginosa (NMP/100 mL) | 2.0E+00 | (n = 3) | <1 | (n = 2) | <1 | (n = 2) | 1.0E-01 | (n = 3) | <1 | (n = 2) | 2.0E+00 | (n = 1) | <1 | (n = 2) | 0 | - | - | - |
| HPC37 °C (CFU/mL) | 301 | (n = 6) | 120 | (n = 7) | 12 | (n = 7) | 301 | (n = 6) | 11 | (n = 8) | 301 | (n = 7) | 301 | (n = 7) | - | 20 | - | - |
| HPC22 °C (CFU/mL) | 301 | (n = 6) | 152 | (n = 7) | 43 | (n = 7) | 301 | (n = 6) | 41 | (n = 8) | 301 | (n = 7) | 301 | (n = 7) | - | 100 | - | - |
| Yeasts CFU/10 mL | 45 | (n = 1) | 2 | (n = 4) | 2 | (n = 6) | Confluent growth | (n = 5) | 1 | (n = 6) | 7 | (n = 3) | Confluent growth | (n = 5) | - | - | - | - |
| Confluent growth | (n = 3) | Confluent growth | (n = 1) | Confluent growth | (n = 2) | - | - | - | - | |||||||||
| Filamentous Fungi CFU/10 mL | 9 | (n = 1) | 2 | (n = 4) | 2 | (n = 6) | Confluent growth | (n = 5) | 1 | (n = 6) | 5 | (n = 2) | Confluent growth | (n = 5) | - | - | - | - |
| Confluent growth | (n = 3) | Confluent growth | (n = 1) | Confluent growth | (n = 2) | - | - | - | - | |||||||||
| Chlorides (mg Cl−/L) | 30 | (n = 6) | 221 | (n = 7) | 36 | (n = 6) | 65 | (n = 6) | 155 | (n = 7) | 36 | (n = 6) | 38 | (n = 7) | 250 | - | 70 | |
| Conductivity (mS/cm at 20 °C) | 417 | (n = 6) | 1404 | (n = 7) | 579 | (n = 6) | 774 | (n = 6) | 1253 | (n = 7) | 722 | (n = 6) | 541 | (n = 7) | 2500 | - | 1000 | |
| Total Hardness (mg CaCO3/L) | 150.0 | (n = 6) | 336 | (n = 6) | 273 | (n = 6) | 354.5 | (n = 6) | 504 | (n = 7) | 366 | (n = 6) | 290 | (n = 7) | - | 150–500 | - | - |
| pH (units) | 7.4 | (n = 6) | 7 | (n = 7) | 7.7 | (n = 6) | 7.1 | (n = 6) | 7.2 | (n = 7) | 7.4 | (n = 6) | 7.7 | (n = 7) | ≥6.5 e ≤ 9.0 | - | ≥4.5 e ≤ 9.8 | 6.5—8.4 |
| Nitrate (mg NO3−/L) | 2.8 | (n = 6) | 9 | (n = 7) | 11 | (n = 6) | 26 | (n = 6) | 121.7 | (n = 7) | 23 | (n = 6) | 7 | (n = 4) | 50 | - | - | 50 |
| Nitrite (mg NO2−/L) | <0.02 | (n = 6) | <0.02 | (n = 7) | <0.02 | (n = 6) | <0.02 | (n = 6) | <0.02 | (n = 7) | <0.02 | (n = 6) | <0.02 | (n = 7) | 0.5 | - | - | - |
| Ammonium (mg NH4+/L) | <0.06 | (n = 6) | <0.06 | (n = 7) | <0.06 | (n = 6) | <0.06 | (n = 6) | <0.06 | (n = 7) | <0.06 | (n = 6) | <0.06 | (n = 7) | 0.5 | - | - | - |
| Oxidability (mg O2/L) | 1.0 | (n = 6) | 1 | (n = 7) | 0.6 | (n = 6) | 0.59 | (n = 6) | 1 | (n = 7) | 1 | (n = 6) | 1.69 | (n = 7) | 5 | - | - | - |
| Total Dissolved Solids (mg/L) | 272 | (n = 6) | 989 | (n = 7) | 392.0 | (n = 7) | 531 | (n = 6) | 969 | (n = 7) | 481 | (n = 6) | 342 | (n = 6) | - | - | - | 640 |
