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Abstract: In view of the problem that traditional dam outlier identification methods mostly
rely on single-monitoring-point models and do not fully consider the spatio-temporal
correlation characteristics of deformation between monitoring points, which can easily lead
to the misdiagnosis of outliers, this paper proposes a novel Ward-VMD-BiLSTM-Iforest
method for identifying gross errors in dam deformation monitoring. By integrating spatio-
temporal clustering, variational mode decomposition (VMD), and BiLSTM neural networks,
the method effectively identifies outliers while avoiding the misclassification of data mu-
tations caused by environmental changes. Compared to traditional models (GRU, LSTM,
and BiLSTM), the HHO-BiLSTM model demonstrates superior performance, achieving an
R2 of 0.97775 at TCN08, with a reduced MAE and better accuracy. In comparison with the
Raida and Romanovsky criteria, the proposed method achieves 100% precision and 100%
recall, significantly improving detection accuracy and reducing misjudgment. This method
provides an effective and reliable solution for dam deformation outlier detection.

Keywords: dam deformation; gross error; spatio-temporal clustering; deep learning;
monitoring model; isolation forest algorithm

1. Introduction
In order to understand the deformation state of a dam, a large number of deformation

monitoring points are often set up on and around the dam body, and deformation data are
regularly obtained to construct the deformation field of the dam. In fact, the deformation
data of the dam comes from deformation monitoring points with different spatial coordi-
nates. These deformation data are distributed in a certain spatial area, with both temporal
and spatial properties, and are typical spatio-temporal data. In addition, due to the dif-
ferent degrees of integrity of the dam structure, the deformation of the dam monitoring
points affects and correlates with each other. With the advancement of spatio-temporal data
mining technology, the detection and discovery of implicit information in spatio-temporal
data has been developed and has played a certain role in practical applications. At present,
there are many analyses for the temporal characteristics of dam deformation data, but there
are few studies specifically targeting its spatio-temporal characteristics.

Since traditional dam deformation analysis focuses on the change law of a single
monitoring point, its data representation method is a one-dimensional time series; cur-
rently, dam deformation analysis considers multiple monitoring points, and emerging data
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representation methods such as panel data show great potential. In addition, as typical
spatio-temporal data, dam deformation data have multiple characteristics such as temporal-
ity, spatiality, complexity, massiveness, multidimensionality, and uncertainty, which brings
many challenges to deformation spatio-temporal data mining. In order to avoid sudden
damage to the dam during its service and cause serious engineering accidents, resulting in
major loss of life and property, it is necessary to monitor the dam’s operating status in real
time and analyze the monitoring data regularly to ensure the long-term stable operation
of the dam [1–4]. In actual engineering, the dam deformation data obtained by various
means have data pollution problems such as incomplete measurement values, incorrect
precision, repeated redundancy, and error anomalies, which greatly reduce the accuracy
and efficiency of spatio-temporal data mining. This is due to the influence of uncertain
factors such as instrument failure and human interference, which often leads to gross errors
in safety monitoring data [5,6]. In order to improve the quality of the spatio-temporal data
to be mined, it is necessary to perform corresponding preprocessing on the gross errors.

The research on data gross error processing has gone through several stages [7,8]. The
initial gross error processing methods were mainly based on simple statistical tests. In this
stage, for example, methods such as the Grubbs test [9], the Dixon test [10], and the Chau-
venet [11] criterion were limited by the computing technology at the time. Such methods
were usually inefficient when processing large-scale data and high-dimensional data such
as dam monitoring. Traditional methods for identifying and processing gross errors in dam
safety monitoring data mainly include three categories: the process line discrimination
method, statistical test method, and regression model discrimination method [12,13]. The
process line discrimination method relies on expert experience to determine whether the
safety monitoring data deviate from the data process line for gross error discrimination.
However, this method is time-consuming and labor-intensive and has low processing
efficiency [14]. In recent years, many international scholars have conducted in-depth re-
search on dam abnormal data processing methods (i.e., gross error processing methods).
Machine learning and data mining technologies have begun to be applied to gross error
processing [15,16], which has improved the quality of dam monitoring data gross error
processing. For example, Rong et al. [17] developed a multi-point anomaly recognition
model by combining an improved local outlier factor (LOF) and mutual verification consid-
ering spatio-temporal correlation. Wang et al. [18] developed a new framework based on
self-supervised learning for the abnormal data detection and classification of rockfill dam
deformation data, which includes an abnormal data detection method based on transform-
ers and synthetic abnormal data. Song et al. [19] proposed a new dynamic detection method
for dam abnormal data based on SSA-NAR for the outlier detection of dam monitoring
data. This combined method does not rely on the relationship between the effect quantity
and the environmental quantity in traditional dam safety theory, but only uses the time
series of the effect quantity for change mining, which can avoid the impact of missing or
abnormal influence quantities. Mao et al. [20] studied a monitoring data preprocessing and
classification method for the gross error identification of hydraulic structures. This method
uses linear regression and wavelet analysis techniques to effectively distinguish various
types of data in the data set. Zhou et al. [21] proposed a new model based on a generative
adversarial network and variational autoencoder for anomaly detection in dam monitoring
data. In order to detect abnormal data in real time and quickly provide high-quality data
for subsequent data analysis, Li et al. [22] proposed a multiple local anomaly coefficient
method. Meng et al. [23] proposed a method for processing dam abnormal displacement
monitoring data based on a matrix operation and the cuckoo search algorithm. Xiao
et al. [24] established a structural safety monitoring model that can adaptively identify vari-
ous types of anomalies in dam deformation monitoring data in view of the shortcomings of
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conventional monitoring models such as difficulty in selecting influencing factors and poor
ability to resist outlier interference. Hu et al. [25] proposed a method combining dynamic
time warping and local anomaly factors to identify time series anomalies on different
time scales. Chen et al. [26] proposed a gross error identification method based on the
fuzzy C-means clustering algorithm (FCM) segmentation and density clustering algorithm
(Ordering Points To Identity the Clustering Structure, OPTICS) combined with the local
anomaly factor (LOF) algorithm. In addition, signal decomposition theory has also been
applied to the processing of gross errors in dam safety monitoring information [27], mainly
including a wavelet transform [28–30], empirical mode decomposition [31,32], variational
mode decomposition [33,34], etc. However, the current gross error identification methods
still have practical problems such as insufficient identification accuracy and excessive
human judgment factors.

