Numerical Simulation on the Response Mechanism of Soil Water Migration to Mining Subsidence Cracks
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Establishment
2.2.1. Mathematical Equations
2.2.2. Establishment of the Hydrus Model
2.3. Simulation Scenario
3. Results
3.1. Variations in Soil Water Content Under Different Crack Scenarios
3.2. Variations in Soil Water Content Under Different Texture Scenarios
3.3. Variations in Soil Water Content Under Different Rainfall Scenarios
3.4. Comparison of Infiltration Process Under Different Scenarios
4. Discussion
4.1. Effect of Crack Geometry on Preferential Flow
4.2. Soil Water Cycle Mechanism in Subsidence Areas
4.3. Deficiencies and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, E.C.; Gao, R.H. Spatial distribution pattern of colonized native semi-shrubs in two artificial vegetation restoration patterns in Mu Us sandy land, North China. PLoS ONE 2024, 19, e0304204. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Sun, Y.; Wang, J.; Shi, L. Simulation of layered soil water transport in the semi-arid region based on Hydrus-3D. PLoS ONE 2025, 20, e0321537. [Google Scholar] [CrossRef]
- Dong, J.H.; Dai, W.T.; Xu, J.R.; Zhang, H.; Li, Y.P.; Xie, F. Impact and elastic modulus of coal mining on terrestrial ecosystems. Sci. Rep. 2025, 15, 16. [Google Scholar] [CrossRef]
- Xiang, H.X.; Wang, Z.M.; Mao, D.H.; Zhang, J.; Zhao, D.; Zeng, Y.; Wu, B.F. Surface mining caused multiple ecosystem service losses in China. J. Environ. Manag. 2021, 290, 9. [Google Scholar] [CrossRef]
- Zhao, J.G.; Song, S.; Zhang, K.; Li, X.N.; Zheng, X.H.; Wang, Y.J.; Ku, G.Y. An investigation into the disturbance effects of coal mining on groundwater and surface ecosystems. Environ. Geochem. Health 2023, 45, 7011–7031. [Google Scholar] [CrossRef]
- Bai, L.; Wang, Y.; Zhang, K.; Yang, Y.; Bao, K.; Zhao, J.; Li, X. Spatial variability of soil moisture in a mining subsidence area of northwest China. Int. J. Coal Sci. Technol. 2022, 9, 64. [Google Scholar] [CrossRef]
- Lv, G.; Li, J.; Li, Y.X.; Wang, T.; Liu, Y.Z.; Fu, X.Y. Preferential flow characteristics of reclaimed mine soils in a surface coal mine dump. Environ. Monit. Assess. 2017, 189, 21. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.L.; Du, X.P.; Tian, L.X.; Li, M.C.; Yin, K.J. Effects of an arbuscular mycorrhizal fungus on Amorpha fruticosa roots and soil preferential flow in an arid area of opencast coal mine waste. Soil Tillage Res. 2025, 245, 13. [Google Scholar] [CrossRef]
- Liu, R.F.; Zhou, J.Q.; Chui, T.F.M.; Liu, D.F.; Liu, Y. Preferential Flow in Common Low Impact Development Technologies: A Review. Water Resour. Manag. 2025, 22. [Google Scholar] [CrossRef]
- Wen, Y.F.; Li, M.Z.; Gao, P.; Zhou, J.H.; Ai, X.C.; Zhang, Y.X.; Mu, X.M. Soil physicochemical properties and roots promoted preferential flow development after vegetation restoration. J. Hydrol. 2025, 659, 18. [Google Scholar] [CrossRef]
- Tang, Q.C.; Duncan, J.M.; Guo, L.; Lin, H.; Xiao, D.C.; Eissenstat, D.M. On the controls of preferential flow in soils of different hillslope position and lithological origin. Hydrol. Process. 2020, 34, 4295–4306. [Google Scholar] [CrossRef]
- Li, M.F.; Yao, J.J.; Yan, R.; Cheng, J.H. Effects of Infiltration Amounts on Preferential Flow Characteristics and Solute Transport in the Protection Forest Soil of Southwestern China. Water 2021, 13, 1301. [Google Scholar] [CrossRef]
- Niu, X.H.; Feng, G.R.; Liu, Q.; Han, Y.N.; Qian, R.P. Numerical investigation on mechanism and fluid flow behavior of goaf water inrush: A case study of Dongyu coal mine. Nat. Hazards 2022, 113, 1783–1802. [Google Scholar] [CrossRef]