| Total Suspended Solids (mg/L) | 0 | (n = 6) | 0 | (n = 7) | <2 | (n = 7) | 2 | (n = 6) | <2 | (n = 7) | <2 | (n = 6) | 2 | (n = 7) | - | - | - | 60 |
| Iron (mg Fe/L) | <0.8 | (n = 6) | <0.8 | (n = 7) | <0.8 | (n = 7) | <0.8 | (n = 6) | <0.8 | (n = 7) | <0.8 | (n = 6) | <0.8 | (n = 6) | - | - | 5 | |
| Sulfates (mg SO42−/L) | 40 | (n = 6) | 194 | (n = 7) | 56 | (n = 7) | 68 | (n = 6) | 125 | (n = 7) | 57 | (n = 6) | 23 | (n = 7) | 250 | - | - | 575 |
| Site | CC | QC | MP | TN | SC | CA | AB | VF | Drinking Water Concentrations | Irrigation Water Concentrations | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Parameter | Admittable | Recommended | Admittable | Recommended | |||||||||||||||
| Total Coliforms (MPN/100 mL) | (n = 7) | 1.1E+02 | (n = 6) | 1.6E+03 | (n = 7) | 3.4E+02 | (n = 6) | 6.1E+02 | (n = 7) | 7.3E+02 | (n = 5) | 1.7E+02 | (n = 4) | 2.0E+03 | (n = 3) | 0 | - | - | |
| E. coli (MPN/100 mL) | (n = 7) | <1 | (n = 6) | 3.0E+00 | (n = 7) | 2.5E+00 | (n = 6) | 2.0E+00 | (n = 7) | <1 | (n = 5) | 1.5E+01 | (n = 4) | 9.0E+00 | (n = 3) | 0 | - | - | |
| Fecal Coliforms (MPN/100 mL) | (n = 7) | <1 | (n = 6) | 2.0E+00 | (n = 7) | <1 | (n = 7) | 1.1E+00 | (n = 7) | <1 | (n = 5) | 1.5E+01 | (n = 4) | 7.0E+00 | (n = 3) | - | - | - | 100 |
| Enterococcus (MPN/100 mL) | (n = 7) | 2.5E+00 | (n = 6) | 6.8E+01 | (n = 7) | 2.0E+00 | (n = 6) | 2.0E+00 | (n = 7) | 2.0E+00 | (n = 5) | 2.3E+01 | (n = 4) | 1.5E+02 | (n = 3) | 0 | - | - | - |
| Legionella pneumophila (NMP/mL) | (n = 1) | <1 | (n = 2) | <1 | (n = 1) | <1 | (n = 1) | 5.5E-01 | (n = 3) | <1 | (n = 1) | <1 | (n = 1) | <1 | (n = 1) | - | - | - | - |
| Pseudomonas aeruginosa (NMP/100 mL) | (n = 2) | <1 | (n = 2) | 1.2E+03 | (n = 2) | <1 | (n = 3) | <1 | (n = 2) | 2.0E+00 | (n = 1) | <1 | (n = 2) | <1 | (n = 1) | 0 | - | - | - |
| HPC37 °C (CFU/mL) | (n = 7) | 79 | (n = 6) | 301 | (n = 7) | 120 | (n = 6) | 57 | (n = 7) | 255 | (n = 5) | 63 | (n = 4) | 270 | (n = 3) | - | 20 | - | - |
| HPC22 °C (CFU/mL) | (n = 7) | 159 | (n = 6) | 301 | (n = 7) | 234 | (n = 6) | 134 | (n = 7) | >300 | (n = 5) | >300 | (n = 4) | >300 | (n = 3) | - | 100 | - | - |
| Yeasts CFU/10 mL | (n = 5) | 1 | (n = 6) | Confluent growth | (n = 7) | 4 | (n = 2) | 3 | (n = 4) | 23 | (n = 2) | 10 | (n = 2) | 15 | (n = 1) | - | - | - | - |
| Confluent growth | (n = 2) | Confluent growth | (n = 1) | Confluent growth | (n = 1) | - | - | - | - | ||||||||||