In response to the limitations of traditional methods for dam deformation outlier
detection, this paper investigates a comprehensive characterization method for dam de-
formation data, focusing on techniques suitable for spatio-temporal data mining. Existing
models often rely on single monitoring points and overlook the complex spatio-temporal
correlations between different monitoring points, which can lead to the misdiagnosis of
outliers. To address these challenges, this study proposes a novel framework that uses
the Ward method for clustering dam deformation data, followed by variational mode
decomposition (VMD) to decompose the time series of deformation data. In building
on the decomposed components, an HHO-optimized BiLSTM model is applied for time
series analysis, ensuring more accurate and robust predictions. The residual sequences
extracted from the model are further analyzed using the isolation forest algorithm for
effective abnormal data detection.

This research introduces several novel contributions: first, the combination of spatio-
temporal clustering with the VMD-based decomposition and HHO-optimized BiLSTM
model significantly enhances the ability to capture complex deformation patterns over time
and between monitoring points. This integrated approach outperforms traditional models,
which often fail to account for such correlations. Second, the use of isolation forest for
anomaly detection in the residual sequences provides a more reliable and precise method
for identifying gross errors, reducing both false positives and missed detections. Through
engineering examples, the proposed method’s effectiveness in both data characterization
and preprocessing is validated, demonstrating a clear advantage over existing techniques.

2. Ward-VMD-BiLSTM-IForest Method
2.1. Ward Space Point Clustering Method
2.1.1. Basic Indicators

According to the deformation data of each monitoring point in each period, the
spatial monitoring points are partitioned to determine the deformation spatial distribution
characteristics of the dam in each period. This section uses the absolute deformation
xnt = δnt, deformation increase ynt = δnt − δn,t−1, and relative deformation increase
znt = (δnt − δn,t−1)/(δn,max − δn,min) to construct the spatial monitoring point deformation
similarity distance partition index. The implementation process is as follows:

For the information of all time sections in the same divided period, this paper uses
two partitioning indicators, the absolute deformation similarity distance (ADD) and the
deformation increase similarity distance (DGD) of the spatial monitoring points, to reflect
the difference in absolute deformation and deformation increase between spatial monitoring
points p and q (p or q = 1, 2, . . ., N), where the expression of the full-time average absolute
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deformation distance partition index dS,pq(ADD) between spatial monitoring points p and
q (p or q = 1, 2, . . ., N) is

dS,pq(ADD) =

√√√√ 1
T

T

∑
t=1

(xpt − xqt)
2, xpt = δqt, xpt = δqt (1)

where T represents the number of time sections.
The expression of the full-time average deformation that increases distance partition

index dS,pq(DGD) between spatial monitoring points p and q (p or q = 1, 2, . . ., N) is

dS,pq(DGD) =

√√√√ 1
T

T

∑
t=1

(ypt − yqt)
2, ypt = xpt − xp,t−1, yqt = xqt − xq,t−1 (2)

Similarly, in considering the different total amplitudes of the full time series of mea-
surements at different monitoring points, it is necessary to add the full-time average relative
deformation increase distance partition index dS,pq(RDGD) between the spatial monitoring
points p and q (p or q = 1, 2, . . ., N), which is expressed as

dS,pq(RDGD) =

√√√√ 1
T

T

∑
t=1

(zpt − zqt)
2, zpt =

ypt

δp,max − δp,min
, zqt =

yqt

δq,max − δq,min
(3)

where dS,pq(ADD), dS,pq(DGD), and dS,pq(RDGD), respectively, represent the similarity
distances of absolute deformation, deformation increase, and relative deformation increase
between spatial monitoring points p and q in a certain division period. If the three defor-
mation partitioning indicators of the p-th monitoring point and the q-th monitoring point
in a certain division period are closer, the two monitoring points are classified into the
same spatial deformation partition. Similarly, if the p-th monitoring point xpt (or ypt or
zpt) is closer to the q-th monitoring point xqt (or yqt or zqt), the two monitoring points are
classified into the same deformation partition.

