Characterization and Treatment of Academic Wastewater Using Volcanic-Gravel-Constructed Wetlands: A Study in Rwanda
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Sampling Sites
2.2. Experimental Setup
2.2.1. Plant Selection
2.2.2. Substrate Selection
2.2.3. Plant Acclimatization
2.2.4. Hydraulic Retention Time
2.2.5. Box-Type Constructed Wetlands
2.2.6. Sampling and Analysis
Wastewater from Academic Institutions and Constructed Wetlands
Chemical Characteristics of Volcanic Gravel
Nutrient Desorption and Regeneration of Volcanic Gravel
Plant Biomass and Nutrient Uptake
2.2.7. Mass Balance for Nitrogen and Phosphorus Removal
2.3. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Wastewater Generated by Academic Institutions in Rwanda
3.2. Practice of Handling Wastewater at Academic Institutions
Selection of Treatment Technology
3.3. Optimization of Substrate and Hydraulic Retention Time
3.3.1. Substrate
Characteristics of Volcanic Gravel
3.3.2. Hydraulic Retention Time
3.4. Efficiency of Box-Type Constructed Wetlands
3.4.1. Removal of Organic Matter
3.4.2. Removal of Ammonium
3.4.3. Removal of Nitrate
3.4.4. Removal of Phosphorus
3.4.5. Total Dissolved Solids and Total Suspended Solids
3.5. Plant Growth, Biomass Production, and Nutrient Accumulation
3.6. Nutrient Removal Mechanism by Mass Balance Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
| COD | Chemical oxygen demand |
| CW | Constructed wetland |
| HRT | Hydraulic retention time |
| MLR | Mass loading rate |
| NH4+-N | Ammonium nitrogen |
| NO3−-N | Nitrate-nitrogen |
| PO43−-P | Phosphorus–phosphate |
| TDS | Total dissolved solids |
| TN | Total nitrogen |
| TP | Total phosphorus |
| TSS | Total suspended solids |
| XRF | X-ray fluorescence |
References
- United Nations Environment Programme. Wastewater: Turning Problem to Solution—A UNEP Rapid Response Assessment; United Nations Environment Programme; United Nations: New York, NY, USA, 2023. [Google Scholar]
- Abreham Awono, Y.; Adam, D.B. Evaluation of operational challenges and technological performance of wastewater treatment plants in Addis Ababa. Sci. Rep. 2025, 15, 33099. [Google Scholar] [CrossRef]
- Bayeh, A.; Tibebe, D.; Misganaw, S.; Kassa, Y.; G-hiwot, M.; Awoke, T.; Daba, S.; Tadie, A.; Kassie, M.; Markos, A. Evaluation and characterization of wastewater generated from University of Gondar, Ethiopia. S. Afr. J. Chem. Eng. 2024, 48, 285–291. [Google Scholar] [CrossRef]
- Omole, D.O.; Alade, O.O.; Emenike, P.C.; Tenebe, I.T.; Ogbiye, A.S.; Ngene, B.U. Quality assessment of a university campus wastewater resource. In Proceedings of the Water and Society 2017, Seville, Spain, 5 June 2017; pp. 193–201. [Google Scholar]
- Ilyas, H.; Van Hullebusch, E. Role of Design and Operational Factors in the Removal of Pharmaceuticals by Constructed Wetlands. Water 2019, 11, 2356. [Google Scholar] [CrossRef]
- Huong, M.; Hoi, B.V.; Hue, N.T.; Thanh, D.T.M. Removal efficiency of Fe, Zn and Ni from wastewater of academic campus using hybrid constructed wetlands. Vietnam J. Chem. 2020, 58, 548–553. [Google Scholar] [CrossRef]
- Porras-Socias, P.; Tomasino, M.P.; Fernandes, J.P.; De Menezes, A.B.; Fernández, B.; Collins, G.; Alves, M.J.; Castro, R.; Gomes, C.R.; Almeida, C.M.R.; et al. Removal of metals and emergent contaminants from liquid digestates in constructed wetlands for agricultural reuse. Front. Microbiol. 2024, 15, 1388895. [Google Scholar] [CrossRef]
- Akumuntu, J.B.; Wehn, U.; Mulenga, M.; Brdjanovic, D. Enabling the sustainable Faecal Sludge Management service delivery chain—A case study of dense settlements in Kigali, Rwanda. Int. J. Hyg. Environ. Health 2017, 220, 960–973. [Google Scholar] [CrossRef] [PubMed]
- UNICEF Rwanda. Children’s Rights and Sustainable Development in Rwanda: A Situation Analysis; UNICEF Rwanda: Kigali, Rwanda, 2017; pp. 1–128. [Google Scholar]
- UNEP/GRID. Pollution-Rwanda, Interactive Country Fiches. Available online: https://dicf.unepgrid.ch/rwanda/pollution (accessed on 30 October 2025).