| Filamentous Fungi CFU/10 mL | (n = 5) | 1 | (n = 6) | Confluent growth | (n = 5) | 2 | (n = 2) | 2 | (n = 4) | 17 | (n = 2) | 17 | (n = 2) | 14 | (n = 1) | - | - | - | - |
| Confluent growth | (n = 2) | Confluent growth | (n = 1) | Confluent growth | (n = 1) | Confluent growth | (n = 1) | - | - | - | - | ||||||||
| Chlorides (mg Cl−/L) | (n = 7) | 71 | (n = 6) | 33 | (n = 7) | 94 | (n = 6) | 107 | (n = 6) | 60 | (n = 5) | 63 | (n = 4) | 45 | (n = 3) | 250 | - | 70 | |
| Conductivity (mS/cm at 20 °C) | (n = 7) | 963 | (n = 6) | 899 | (n = 7) | 1499 | (n = 6) | 1164 | (n = 6) | 778 | (n = 5) | 877 | (n = 4) | 865 | (n = 3) | 2500 | - | 1000 | |
| Total Hardness (mg CaCO3/L) | (n = 7) | 424 | (n = 6) | 477 | (n = 7) | 518 | (n = 5) | 536 | (n = 6) | 338 | (n = 5) | 425 | (n = 4) | 397 | (n = 3) | - | 150–500 | - | - |
| pH (units) | (n = 7) | 7.0 | (n = 6) | 7.0 | (n = 7) | 7.4 | (n = 6) | 6.8 | (n = 6) | 7 | (n = 5) | 7 | (n = 4) | 7 | (n = 3) | ≥6.5 e ≤ 9.0 | - | ≥4.5 e ≤ 9.8 | 6.5—8.4 |
| Nitrate (mg NO3−/L) | (n = 4) | 38 | (n = 6) | 5.9 | (n = 6) | 3 | (n = 6) | 28 | (n = 6) | 27 | (n = 5) | 34 | (n = 4) | 47 | (n = 3) | 50 | - | - | 50 |
| Nitrite (mg NO2−/L) | (n = 7) | <0.02 | (n = 6) | <0.02 | (n = 7) | 0.02 | (n = 6) | <0.02 | (n = 6) | <0.02 | (n = 5) | <0.02 | (n = 3) | 0.03 | (n = 3) | 0.5 | - | - | - |
| Ammonium (mg NH4+/L) | (n = 7) | <0.06 | (n = 6) | <0.06 | (n = 6) | <0.06 | (n = 6) | <0.06 | (n = 6) | <0.06 | (n = 5) | <0.06 | (n = 4) | <0.06 | (n = 3) | 0.5 | - | - | - |
| Oxidability (mg O2/L) | (n = 7) | 0.5 | (n = 6) | 1.5 | (n = 7) | 0.5 | (n = 6) | 0.8 | (n = 6) | 0 | (n = 5) | 1 | (n = 4) | 1 | (n = 3) | 5 | - | - | - |
| Total Dissolved Solids (mg/L) | (n = 6) | 696 | (n = 6) | 625 | (n = 7) | 1139 | (n = 7) | 856.5 | (n = 6) | 535 | (n = 5) | 618 | (n = 4) | 626 | (n = 3) | - | - | - | 640 |
| Total Suspended Solids (mg/L) | (n = 7) | <2 | (n = 6) | 6 | (n = 7) | <2 | (n = 7) | <2 | (n = 6) | <2 | (n = 5) | <2 | (n = 4) | <2 | (n = 3) | - | - | - | 60 |
| Iron (mg Fe/L) | (n = 6) | <0.8 | (n = 6) | <0.8 | (n = 7) | <0.8 | (n = 7) | <0.8 | (n = 6) | <0.8 | (n = 5) | <0.8 | (n = 4) | <0.8 | (n = 3) | - | - | 5 | |
| Sulfates (mg SO42−/L) | (n = 7) | 118 | (n = 6) | 104 | (n = 7) | 471 | (n = 6) | 148 | (n = 6) | 52 | (n = 5) | 56 | (n = 4) | 63 | (n = 3) | 250 | - | - | 575 |