In addition, in order to characterize the influence degree and comprehensive influence
of the above three zoning indicators on the deformation characteristics of each spatial mon-
itoring point in a certain period of time of the dam, this paper constructs a comprehensive
distance zoning indicator of the deformation of the spatial monitoring point dS,pq(CD),
and its expression is

dS,pq(CD) =
√

β1d2
S,pq(ADD) + β2d2

S,pq(DGD) + β3d2
S,pq(RDGD), β1 + β2 + β3 = 1 (4)

where β1, β2, and β3 represent the weights of the above three deformation similarity
distance partition indicators.

Similarly, in the spatial monitoring point partition of the same division period,
Equations (1)–(3) need to be standardized, thereby obtaining the standardized compre-
hensive distance partition index in Equation (4). The standardized calculation formula for
the full-space monitoring point data of each time section is

ZS(Xnt) =
Xnt − µt

σt
(t = 1, 2, 3, . . . , T) (5)

where Xnt = xnt or ynt or znt; µt =

N
∑

n=1
Xnt

N ; σt =

√
N
∑

n=1
(Xnt−µt)

N−1 .



Water 2025, 17, 148 5 of 20

2.1.2. Clustering Method

Spatial point clustering is based on the Ward cluster linkage method, and its basic
principles are as follows:

When assuming that the N deformation monitoring points of the dam body have been
divided into k categories, denoted as G1, G2, . . ., Gk, Nl represents the number of monitoring
points in category Gl, Xil represents the index value of monitoring point i (i = 1, 2, . . ., Nl)
in Gl, Xl represents the index center of Gl, and then the sum of squares of deviations Wl of
monitoring points in Gl and the total sum of squares of deviations of category k are [35]

Wl =
Nl

∑
i=1

(Xil − Xl)
2 (6)

W =
k

∑
l=1

Wl (7)

When k is determined, the classification that minimizes W should be selected.
Based on the classification idea of the Ward method, for the dam deformation panel

data containing T periods and N monitoring points, the sum of squares of deviations of Nl

monitoring points within the panel data classification Gl can be obtained as

Wtl =
Nl

∑
i=1

[β1·(xitl − xtl)
2 + β2·(yitl − ytl)

2 + β3(zitl − ztl)
2] (8)

where Wtl represents the sum of squares of deviations of the monitoring points at time
t in Gl; β1, β2, and β3 are the entropy weights; xitl , yitl , and zitl correspond to the three
parameters in Formulas (1), (2) and (3), respectively; and xtl , ytl , and ztl represent the
average values of the parameters of the Nl monitoring points at time t in Gl, respectively.

Depending on the k value, different sums of squared deviations can be obtained, and
the corresponding hierarchical clustering dendrogram can be drawn.

2.2. Processing of Measured Effect Sizes Based on Variational Mode Decomposition (VMD)

The VMD algorithm mainly decomposes the measured signal f (t) into K intrinsic
mode components (IMFs) by solving the variational constraint equation that minimizes
the sum of the modal bandwidths. Figure 1 shows the VMD algorithm processing process
uk(t). In the VMD algorithm, IMF is the amplitude modulation frequency modulation
function [36], i.e.,

uk(t) = Ak(t) cos[φk(t)] (9)

where Ak(t) ≥ 0 is the amplitude; and φk(t) is the phase.
min

{uk},{ωk}

{
K
∑

k=1
∂t

∥∥∥∥[(δ(t) +
j

πt

)
× uk(t)

]
exp(−jωkt)

∥∥∥∥2

2

}
s.t.

K
∑

k=1
uk(t) = f (t)

(10)

To solve the constrained variational problem in Equation (10), the update iteration of
the modal component can be equivalent to solving the following quadratic optimization
problem:

un+1
k = argmin

α

∥∥∥∥∂t

[(
σ(t) +

j
πt

)
× un

k (t)
]

exp(−jωkt)
∥∥∥∥2

2
+

∥∥∥∥∥ f (t)−
K

∑
k=1

un
k (t) +

λn(t)
2

∥∥∥∥∥
2

2

 (11)
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where n is the current iteration number.
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By transforming Equation (11) into the frequency domain through a Parseval/Plancherel
Fourier isometry transformation, we can obtain the frequency domain solutions of the
modal function and the center frequency, which are

un+1
k (ω) =

f̂ (ω)− ∑
i ̸=k

ûn
i (ω) +

λ̂n(ω)

2

1 + 2α(ω−ωn
k )

2 (12)

ωn+1
k =

∫ ∞
0 ω

∣∣ûn
k (ω)

∣∣2dω∫ ∞
0

∣∣ûn
k (ω)

∣∣2dω
(13)

In the iterative update process, the update strategy of the multiplication operator is

λ̂n+1(ω)← λ̂n(ω) + τ[ f̂ (ω)−
K

∑
k=1

ûn+1
k (ω)] (14)

For a given discrimination accuracy ξ > 0, when Equation (15) is satisfied, the iterative
update terminates. The frequency domain solution of each modal component obtained
with Equation (12) is converted to the time domain using an inverse Fourier transform, and
the time domain signals of K intrinsic mode functions can be obtained.