- UNICEF Rwanda. UNICEF Rwanda Water, Sanitation and Hygiene (WASH) in Rwanda A Situation Analysis; UNICEF Rwanda: Kigali, Rwanda, 2024. [Google Scholar]
- Ministry of Infrastructure National Urbanization Policy–Government of Rwanda 2025. Available online: https://www.mininfra.gov.rw/index.php?eID=dumpFile&t=f&f=118319&token=f2767b737f4a912d39b49c48093a0346e1837f88 (accessed on 4 November 2025).
- Wang, L.; Ma, L.; Wang, J.; Zhao, X.; Jing, Y.; Liu, C.; Xiao, Y.; Li, C.; Jiao, C.; Xu, M. Research Progress on the Removal of Contaminants from Wastewater by Constructed Wetland Substrate: A Review. Water 2024, 16, 1848. [Google Scholar] [CrossRef]
- Kanyeshuri, J. Assessment of a Constructed Wetland Design toTreat the Sewageof University of Lay Adventists of Kigali(UNILAK)–Rwanda. Int. J. Adv. Eng. Manag. (IJAEM) 2021, 3, 892–904. [Google Scholar]
- Nsanzabaganwa, J.; Chen, X.; Liu, T.; Mupenzi, C.; Hakorimana, E.; Mind’je, R.; Mujawayezu, M.L.; Gasirabo, A.; Umugwaneza, A.; Malayika, F.; et al. Impact analysis of constructed wetland for wastewater management in Rwanda. Front. Environ. Sci. 2025, 13, 1559624. [Google Scholar] [CrossRef]
- Nature Trails East Africa Rwanda, Uganda, Kenya Tours and Safaris. Available online: https://www.eastafricantrails.com/ (accessed on 7 October 2025).
- Moulisová, L.; Čížková, H.; Dušek, J.; Kazda, M. Root and rhizome traits of the common reed (Phragmites australis) in a constructed wetland for wastewater treatment. Ecol. Eng. 2023, 186, 106832. [Google Scholar] [CrossRef]
- Chassagne, F.; Morgan, M. Book Review: Underexplored Medicinal Plants from Sub-Saharan Africa: Plants with Therapeutic Potential for Human Health. Front. Pharmacol. 2020, 11, 965. [Google Scholar] [CrossRef]
- Arslan, M.; Devisetty, U.K.; Porsch, M.; Große, I.; Müller, J.A.; Michalski, S.G. RNA-Seq analysis of soft rush (Juncus effusus): Transcriptome sequencing, de novo assembly, annotation, and polymorphism identification. BMC Genom. 2019, 20, 489. [Google Scholar] [CrossRef]
- Waly, M.M.; Ahmed, T.; Abunada, Z.; Mickovski, S.B.; Thomson, C. Constructed Wetland for Sustainable and Low-Cost Wastewater Treatment: Review Article. Land 2022, 11, 1388. [Google Scholar] [CrossRef]
- American Public Health Association. APHA Standard Methods for the Examination of Water and Wastewater, 24th ed.; American Public Health Association: Washington, DC, USA, 2022. [Google Scholar]
- Bulacio Fischer, P.T.; Di Trapani, D.; Laudicina, V.A.; Muscarella, S.M.; Mannina, G. Nutrient Recovery from Zeolite and Biochar Columns: The Case Study of Marineo (Italy) Wastewater Treatment Plant. Water 2025, 17, 848. [Google Scholar] [CrossRef]
- Gupta, P.K. Soil, Plant, Water and Fertilizer Analysis, 2nd ed.; Agro Botanica: Vyas Nagar, India, 2017; ISBN 978-81-7754-306-3. [Google Scholar]
- Torrens, A.; De La Varga, D.; Ndiaye, A.K.; Folch, M.; Coly, A. Innovative Multistage Constructed Wetland for Municipal Wastewater Treatment and Reuse for Agriculture in Senegal. Water 2020, 12, 3139. [Google Scholar] [CrossRef]