| Site | CR | EB | GR | PO | MS | BS | PB | Drinking Water Concentrations | Irrigation Water Concentrations | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Parameter | Admittable | Recommended | Admittable | Recommended | ||||||||||||||
| Total Coliforms (MPN/100 mL) | 5.9E+01 | (n = 6) | 2.9E+01 | (n = 6) | 2.4E+03 | (n = 5) | <1 | (n = 7) | 3.0E+00 | (n = 8) | 2.4E+03 | (n = 4) | 1.3E+03 | (n = 6) | 0 | - | - | |
| E. coli (MPN/100 mL) | 1.5E+00 | (n = 6) | <1 | (n = 6) | <1 | (n = 5) | <1 | (n = 7) | <1 | (n = 8) | 1.5E+01 | (n = 4) | 2.5E+01 | (n = 6) | 0 | - | - | |
| Fecal Coliforms (MPN/100 mL) | 2.0E+00 | (n = 6) | <1 | (n = 6) | <1 | (n = 5) | <1 | (n = 7) | 2.0E+00 | (n = 7) | 2.1E+01 | (n = 4) | 4.5E+01 | (n = 6) | - | - | - | 100 |
| Enterococcus (MPN/100 mL) | <1 | (n = 6) | <1 | (n = 6) | 5.0E+00 | (n = 5) | <1 | (n = 7) | <1 | (n = 8) | 5.7E+01 | (n = 4) | 3.9E+01 | (n = 6) | 0 | - | - | - |
| Legionella pneumophila (NMP/mL) | <1 | (n = 1) | <1 | (n = 1) | <1 | (n = 1) | <1 | (n = 1) | <1 | (n = 1) | <1 | (n = 1) | <1 | (n = 1) | - | - | - | - |
| Pseudomonas aeruginosa (NMP/100 mL) | <1 | (n = 1) | <1 | (n = 1) | <1 | (n = 1) | <1 | (n = 1) | <1 | (n = 1) | <1 | (n = 1) | 2.0E+00 | (n = 1) | 0 | - | - | - |
| HPC37 °C (CFU/mL) | 67 | (n = 6) | 6 | (n = 6) | >300 | (n = 5) | 10 | (n = 7) | 3 | (n = 7) | >300 | (n = 4) | >300 | (n = 6) | - | 20 | - | - |
| HPC22 °C (CFU/mL) | 105 | (n = 6) | 60 | (n = 6) | >300 | (n = 5) | 15 | (n = 7) | 6 | (n = 7) | >300 | (n = 4) | >300 | (n = 6) | - | 100 | - | - |
| Yeasts CFU/10 mL | 7 | (n = 3) | 4 | (n = 3) | 11 | (n = 1) | 3 | (n = 7) | 13 | (n = 5) | Confluent growth | (n = 4) | 7 | (n = 1) | - | - | - | - |
| Confluent growth | (n = 3) | Confluent growth | (n = 5) | - | - | - | - | |||||||||||
| Filamentous Fungi CFU/10 mL | 6 | (n = 3) | 9 | (n = 3) | 12 | (n = 1) | 1 | (n = 7) | 8 | (n = 5) | Confluent growth | (n = 4) | 11 | (n = 1) | - | - | - | - |
| Confluent growth | (n = 3) | Confluent growth | (n = 5) | - | - | - | - | |||||||||||
| Chlorides (mg Cl−/L) | 79 | (n = 6) | 84 | (n = 6) | 84 | (n = 5) | 175 | (n = 6) | 48 | (n = 6) | 66 | (n = 4) | 148 | (n = 6) | 250 | - | 70 | |
| Conductivity (mS/cm at 20 °C) | 652 | (n = 6) | 887 | (n = 6) | 959 | (n = 5) | 1212 | (n = 6) | 962 | (n = 6) | 761 | (n = 4) | 1256 | (n = 6) | 2500 | - | 1000 | |
| Total Hardness (mg CaCO3/L) | 272 | (n = 5) | 379 | (n = 5) | 425 | (n = 5) | 556 | (n = 6) | 513 | (n = 6) | 362 | (n = 4) | 541 | (n = 6) | - | 150–500 | - | - |