K

∑
k=1

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2∥∥ûn
k

∥∥2
2

< ξ (15)
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2.3. HHO-BiLSTM Monitoring Model
2.3.1. HHO Optimization Algorithm

The Harris Hawk optimization algorithm (HHO) simulates the three main stages of
the Harris Hawk hunting process, i.e., the process of determining the most dangerous
failure path of the cascade dam group, which mainly includes the search stage, the search
and development stage, and the development stage. The specific implementation principle
of this method is as follows:

In the search phase of the HHO, the position of the Harris Hawk is updated mainly
using Equation (16) [37], i.e.,

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)|, q ≥ 0.5

(Xrabbit(t)− Xm(t))− r3(LB + r4(UB − LB)), q < 0.5
(16)

where X(t) is the position vector of the eagle at algorithm iteration number t; Xrand(t) is
the individual position vector of the randomly selected eagle; Xrabbit(t) is the prey position
vector; r1, r2, r3, r4, and q are random variables in the range of (0,1); UB and LB are the

upper and lower bounds of the search space, respectively; and Xm(t) = 1
N

N
∑

i=1
Xi(t) is the

average position vector of the eagle group.
During the search and exploitation phases, Harris’s Hawks exhibit different behaviors

depending on the potential for prey to escape, which is quantified by the so-called “escape
energy”, whose energy factor E is expressed as

E = 2E0(1−
t
T
) (17)

where E0 is the initial value of the escape energy; and T is the maximum number of
iterations of the algorithm.

Using Equation (17), Harris’s Hawk searches for prey.
When the energy factor is |E| < 1, it indicates that the prey is not physically fit. At this

time, the eagle flock switches to hunting mode, which can be divided into the following
four situations:

When |E| ≥ 0.5 and r ≥ 0.5, the Harris Hawk conducts soft encirclement and trap-
ping, i.e.,

X(t + 1) = ∆X(t)− E|JXrabbit(t)− X(t)| (18)

∆X(t) = Xrabbit(t)− X(t) (19)

where J represents the jumping energy of the prey when it escapes; and ∆X(t) represents
the difference between the positions of the hawk and the prey at the tth iteration.

When |E| < 0.5 and r ≥ 0.5, the Harris Hawk conducts hard encirclement and cap-
ture, i.e.,

X(t + 1) = Xrabbit(t)− E|∆X(t)| (20)

When |E| ≥ 0.5 and r < 0.5, the Harris Hawk performs a dive-style soft encirclement
and capture, i.e.,

X(t + 1) =

{
Y, f (Y) < f (X(t))
Z, f (Z) < f (X(t))

(21)

Y = Xrabbit(t)− E|JXrabbit − X(t)| (22)

Z = Y + SLF(D) (23)

where S represents a D-dimensional random vector; f (·) represents the fitness function;
and LF(·) represents the Harris Hawk flight function.
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When |E| < 0.5 and r < 0.5, the Harris Hawk conducts a dive-style hard encirclement
and capture, i.e.,

Y = Xrabbit(t)− E|JXrabbit − Xm(t)| (24)

X(t + 1) =

{
Y, f (Y) < f (X(t))
Z, f (Z) < f (X(t))

(25)

2.3.2. BiLSTM Monitoring Model

The bidirectional long short-term neural network is composed of a forward Long
Short-Term Memory (LSTM) and a backward LSTM. The bidirectional LSTM networks
are connected to each other, and the data are input, passed, and spliced from both the
forward and reverse directions to obtain the final result. An LSTM is a special Recurrent
Neural Network (RNN). Compared with in an RNN, the unit structure of an LSTM is more
complex, as shown in Figure 2. Its unit structure is mainly composed of a cell state, forget
gate, input gate, and output gate.
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The forget gate determines the amount of information passing through the dam
prototype monitoring data and retains the valid information [36].

ft = σ(W f ·[ht−1, xt] + b f ) (26)

where W f is the weight matrix of the forget gate; bf is the bias term; σ is the sigmoid activa-
tion function, σ(x) = 1/(1− e−x); t represents the current moment; and ht−1 represents
the output state of the previous moment.

The function of the input gate is to input the new monitoring data information into
the cell at the current moment. The sigmoid layer determines the proportion (degree) of
the new information selected it, and the tanh layer is used to generate a new candidate
vector at, which represents the storage of the new information learned.

it = σ(Wi·[ht−1, xt] + bi) (27)

ãt = tanh(Wc·[ht−1, xt] + bc) (28)
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Based on the selection of the cell state at the previous moment and the input infor-
mation at the current moment by the forget gate and the input gate, the cell state can be
updated as follows:

ot = σ(Wo·[ht−1, xt] + bo) (29)

ht = ot × tanh(Ct) (30)

In order to deeply explore the potential correlation and time-varying regularity of
dam deformation, we use statistical analysis to extrapolate historical time series to predict
its development trend. The training and verification data set of the BiLSTM model mainly
depends on the order of time occurrence. The BiLSTM inputs xt at each time step t and
provides it to the forward and reverse LSTMs, as shown in Figure 3. It also outputs the
hidden layers htq and htf through forward and reverse calculations based on two separate
hidden layers, and finally obtains the final output ht through output combination splicing.

ht = f (htq, ht f ) (31)
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2.4. Isolation Forest Detection of Abnormal Data
2.4.1. The Concept of Comprehensive Residuals