- Qian, J.Z.; Wang, W.; Ma, L.; Dang, B.Q.; Sun, X.F. Identification of preferential flow paths by hydraulic tomography compared with tracer test and the groundwater contour map in coal mine water hazard area. J. Hydrol. 2024, 631, 14. [Google Scholar] [CrossRef]
- Mao, W.; Zhu, Y.; Ye, M.; Zhang, X.P.; Wu, J.W.; Yang, J.Z. A new quasi-3-D model with a dual iterative coupling scheme for simulating unsaturated-saturated water flow and solute transport at a regional scale. J. Hydrol. 2021, 602, 17. [Google Scholar] [CrossRef]
- Sarma, R.; Singh, S.K. Simulating contaminant transport in unsaturated and saturated groundwater zones. Water Environ. Res. 2021, 93, 1496–1509. [Google Scholar] [CrossRef]
- Min, L.L.; Shen, Y.J.; Pei, H.W.; Wang, P. Water movement and solute transport in deep vadose zone under four irrigated agricultural land-use types in the North China Plain. J. Hydrol. 2018, 559, 510–522. [Google Scholar] [CrossRef]
- Lu, T.T.; Bai, X.; Chen, B.D.; Peng, H.; Tang, S.C. Effects of different environmental factors on solute transport in the capillary fringe. Hydrogeol. J. 2024, 32, 2203–2212. [Google Scholar] [CrossRef]
- Xia, Y.; Zhen, W.Y.; Huang, H.S.; Zhang, Y.; Tang, Q.H.; Liu, H.L. Research on the Fissure Development and Seepage Evolution Patterns of Overburden Rock in Weakly Cemented Strata Under Repeated Mining. Sustainability 2025, 17, 2780. [Google Scholar] [CrossRef]
- Li, Y.X.; Lv, G.; Shao, H.B.; Dai, Q.H.; Du, X.P.; Liang, D.; Kuang, S.P.; Wang, D.H. Determining the influencing factors of preferential flow in ground fissures for coal mine dump eco-engineering. PeerJ 2021, 9, 27. [Google Scholar] [CrossRef]
- Ling, C.W.; Liu, B.; Zhang, C.; Teng, T.; Zhang, K.N.; Sun, B.; Zhou, J.L. Fractal Characteristics of Overburden Rock Fractures and Their Impact on Ground Fissures in Longwall Coal Mining. Fractal Fract. 2023, 7, 699. [Google Scholar] [CrossRef]
- Li, S.N.; Lu, T.; Zhou, K.X.; Gu, Y.D.; Wang, B.H.; Lu, Y.D. Modeling and Application of the Hydrus-2D Model for Simulating Preferential Flow in Loess Soil Under Various Scenarios. Water 2024, 16, 3653. [Google Scholar] [CrossRef]
- Xu, X.X.; Kalhoro, S.A.; Chen, W.Y.; Raza, S. The evaluation/application of Hydrus-2D model for simulating macro-pores flow in loess soil. Int. Soil Water Conserv. Res. 2017, 5, 196–201. [Google Scholar] [CrossRef]
- Yang, M.P.; Pan, Y.Y.; Feng, H.Y.; Yan, Q.; Lu, Y.J.; Wang, W.X.; Qi, Y.; Zhu, H.J. Fractal Characteristics of Pore Structure of Longmaxi Shales with Different Burial Depths in Southern Sichuan and Its Geological Significance. Fractal Fract. 2025, 9, 2. [Google Scholar] [CrossRef]
- Zhu, H.; Ju, Y.; Lu, Y.; Yang, M.; Feng, H.; Qiao, P.; Qi, Y. Natural evidence of organic nanostructure transformation of shale during bedding-parallel slip. Geol. Soc. Am. Bull. 2025, 137, 2719–2746. [Google Scholar] [CrossRef]
- Jafari, Z.; Matinkhah, S.H.; Mosaddeghi, M.R. Wetting Patterns in a Subsurface Irrigation System Using Reservoirs of Different Permeabilities: Experimental and HYDRUS-2D/3D Modeling. Water Resour. Manag. 2022, 36, 5335–5352. [Google Scholar] [CrossRef]
- Song, Z.H.; Zhang, J.; Chi, M.B.; Guo, N.; Yang, S.; Guo, Y.N.; He, R.M.; Gao, Z. The Influence of the Morphological Characteristics of Mining-Induced Ground Fissures on the Spatiotemporal Distribution of Soil Moisture. Water 2024, 16, 2496. [Google Scholar] [CrossRef]
- Li, J.M.; Wu, L.W.; Huang, Y.L.; Hu, B.; Wu, X.R.; Cao, G.L. Characteristics of soil moisture transport in the aeration zone of subsidence areas under the disturbance of coal seam mining, Geomech. Geophys. Geo-Energy Geo-Resour. 2024, 10, 17. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, K.; Wu, X.T.; Bai, L.; Zhao, J.G.; Zheng, X.H. Effects of Underground Coal Mining on Soil Spatial Water Content Distribution and Plant Growth Type in Northwest China. ACS Omega 2022, 7, 18688–18698. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Chen, F.; Sun, L.; Ma, Z.C.; Yao, Y. A new seasonal frozen soil water-thermal coupled migration model and its numerical simulation. PLoS ONE 2021, 16, e0258861. [Google Scholar] [CrossRef]