- Njau, K.N.; Mwegoha, W.J.S.; Kimwaga, R.J.; Katima, J.H.Y. Use of engineered wetlands for onsite treatment of wastewater by the local communities: Experiences from Tanzania. Water Pract. Technol. 2011, 6, wpt2011047. [Google Scholar] [CrossRef]
- Lavrnić, S.; Zapater Pereyra, M.; Cristino, S.; Cupido, D.; Lucchese, G.; Pascale, M.R.; Toscano, A.; Mancini, M. The Potential Role of Hybrid Constructed Wetlands Treating University Wastewater—Experience from Northern Italy. Sustainability 2020, 12, 10604. [Google Scholar] [CrossRef]
- Vohla, C.; Kõiv, M.; Bavor, H.J.; Chazarenc, F.; Mander, Ü. Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecol. Eng. 2011, 37, 70–89. [Google Scholar] [CrossRef]
- Chi, R.; Wei, Z.; Gong, L.; Zhang, G.; Wen, D.; Li, W. The Study of Nitrogen and Phosphorus Removal Efficiency in Urbanized River Systems Using Artificial Wetland Systems with Different Substrates. Water 2024, 16, 3309. [Google Scholar] [CrossRef]
- Soares, B.S.; Borges, A.C.; De Matos, A.T.; Barbosa, R.B.G.; Silva, F.F.E. Exploring the Removal of Organic Matter in Constructed Wetlands Using First Order Kinetic Models. Water 2022, 14, 472. [Google Scholar] [CrossRef]
- Winanti, E.T.; Rahmadyanti, E.; Fajarwati, I.N. Ecological Approach of Campus Wastewater Treatment using Constructed Wetland. IOP Conf. Ser. Mater. Sci. Eng. 2018, 288, 012062. [Google Scholar] [CrossRef]
- Rahman, M.E.; Bin Halmi, M.I.E.; Bin Abd Samad, M.Y.; Uddin, M.K.; Mahmud, K.; Abd Shukor, M.Y.; Sheikh Abdullah, S.R.; Shamsuzzaman, S.M. Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant. IJERPH 2020, 17, 8339. [Google Scholar] [CrossRef]
- Merino-Solís, M.; Villegas, E.; De Anda, J.; López-López, A. The Effect of the Hydraulic Retention Time on the Performance of an Ecological Wastewater Treatment System: An Anaerobic Filter with a Constructed Wetland. Water 2015, 7, 1149–1163. [Google Scholar] [CrossRef]
- Silveira, E.O.; Lutterbeck, C.A.; Machado, Ê.L.; Rodrigues, L.R.; Rieger, A.; Beckenkamp, F.; Lobo, E.A. Biomonitoring of urban wastewaters treated by an integrated system combining microalgae and constructed wetlands. Sci. Total Environ. 2020, 705, 135864. [Google Scholar] [CrossRef]
- Pereira Da Silva, F.; Lutterbeck, C.A.; Colares, G.S.; Oliveira, G.A.; Rodrigues, L.R.; Dell’Osbel, N.; Rodriguez, A.L.; Rodriguez López, D.A.; Gehlen, G.; Machado, Ê.L. Treatment of university campus wastewaters by anaerobic reactor and multi-stage constructed wetlands. J. Water Process Eng. 2021, 42, 102119. [Google Scholar] [CrossRef]
- Abou-Elela, S.I.; Golinielli, G.; Abou-Taleb, E.M.; Hellal, M.S. Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecol. Eng. 2013, 61, 460–468. [Google Scholar] [CrossRef]
- Akratos, C.S.; Tsihrintzis, V.A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. 2007, 29, 173–191. [Google Scholar] [CrossRef]
- Bebba, A.A.; Labed, I.; Zeghdi, S.; Messaitfa, A. Purification Performance of Typha Latifolia, Juncus Effusus and Papyrus Cyperus in Arid Climate: Influence of Seasonal Variation. J. Water Chem. Technol. 2019, 41, 396–401. [Google Scholar] [CrossRef]