The clustered deformation’s similar monitoring points are input into the HHO-BiLSTM
model, the deformation prediction value of each monitoring point is output, the model
prediction residual of each monitoring point is calculated, and the correlation of the model
prediction residuals between the clustered similar monitoring points is used as the judg-
ment basis to construct the concrete dam deformation abnormal value discrimination index
based on the comprehensive residuals of similar monitoring points. For a monitoring point
i in a partition, assuming that the other deformation sequence’s similar monitoring points
in the same partition are 1, 2, . . ., n, by calculating the correlation coefficient ri (i = 1, 2, . . .,
n) between the residuals of the other deformation monitoring points and the residual of
the monitoring point, the comprehensive residual index of the studied monitoring point is
constructed according to Equation (32).

scomprehensive = w1s1 + w2s2 + . . . + wnsn (32)

where
wi = ri/(r1 + r2 + . . . + rn) (33)

where scomprehensive is the comprehensive residual; si is the residual of the ith monitoring
point; and wi is the proportion of the residual of the ith monitoring point in the comprehen-
sive residual.
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2.4.2. Isolation Forest Algorithm

After obtaining the high-frequency modal components, the isolation forest algorithm
needs to be used to identify the outliers. Isolation forest (iForest) is an integrated parameter-
free, unsupervised, fast anomaly detection method with the advantages of linear time
complexity and high accuracy. It can identify outliers from high-frequency modal com-
ponents. Its basic principle is to realize the anomaly detection of comprehensive residual
components through a set of randomly generated isolation trees (iTrees). The main steps of
isolation tree construction are as follows:

Step 1: Assume that in high-frequency component I, the high-frequency modal
component sequence of the safety monitoring information of monitoring point c is
Ic(t) = (y1, y2, · · · , yn); randomly select τ sample points from it to form a sample subset
S = {s1, s2, · · · , sτ}; and put it into the root node of the tree. The characteristic dimension
of the sample subset is β.

Step 2: In the current sample subset S, randomly specify a feature ξ and a split value
p, which is between the maximum and minimum values of the specified dimension.

Step 3: Generate a hyperplane from this cutting value, divide the sample subset into
2 subspaces, put the data of s(ξ) < p in the left child node of the current node, and put the
data of s(ξ) ≥ p in the right child node of the current node.

Step 4: Recursively repeat Step 1 to Step 3 in the child node and continuously construct
new child nodes until one of the following conditions is met: 1⃝ there is only one data in
the child node, which means that it cannot be cut any further; 2⃝ the tree has reached the
set height. Then, stop node division and form an isolated tree.

Step 5: Loop Step 1 to Step 4 until the number of isolated trees reaches the specified
number and then build an isolation forest from these isolated trees, as shown in Figure 4.
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In the process of tree node division, outliers in the high-frequency component will be
isolated earlier, i.e., outliers are closer to the root node of the isolated tree, while normal
values are farther away from the root node. Therefore, the outlier function s(y, n) is used to
obtain the outlier score of high-frequency component sample y in isolated forest F [38]:

s(y, n) = 2−
E(ht(y))

c(n) (34)

where
c(n) = 2H(n− 1)− 2(n− 1)/n (35)

H(τ − 1) = ln(τ − 1) + λ (36)
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E(ht(y)) =
∑t∈F ht(y) + ∑t∈F c(|lt(y)|)

|F | (37)

where ht(y) is the high-frequency component sample, with y as the path length from the
external node to the root node of the isolated tree, i.e., the number of edges; E(ht(y)) is
the average value of ht(y) in the isolated tree set, indicating the average number of times
sample y is divided; c(n) represents the average length of the search path; H(·) is the
harmonic number; λ is the Euler constant; |F | is the total number of isolated trees; and
|lt(y)| represents the number of samples in the isolated tree t that are in the same leaf node
lt(y) as the sample y.

According to the abnormal score, the high-frequency component sample y is tested
for abnormal values: if s(y, ψ) < 0.5, the sample is considered to be a normal value; if
s(y, ψ) ≈ 0.5, the safety monitoring information sample is considered to have no obvious
abnormality; if s(y, ψ) ≈ 1, the high-frequency component sample y is considered to be
an abnormal value, and the corresponding original data point x is suspected to be a gross
error. Since the isolation forest algorithm detects abnormal values from a mathematical
perspective and cannot explain the physical causes of abnormal values, it may misjudge
the sudden change caused by the sudden change in environmental quantities (water level
or temperature) as a gross error, so it is necessary to further distinguish the suspected
gross errors.

In view of the fact that gross errors are unrelated to the structural properties of the
dam and environmental changes, the synchronization between the outliers and the sudden
changes in environmental quantities can be used to determine whether the outliers are
caused by sudden changes in environmental quantities. The core idea is to decompose the
environmental quantity monitoring sequence using the variational mode decomposition
(VMD) method, extract the high-frequency modal components, and use the isolated forest
algorithm to detect anomalies. If both the environmental quantity and the original data
are detected as outliers at a certain moment, it is considered that the abnormal change
in the original data is caused by the sudden change in the environmental quantity and
should be retained; conversely, if only the original data are detected as outliers, and the
environmental variables do not show abnormalities, the original data are considered to be
gross errors and should be eliminated.

2.5. Coupled Ward-VMD-BiLSTM-Iforest Algorithm

The coupled Ward-VMD-BiLSTM-Iforest algorithm mainly includes the following
stages: the clustering and partitioning of monitoring points, extraction of residual compo-
nents by variational mode decomposition, calculation of fitting values and predicted values
by HHO-BiLSTM modeling, calculation of anomaly scores, and anomaly determination.
The specific process is shown in Figure 5.