- Yan, W.T.; Guo, J.T.; Chen, J.J.; Tan, Y.; Yan, S.G.; Yan, Y.G. Severe Damage Law on the Ground Surface Induced by High-Strength Mining: A Case Study from the Shendong Coal Field in China. Front. Earth Sci. 2022, 10, 10. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, W.D.; Qian, J.Z.; Ma, L.; Wang, D.J.; Hou, X.L. Potential of hydraulic tomography in exploring the preferential flowpaths of water inrush in coal mine areas. J. Hydrol. 2021, 602, 12. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Ling, C.W.; Zhang, K.N.; Gao, Y.R.; Sun, B.; Wang, X.L. Detection of hidden mining-induced ground fissures via unmanned aerial vehicle infrared system and ground-penetrating radar. Int. J. Rock. Mech. Min. Sci. 2022, 160, 10. [Google Scholar] [CrossRef]
- Li, X.P.; Xiao, P.Q.; Hao, S.L.; Wang, Z.H. Rainfall Erosivity Characteristics during 1961–2100 in the Loess Plateau, China. Remote Sens. 2024, 16, 661. [Google Scholar] [CrossRef]
- Wang, S.T.; Cao, Z.; Luo, P.P.; Zhu, W. Spatiotemporal Variations and Climatological Trends in Precipitation Indices in Shaanxi Province, China. Atmosphere 2022, 13, 744. [Google Scholar] [CrossRef]
- Yin, L.H.; Hu, G.C.; Huang, J.T.; Wen, D.G.; Dong, J.Q.; Wang, X.Y.; Li, H.B. Groundwater-recharge estimation in the Ordos Plateau China: Comparison of methods. Hydrogeol. J. 2011, 19, 1563–1575. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Vangenuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Zheng, C.; Simunek, J.; Lu, Y.D.; Liu, X.H.; Shi, C.C.; Li, H.H. Monitoring and modeling the coupled movement of water, vapor, and energy in arid areas. J. Hydrol. 2020, 590, 16. [Google Scholar] [CrossRef]
- Guan, N.; Cheng, J.H.; Bi, H.X.; Shi, X.Q. Laboratory and field characterization of preferential flow under consideration of geometric fracture features in a karst region in southwest China. J. Hydrol. 2024, 631, 12. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P. Macropores and water flow in soils revisited. Water Resour. Res. 2013, 49, 3071–3092. [Google Scholar] [CrossRef]
- Simunek, J.; Jarvis, N.J.; van Genuchten, M.T.; Gärdenäs, A. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J. Hydrol. 2003, 272, 14–35. [Google Scholar] [CrossRef]
- Gerke, H.H. Preferential flow descriptions for structured soils. J. Plant Nutr. Soil Sci. 2006, 169, 382–400. [Google Scholar] [CrossRef]
- Caputo, M.C.; De Carlo, L.; Masciale, R.; Perkins, K.; Turturro, A.C.; Nimmo, J.R. Detection and quantification of preferential flow using artificial rainfall with multiple experimental approaches. Hydrogeol. J. 2024, 32, 467–485. [Google Scholar] [CrossRef]
- Vogel, H.J.; Weller, U.; Ippisch, O. Non-equilibrium in soil hydraulic modelling. J. Hydrol. 2010, 393, 20–28. [Google Scholar] [CrossRef]
- Luan, J.K.; Zhang, Y.Q.; Tian, J.; Meresa, H.; Liu, D.F. Coal mining impacts on catchment runoff. J. Hydrol. 2020, 589, 13. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, X.P.; Ke, F.H.; Liu, J.H.; Yao, Q.L.; Luo, H.Y.; Li, X.H.; Xu, Y.N. Evolution of Overlying Strata Bed Separation and Water Inrush Hazard Assessment in Fully Mechanized Longwall Top-Coal Caving of an Ultra-Thick Coal Seam. Water 2025, 17, 850. [Google Scholar] [CrossRef]
- Simunek, J.; van Genuchten, M.T.; Sejna, M. Recent Developments and Applications of the HYDRUS Computer Software Packages. Vadose Zone J. 2016, 15, 25. [Google Scholar] [CrossRef]