| pH (units) | 7.5 | (n = 6) | 7 | (n = 6) | 7 | (n = 5) | 7 | (n = 6) | 7.3 | (n = 6) | 7 | (n = 4) | 7 | (n = 6) | ≥6.5 e ≤9.0 | - | ≥4.5 e ≤ 9.8 | 6.5—8.4 |
| Nitrate (mg NO3−/L) | 8 | (n = 5) | 27 | (n = 6) | 156 | (n = 5) | 19 | (n = 6) | 13 | (n = 6) | 37 | (n = 4) | 5 | (n = 6) | 50 | - | - | 50 |
| Nitrite (mg NO2−/L) | 0.05 | (n = 6) | <0.02 | (n = 6) | <0.02 | (n = 5) | <0.02 | (n = 6) | <0.02 | (n = 6) | 0 | (n = 4) | <0.02 | (n = 6) | 0.5 | - | - | - |
| Ammonium (mg NH4+/L) | <0.06 | (n = 6) | <0.06 | (n = 6) | <0.06 | (n = 5) | <0.06 | (n = 6) | <0.06 | (n = 6) | <0.06 | (n = 4) | <0.06 | (n = 6) | 0.5 | - | - | - |
| Oxidability (mg O2/L) | 2 | (n = 6) | 0.5 | (n = 6) | 1 | (n = 5) | 1 | (n = 6) | 0.4 | (n = 6) | 1 | (n = 4) | 1 | (n = 6) | 5 | - | - | - |
| Total Dissolved Solids (mg/L) | 456 | (n = 6) | 592 | (n = 6) | 767 | (n = 5) | 854 | (n = 6) | 745 | (n = 7) | 536 | (n = 4) | 940 | (n = 6) | - | - | - | 640 |
| Total Suspended Solids (mg/L) | 3 | (n = 6) | <2 | (n = 6) | <2 | (n = 5) | <2 | (n = 6) | <2 | (n = 7) | <2 | (n = 4) | 4 | (n = 6) | - | - | - | 60 |
| Iron (mg Fe/L) | <0.8 | (n = 6) | <0.8 | (n = 6) | <0.8 | (n = 5) | <0.8 | (n = 6) | <0.8 | (n = 7) | <0.8 | (n = 4) | <0.8 | (n = 6) | - | - | 5 | |
| Sulfates (mg SO42−/L) | 28 | (n = 5) | 52 | (n = 5) | 86 | (n = 5) | 111 | (n = 6) | 202 | (n = 7) | 48 | (n = 4) | 246 | (n = 5) | 250 | - | - | 575 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, P.; Costa, S.; Brandão, J.; Valério, E. From Quality to Purpose: Rethinking Groundwater Microbiological Standards for Emergency Urban Water Use. Water 2025, 17, 3329. https://doi.org/10.3390/w17223329
Teixeira P, Costa S, Brandão J, Valério E. From Quality to Purpose: Rethinking Groundwater Microbiological Standards for Emergency Urban Water Use. Water. 2025; 17(22):3329. https://doi.org/10.3390/w17223329
Chicago/Turabian StyleTeixeira, Pedro, Sílvia Costa, João Brandão, and Elisabete Valério. 2025. "From Quality to Purpose: Rethinking Groundwater Microbiological Standards for Emergency Urban Water Use" Water 17, no. 22: 3329. https://doi.org/10.3390/w17223329
APA StyleTeixeira, P., Costa, S., Brandão, J., & Valério, E. (2025). From Quality to Purpose: Rethinking Groundwater Microbiological Standards for Emergency Urban Water Use. Water, 17(22), 3329. https://doi.org/10.3390/w17223329