The basic steps of this algorithm are as follows:
Step 1: Monitoring point clustering and partitioning: Use the Ward clustering algo-

rithm to cluster and partition the monitoring points, so that the monitoring points in each
area have similar deformation process lines.

Step 2: Perform center frequency analysis on the original effect size sequence S(t) of
the dam, obtain the optimal number s of IMF components through the center frequency
method, and use s frequencies with significant energy as the initial value of the center
frequency of VMD, i.e., determine the number of decomposed IMF components K = s.

Step 3: Input the original effect size time series of the dam into VMD and decompose
it into s IMF components.

Step 4: Use the HHO-BiLSTM algorithm to fit and predict each IMF component and
combine the measured values to extract the residual sequence.
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Step 5: Anomaly score calculation: According to the isolation forest algorithm, multiple
random numbers are constructed and their path lengths are calculated, and finally, the
anomaly score is calculated.

Step 6: Abnormality determination: Determine a threshold for anomaly scores based
on the contamination rate and identify points with anomaly scores exceeding the threshold
as outliers.
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3. Case Study
3.1. Project Overview

The Ertan Arch Dam Project (Figure 6) is located in the lower reaches of the Yalong
River in the southwest of Sichuan Province, China, at the junction of Yanbian County
and Miyi County in Panzhihua City. The maximum dam height of a concrete hyperbolic
arch dam in Sichuan Province is 240 m, the dam’s top elevation is 1205 m, and the lowest
elevation of the foundation surface is 965 m. The dam crest arc length is 774.69 m, the
arch crown top thickness is 11 m, the arch crown bottom thickness is 55.7 m, the arch end
maximum thickness is 58.51 m, the arch ring maximum center angle is 91.49◦, and the
upstream face maximum overhang is 0.18. The total storage capacity of the Ertan Reservoir
is 5.8 billion m3, the regulating storage capacity is 3.37 billion m3, and the normal water
storage level is 1200 m, while the catchment area is 116,400 km2.

Water 2025, 17, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 6. Airscape of the Ertan Dam Project. 

3.2. Cluster Partitioning 

The deformation of 29 monitoring points was divided into similarities using the 
Ward algorithm. The resulting tree diagram of the dam deformation monitoring points is 
shown in Figure 7, and the spatial measuring point clustering results are shown in Figure 
8. 

 

Figure 7. Clustering dendrogram of dam deformation monitoring points. 

 

Figure 6. Airscape of the Ertan Dam Project.



Water 2025, 17, 148 13 of 20

In order to monitor the horizontal displacement of the crown, spandrel and 1/4 arch
ring of the C dam, 8 inverted vertical lines and 10 vertical lines were arranged, totaling 20
monitoring points. To verify the effectiveness of the proposed method, the displacement
monitoring data of the vertical line monitoring points of the dam from January 2000 to
December 2019 were selected for analysis.

3.2. Cluster Partitioning

The deformation of 29 monitoring points was divided into similarities using the Ward
algorithm. The resulting tree diagram of the dam deformation monitoring points is shown
in Figure 7, and the spatial measuring point clustering results are shown in Figure 8.
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3.3. Variational Mode Decomposition

Take the monitoring point in zone 5 as an example; the values of α and K are 2000
and 6, respectively. The decomposition result of the monitoring point TCN08 is shown in
Figure 9.

The modal components of the monitoring points are sorted from low frequency to
high frequency. The IMF1 component of the monitoring point is a trend item indicating that
the overall deformation trend of the dam is in an upward state; the IMF2~IMF5 components
of the monitoring point are periodic items with strong periodicity and high stability; the
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IMF6 component of the monitoring point is a random item with weak periodicity and
low stability.
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3.4. HHO-BiLSTM Modeling Results

The HHO is used to optimize the hyperparameters of the model, the population size
is set to 5, and the maximum number of iterations is 20. Figure 10 shows the convergence
curve of the optimization algorithm. Using the HHO to optimize the BiLSTM model can
effectively improve the ability to obtain the optimal parameters of the model.

In order to compare the improvement of the prediction accuracy between the HHO-
BiLSTM model and the traditional prediction model, the prediction results of the HHO-
BiLSTM model are compared with the prediction results and evaluation indicators of the
GRU, LSTM, BiLSTM models, and the monitoring data of multiple monitoring points in
the partition are used to verify the applicability of the model. The number of hidden nodes,
initial learning rate, and maximum number of iterations of the LSTM and BiLSTM were set
to 100, 0.001, and 50, respectively; the number of hidden layer units, maximum number of
training cycles, and initial learning rate of the GRU model were set to 100, 100, and 0.001,
respectively. The evaluation indicators of the prediction results of different models are
shown in Table 1. It can be seen from Table 2 that the MAE, MAPE, RMSE, and R2 of the
HHO-BiLSTM model at each measurement point are better than those of the BiLSTM. In
taking TCN08 as an example, the R2 of the prediction result of the HHO-BiLSTM model
is 0.97775, which is 0.2882%, 0.827%, and 0.4438% higher than those of the GRU model,
LSTM model, and BiLSTM model, respectively; and the MAE is reduced by 0.1633, 0.5153,
and 0.2258 mm compared with the GRU, LSTM, and BiLSTM models.
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Table 1. Comparison of performance rating indicators of prediction results of each model for two
monitoring points.