- Mr, S.; Ml, M.; Joseph, S. Analysis of potential of Napier grass, Vetiver and Equisetum plants for the treatment of domestic greywater using box-type constructed wetlands. Water Sci. Technol. 2021, 84, 2913–2922. [Google Scholar] [CrossRef]
- Wiessner, A.; Kappelmeyer, U.; Kaestner, M.; Schultze-Nobre, L.; Kuschk, P. Response of ammonium removal to growth and transpiration of Juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands. Water Res. 2013, 47, 4265–4273. [Google Scholar] [CrossRef]
- Clarke, E.; Baldwin, A.H. Responses of wetland plants to ammonia and water level. Ecol. Eng. 2002, 18, 257–264. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-1-56670-526-4. [Google Scholar]
- Vaičiukynienė, D.; Mikelionienė, A.; Baltušnikas, A.; Kantautas, A.; Radzevičius, A. Removal of ammonium ion from aqueous solutions by using unmodified and H2O2-modified zeolitic waste. Sci. Rep. 2020, 10, 352. [Google Scholar] [CrossRef]
- Varma, M.; Gupta, A.K.; Ghosal, P.S.; Majumder, A. A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature. Sci. Total Environ. 2021, 755, 142540. [Google Scholar] [CrossRef]
- Coleman, J.; Hench, K.; Garbutt, K.; Sexstone, A.; Bissonnette, G.; Skousen, J. Treatment of Domestic Wastewater by Three Plant Species in Constructed Wetlands. Water Air Soil. Pollut. 2001, 128, 283–295. [Google Scholar] [CrossRef]
- Salvato, M.; Borin, M.; Doni, S.; Macci, C.; Ceccanti, B.; Marinari, S.; Masciandaro, G. Wetland plants, micro-organisms and enzymatic activities interrelations in treating N polluted water. Ecol. Eng. 2012, 47, 36–43. [Google Scholar] [CrossRef]
- Wießner, A.; Kappelmeyer, U.; Kuschk, P.; Kästner, M. Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland. Water Res. 2005, 39, 248–256. [Google Scholar] [CrossRef]
- Song, J.; Yu, N.; Zhao, C.; Lv, Y.; Yang, J. Efficiency, Microbial Communities, and Nitrogen Metabolism in Denitrification Biological Filter: Insights into Varied Pore Ceramsite Media. Microorganisms 2025, 13, 1187. [Google Scholar] [CrossRef]
- Shved, O.; Petrina, R.; Chervetsova, V.; Novikov, V. Enhancing efficiency of nitrogen removal from wastewater in constructed wetlands. EEJET 2015, 3, 63. [Google Scholar] [CrossRef]
- Sekomo, C.B.; Rousseau, D.P.L.; Lens, P.N.L. Use of Gisenyi Volcanic Rock for Adsorptive Removal of Cd(II), Cu(II), Pb(II), and Zn(II) from Wastewater. Water Air Soil. Pollut. 2012, 223, 533–547. [Google Scholar] [CrossRef]
- Shin, J.; Kwak, J.; Kim, S.; Son, C.; Lee, Y.-G.; Kim, J.; Bae, S.; Park, Y.; Lee, S.-H.; Chon, K. Highly selective recovery of phosphate ions using a novel carbonaceous adsorbent synthesized via co-pyrolysis of spent coffee grounds and steel slags: A potential phosphatic fertilizer. Chem. Eng. J. 2023, 451, 138978. [Google Scholar] [CrossRef]
- Amasa, W.; Leta, S.; Gnaro, M.A. The application of Scoria-based horizontal subsurface flow constructed wetland for efficient textile wastewater treatment. Results Eng. 2025, 26, 105495. [Google Scholar] [CrossRef]
- Aregu, M.B.; Asfaw, S.L.; Khan, M.M. Identification of two low-cost and locally available filter media (pumice and scoria) for removal of hazardous pollutants from tannery wastewater. Environ. Syst. Res. 2018, 7, 10. [Google Scholar] [CrossRef]