- Ren, X.C.; Sun, W.F.; Lan, H.X.; Bao, H.; Li, L.P.; Liu, S.J.; Yan, C.G.; Wang, X.C.; Li, Z.C.; Tian, C.Y. Influence of tension cracks on moisture infiltration in loess slopes under high-intensity rainfall conditions. Sci. Rep. 2025, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Ping, J.H.; Yan, S.Y.; Gu, P.; Wu, Z.N.; Hu, C.H. Application of MIKE SHE to study the impact of coal mining on river runoff in Gujiao mining area, Shanxi, China. PLoS ONE 2017, 12, e0188949. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, N.J. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 2007, 58, 523–546. [Google Scholar] [CrossRef]
- Lewandowska, J.; Szymkiewicz, A.; Burzynski, K.; Vauclin, M. Modeling of unsaturated water flow in double-porosity soils by the homogenization approach. Adv. Water Resour. 2004, 27, 283–296. [Google Scholar] [CrossRef]
- Simunek, J.; Brunetti, G.; Jacques, D.; van Genuchten, M.T.; Sejna, M. Developments and applications of the HYDRUS computer software packages since 2016. Vadose Zone J. 2024, 23, 29. [Google Scholar] [CrossRef]









| Scenarios | Peer Group | Variable |
|---|---|---|
| Scenario A: different crack scenarios Soil texture: loam Rainfall intensity: moderate | A1 | 1 crack, 1 cm wide |
| A2 | 2 crack, 1 cm wide | |
| A3 | 1 crack, 5 cm wide | |
| A4 | 1 crack, 10 cm wide | |
| Scenario B: different texture scenarios Crack: 1 crack, 1 cm wide Rainfall intensity: moderate rainfall | B1 | sandy soil |
| B2 | loam | |
| B3 | 0–100 cm sand and 100–200 cm loam | |
| B4 | 0–100 cm loam and 100–200 cm sand | |
| Scenario C: different rainfall scenarios Crack: 1 crack, 1 cm wide Soil texture: loamy soil | C1 | light rain |
| C2 | moderate rain | |
| C3 | heavy rain | |
| C4 | rainstorm |
| Scenarios | 24 h | 48 h | 120 h | |||
|---|---|---|---|---|---|---|
| Wetting Front Depth/cm | Crack Infiltration Depth/cm | Wetting Front Depth/cm | Crack Infiltration Depth/cm | Wetting Front Depth/cm | Crack Infiltration Depth/cm | |
| Scenarios A1 | 10.78 | 105.55 | 13.42 | 107.44 | 16.86 | 107.44 |
| Scenarios A2 | 10.9 | 106.54 | 14.74 | 107.78 | 16.51 | 107.78 |
| Scenarios A3 | 10.86 | 121.07 | 13.82 | 121.92 | 16.42 | 123.84 |
| Scenarios A4 | 10.53 | 135.60 | 14.70 | 138.11 | 16.79 | 144.48 |
| Scenarios B1 | 39.45 | 121.86 | 62.94 | 126.85 | 99.16 | 129.53 |
| Scenarios B2 | 10.78 | 105.55 | 13.42 | 107.44 | 16.86 | 107.44 |
| Scenarios B3 | 33.43 | 106.56 | 39.02 | 106.56 | 56.98 | 106.56 |
| Scenarios B4 | 13.13 | 51.95 | 17.51 | 51.95 | 21.84 | 51.95 |
| Scenarios C1 | 6.63 | 105.55 | 8.94 | 107.44 | 10.36 | 107.44 |
| Scenarios C2 | 10.78 | 105.55 | 13.42 | 107.44 | 16.86 | 107.44 |
| Scenarios C3 | 16.00 | 105.55 | 22.04 | 106.68 | 26.46 | 107.44 |
| Scenarios C4 | 26.48 | 105.54 | 36.21 | 106.73 | 42.76 | 107.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Guo, N.; Li, W.; Li, D.; Ma, W.; Zheng, C.; Fang, J. Numerical Simulation on the Response Mechanism of Soil Water Migration to Mining Subsidence Cracks. Water 2025, 17, 3247. https://doi.org/10.3390/w17223247
Li S, Guo N, Li W, Li D, Ma W, Zheng C, Fang J. Numerical Simulation on the Response Mechanism of Soil Water Migration to Mining Subsidence Cracks. Water. 2025; 17(22):3247. https://doi.org/10.3390/w17223247
Chicago/Turabian StyleLi, Shengnan, Nan Guo, Wei Li, Dong Li, Wenbo Ma, Ce Zheng, and Jie Fang. 2025. "Numerical Simulation on the Response Mechanism of Soil Water Migration to Mining Subsidence Cracks" Water 17, no. 22: 3247. https://doi.org/10.3390/w17223247
APA StyleLi, S., Guo, N., Li, W., Li, D., Ma, W., Zheng, C., & Fang, J. (2025). Numerical Simulation on the Response Mechanism of Soil Water Migration to Mining Subsidence Cracks. Water, 17(22), 3247. https://doi.org/10.3390/w17223247