Monitoring
Point Model MAE/mm MAPE/% RMSE/mm R2

TCN08

GRU 2.5499 2.7902 4.1076 0.97494
LSTM 2.9019 3.1654 4.5149 0.96973

BiLSTM 2.6124 2.7937 4.2296 0.97343
HHO-BiLSTM 2.3866 2.5987 3.8705 0.97775

TCN09

GRU 2.3118 2.5411 3.6669 0.97257
LSTM 2.6750 3.0831 4.1213 0.96535

BiLSTM 2.5221 2.8816 3.9101 0.96881
HHO-BiLSTM 2.0200 2.3189 3.2907 0.97791

Table 2. The residuals’ statistical details for all monitoring points.

Monitoring
Point Number Max Min Average Standard

Deviation

TCN01 1.4789 −3.8927 0.0453 0.2918
TCN02 0.8203 −3.3909 −0.0886 0.2007
TCN03 19.3066 −11.1765 0.1164 2.1726
TCN04 15.9820 −8.5553 0.0434 1.6451
TCN05 4.2837 −1.7233 0.2766 0.4337
TCN06 0.6098 −0.3481 0.0018 0.0690
TCN07 2.8155 −2.0961 0.0462 0.2780
TCN08 36.5070 −14.0944 −0.1023 3.8266
TCN09 33.0171 −11.2725 1.4294 3.4833
TCN10 18.7243 −7.3364 0.2044 1.8325
TCN11 9.9552 −3.3071 0.5236 0.9141
TCN12 1.5967 −0.8582 −0.1068 0.1935
TCN13 2.9326 −1.0125 0.0106 0.2974
TCN14 1.1475 −1.9070 0.0250 0.2276
TCN15 11.6986 −5.2325 −0.4554 1.4173
TCN16 10.1748 −4.0106 −0.4286 1.1257
TCN17 2.2240 −0.8804 0.1093 0.2397
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Table 2. Cont.

Monitoring Point
Number Max Min Average Standard

Deviation

TCN18 0.3007 −0.2903 −0.0205 0.0584
TCN19 1.6671 −0.8759 0.1108 0.2652
TCN20 2.2952 −3.0117 0.0025 0.1860

In order to build the HHO-BiLSTM model and test the prediction accuracy of the
model, 70% of the monitoring data were used as the training set and 30% as the test set.
The HHO was used to automatically optimize the number of nodes in the first and second
hidden layers of the model, the number of training times, and the learning rate, and the
optimization ranges were set to [1, 100], [1, 100], [1, 50], and [0.001, 0.01]. The residual series
equals the true value series minus the fitted/predicted series. The residuals’ statistical
details for all monitoring points are shown in Table 2.

In taking the monitoring points in zone 5 as an example, six gross errors were artifi-
cially constructed in the test set. The modeling prediction results, original sequences, and
residual sequences of the HHO-BiLSTM of the TCN08 and TCN09 monitoring points are
shown in Figures 11 and 12.

Water 2025, 17, x FOR PEER REVIEW 17 of 22 
 

 

optimization ranges were set to [1,100], [1,100], [1,50], and [0.001,0.01]. The residual series 
equals the true value series minus the fitted/predicted series. The residuals’ statistical de-
tails for all monitoring points are shown in Table 2. 

Table 2. The residuals’ statistical details for all monitoring points. 

Monitoring Point Number Max Min Average Standard Deviation 
TCN01 1.4789 −3.8927 0.0453 0.2918 
TCN02 0.8203 −3.3909 −0.0886 0.2007 
TCN03 19.3066 −11.1765 0.1164 2.1726 
TCN04 15.9820 −8.5553 0.0434 1.6451 
TCN05 4.2837 −1.7233 0.2766 0.4337 
TCN06 0.6098 −0.3481 0.0018 0.0690 
TCN07 2.8155 −2.0961 0.0462 0.2780 
TCN08 36.5070 −14.0944 −0.1023 3.8266 
TCN09 33.0171 −11.2725 1.4294 3.4833 
TCN10 18.7243 −7.3364 0.2044 1.8325 
TCN11 9.9552 −3.3071 0.5236 0.9141 
TCN12 1.5967 −0.8582 −0.1068 0.1935 
TCN13 2.9326 −1.0125 0.0106 0.2974 
TCN14 1.1475 −1.9070 0.0250 0.2276 
TCN15 11.6986 −5.2325 −0.4554 1.4173 
TCN16 10.1748 −4.0106 −0.4286 1.1257 
TCN17 2.2240 −0.8804 0.1093 0.2397 
TCN18 0.3007 −0.2903 −0.0205 0.0584 
TCN19 1.6671 −0.8759 0.1108 0.2652 
TCN20 2.2952 −3.0117 0.0025 0.1860 

In taking the monitoring points in zone 5 as an example, six gross errors were artifi-
cially constructed in the test set. The modeling prediction results, original sequences, and 
residual sequences of the HHO-BiLSTM of the TCN08 and TCN09 monitoring points are 
shown in Figures 11 and 12. 