- Menon, R.; Holland, M.M. Phosphorus Retention in Constructed Wetlands Vegetated with Juncus effusus, Carex lurida, and Dichanthelium acuminatum var. acuminatum. Water Air Soil. Pollut. 2013, 224, 1602. [Google Scholar] [CrossRef]
- Amponsah, S.K.; Frimpong, F.; Danquah, E.O.; Amankwa-Yeboah, P.; Amengor, N.E.; Dzomeku, J.B.; Agyemang, S.M.; Adu, J.K.; Frimpong, T.; Azumah, D.D. Performance of a Horizontal Subsurface Flow Constructed Wetland in Treating Aquaculture Wastewater. J. Ecol. Eng. 2024, 25, 53–61. [Google Scholar] [CrossRef]
- Shukla, R.; Gupta, D.; Singh, G.; Mishra, V.K. Performance of horizontal flow constructed wetland for secondary treatment of domestic wastewater in a remote tribal area of Central India. Sustain. Environ. Res. 2021, 31, 13. [Google Scholar] [CrossRef]
- Wu, S.; Austin, D.; Liu, L.; Dong, R. Performance of integrated household constructed wetland for domestic wastewater treatment in rural areas. Ecol. Eng. 2011, 37, 948–954. [Google Scholar] [CrossRef]
- Shuib, N.; Baskaran, K.; Jegatheesan, V. Evaluating the Performance of Horizontal Subsurface Flow Constructed Wetlands Using Natural Zeolite (escott). IJESD 2011, 2, 311–315. [Google Scholar] [CrossRef]
- Tanner, C.C. Plants for constructed wetland treatment systems—A comparison of the growth and nutrient uptake of eight emergent species. Ecol. Eng. 1996, 7, 59–83. [Google Scholar] [CrossRef]
- Garcia Chance, L.M.; Van Brunt, S.C.; Majsztrik, J.C.; White, S.A. Short- and long-term dynamics of nutrient removal in floating treatment wetlands. Water Res. 2019, 159, 153–163. [Google Scholar] [CrossRef]
- Paredes, D.; Kuschk, P.; Stange, F.; Müller, R.A.; Köser, H. Model experiments on improving nitrogen removal in laboratory scale subsurface constructed wetlands by enhancing the anaerobic ammonia oxidation. Water Sci. Technol. 2007, 56, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.P.; Xu, J.; Zhao, J.X.; Liu, L.F.; Zhang, M.Y.; Tan, S.C. An experimental study on water purification performance of modified volcanic rock ecological concrete. Sci. Rep. 2025, 15, 1092. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, B.; Chen, X.; Li, Z.; Xia, Q.; Wang, H.; Yang, Y.; Zhou, Y.; Yang, H. The Use of Constructed Wetland for Mitigating Nitrogen and Phosphorus from Agricultural Runoff: A Review. Water 2021, 13, 476. [Google Scholar] [CrossRef]
- Mekonnen, D.T.; Alemayehu, E.; Lennartz, B. Adsorptive Removal of Phosphate from Aqueous Solutions Using Low-Cost Volcanic Rocks: Kinetics and Equilibrium Approaches. Materials 2021, 14, 1312. [Google Scholar] [CrossRef]











| Parameters | Average |
|---|---|
| pH | 8.6 ± 01 |
| Temperature (°C) | 23.3 ± 0.2 |
| Electrical conductivity (µS/cm) | 2016.3 ± 156.2 |
| Total dissolved solids (mg/L) | 1083.7 ± 81.0 |
| Total suspended solids (mg/L) | 648.3 ± 188.4 |
| Chemical oxygen demand (mg/L) | 573.7 ± 27.3 |
| Ammonium (mg/L) | 25.8 ± 8.2 |
| Nitrate (mg/L) | 16.5 ± 4.9 |
| Phosphorus (mg/L) | 44.1 ± 10.8 |
| Parameter | Specification |
|---|---|
| Constructed wetland type | Box-type horizontal subsurface flow |
| Container material | Plastic |
| Container dimensions (L × W × H) | 46 cm × 32 cm × 27 cm |
| Substrate type | Crushed volcanic gravel (0.5–4 cm) |
| Substrate depth | 24 cm |
| Inlet design | Flexible pipe with perforations across the width for uniform distribution |
| Outlet design | Tap at the opposite end for treated water collection |
| System slope | 1% |
| Flow rate | 6.5 L/day |
| Feeding mode | Gravitational |
| Oxides | Samples | Element | Samples | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Before | After | % Change in CWC | Before | After | ||||||
| CWA | CWB | CWC | CWA | CWB | CWC | |||||
| SiO2 | 54.19 | 54.13 | 54.11 | 53.52 | 1.2 | Si | 25.33 | 25.27 | 25.29 | 25.02 |
| Al2O3 | 18.68 | 19.59 | 19.69 | 19.53 | −4.6 | Al | 9.89 | 10.31 | 10.42 | 10.34 |
| Fe2O3 | 9.49 | 9.11 | 9.14 | 9.03 | 4.8 | Fe | 6.64 | 6.34 | 6.39 | 6.32 |
| CaO | 7.12 | 6.58 | 6.39 | 6.82 | 4.2 | Ca | 5.09 | 4.51 | 4.57 | 4.87 |
| K2O | 6.43 | 7.18 | 7.08 | 6.43 | 0.0 | K | 5.34 | 5.54 | 5.59 | 5.88 |
| TiO2 | 2.2 | 2.04 | 2.06 | 2.06 | 6.4 | Ti | 1.32 | 1.26 | 1.23 | 1.24 |
| P2O5 | 0.90 | 0.92 | 0.91 | 0.89 | 1.1 | P | 0.39 | 0.40 | 0.40 | 0.39 |
| Plant Species | August | September | October | November |
|---|---|---|---|---|
| Cyperus lafiforius | 8 plants (5–7 leaves) | 10 plants (7–9 leaves) | 13 plants (7–12 leaves) | 17 plants (7–12 leaves) |
| Juncus effusus | 60 shoots | 83 shoots | 112 shoots | 120 shoots |
| Plant Species | Type of Tissue | Average Wet Weight (g) | Average Dry Weight (g) | Dry Matter Production (g/m2) | TN Content (g/m2) | TP Content (g/m2) |
|---|---|---|---|---|---|---|
| Cyperus lafifolius | Belowground | 35.2 | 8.2 | 1139 | 2.9 | 9.02 |
| Aboveground | 37.4 | 23.4 | 3250 | 10.2 | 27.5 | |
| Juncus effusus | Belowground | 71.2 | 19.2 | 1455 | 3.3 | 7.09 |
| Aboveground | 266.7 | 68.8 | 5212 | 15.8 | 130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ufitinema, J.C.; Habimana, V.; Habimana, E.; Nsabimana, A.; Rajarao, G.K. Characterization and Treatment of Academic Wastewater Using Volcanic-Gravel-Constructed Wetlands: A Study in Rwanda. Water 2025, 17, 3200. https://doi.org/10.3390/w17223200
Ufitinema JC, Habimana V, Habimana E, Nsabimana A, Rajarao GK. Characterization and Treatment of Academic Wastewater Using Volcanic-Gravel-Constructed Wetlands: A Study in Rwanda. Water. 2025; 17(22):3200. https://doi.org/10.3390/w17223200
Chicago/Turabian StyleUfitinema, J. Chrisostome, Valens Habimana, Emmanuel Habimana, Antoine Nsabimana, and Gunaratna Kuttuva Rajarao. 2025. "Characterization and Treatment of Academic Wastewater Using Volcanic-Gravel-Constructed Wetlands: A Study in Rwanda" Water 17, no. 22: 3200. https://doi.org/10.3390/w17223200
APA StyleUfitinema, J. C., Habimana, V., Habimana, E., Nsabimana, A., & Rajarao, G. K. (2025). Characterization and Treatment of Academic Wastewater Using Volcanic-Gravel-Constructed Wetlands: A Study in Rwanda. Water, 17(22), 3200. https://doi.org/10.3390/w17223200