 

Figure 11. HHO-BiLSTM modeling results of TCN08 monitoring point. 
Figure 11. HHO-BiLSTM modeling results of TCN08 monitoring point.

Water 2025, 17, x FOR PEER REVIEW 18 of 22 
 

 

 

Figure 12. HHO-BiLSTM modeling results of TCN09 monitoring point. 

3.5. Calculation of Comprehensive Residuals 

According to the comprehensive residual identification criteria, the residual correla-
tion r between the TCN09 and TCN08 monitoring points was calculated to be 0.9822. The 
proportions of the TCN08 and TCN09 monitoring points in the comprehensive residuals 
of TCN08, w1 and w2, were 0.5045 and 0.4955, respectively. The comprehensive residual 
sequence of TCN08 is shown in Figure 13. 

 

Figure 13. TCN08 comprehensive residual sequence. 

3.6. Final Recognition Result of Isolation Forest Algorithm 

With the isolation forest algorithm, a group of isolated trees of the residual compo-
nents are randomly generated to form an isolation forest, and the anomaly score of the 
residual sequence is calculated, as shown in Figures 14 and 15. 

 

Figure 14. Isolation forest anomaly scores for TCN08. 

Figure 12. HHO-BiLSTM modeling results of TCN09 monitoring point.



Water 2025, 17, 148 17 of 20

3.5. Calculation of Comprehensive Residuals

According to the comprehensive residual identification criteria, the residual correlation
r between the TCN09 and TCN08 monitoring points was calculated to be 0.9822. The
proportions of the TCN08 and TCN09 monitoring points in the comprehensive residuals
of TCN08, w1 and w2, were 0.5045 and 0.4955, respectively. The comprehensive residual
sequence of TCN08 is shown in Figure 13.
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According to the judgment criteria of the isolation forest algorithm for anomaly scores,
all measurements with anomaly scores greater than 0.77 are included in the suspected gross
error set. At the same time, with the same steps as above, the environmental quantity (air
temperature and reservoir water level) monitoring sequence is multi-scale decomposed
using the variational mode decomposition method, and the reservoir water level and air
temperature high-frequency modal component sequence is tested for anomalies using
the isolation forest algorithm. It was found that there are no outliers in the temperature
monitoring sequence. Therefore, it is only necessary to compare the dates of the outlier
set in the reservoir’s water level monitoring sequence with those of the suspected gross
error set for synchronization, and then identify the gross errors in the original radial
displacement monitoring sequence. It can be seen that the six gross error values added to
the displacement monitoring sequence of each measuring point in this paper have been
detected, and there is no missed detection or false detection, which verifies the effectiveness
of the proposed method for identifying gross errors in safety monitoring information.

In order to verify the superiority of the proposed method, the detection results are com-
pared and analyzed with those of the Raida criterion and the Romanovsky criterion. The
precision rate P, recall rate R, weighted evaluation index F, and other evaluation indicators
were calculated to compare and analyze the results. Table 3 shows the evaluation indicators
of the outlier recognition results of different methods at the TCN08 monitoring point. As
can be seen from Table 3, the traditional statistical test method of the Raida criterion has
a recall rate of 100%, but its precision rate is only 50%. The Romanovsky criterion has a
precision rate of 100%, but its recall rate is less than 50%. The weighted evaluation index
is low, and the detection effect is poor. The proposed method comprehensively considers
the spatio-temporal clustering characteristics of dam deformation and the high-precision
prediction model. Its precision rate and recall rate are both 100%, and the recognition effect
is better than that of the other comparison methods. In summary, the proposed method has
a good performance improvement in the accuracy, missed judgment, and misjudgment of
dam deformation outlier recognition.

Table 3. Evaluation indexes of outlier recognition results of different methods for TCN08 monitor-
ing point.

Identification Method P/% R/% F/%

The method proposed in this paper 100.00 100.00 100.00
The Raida criterion [3] 50.00 100.00 66.67

The Romanovsky criterion [3] 100.00 33.33 50.00

4. Conclusions
This paper proposes a method for identifying outliers in concrete dam deformation

data based on spatio-temporal clustering and deep learning, combining the Ward clus-
tering method, VMD algorithm, HHO-BiLSTM algorithm, and isolation forest (Iforest)
algorithm. A set of outlier identification criteria were constructed based on the compre-
hensive residuals of associated monitoring points. The prediction accuracy and outlier
identification accuracy of this method were verified through case study. The deformation
patterns of each monitoring point in the deformation partitions obtained using the defined
comprehensive distance and the Ward clustering method exhibit higher similarity than
those obtained through traditional clustering methods and are more consistent with the
regional distribution characteristics of arch dam deformation. The main conclusions are
as follows:

(1) The Ward-VMD-BiLSTM-Iforest outlier identification method proposed in this
paper can effectively identify all outliers in the data set and will not misidentify data
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mutations caused by environmental variable changes as outliers, providing a reliable and
effective new approach for outlier identification in dam deformation monitoring data.

(2) The proposed Ward-VMD-BiLSTM-Iforest outlier identification method demon-
strates high recognition accuracy, with experimental results showing that this method
outperforms traditional methods, which achieves 100% precision and 100% recall. More-
over, by comparing data from different monitoring points, the efficiency of outlier detection
is significantly enhanced.

(3) Although the proposed outlier identification method achieves accurate identifica-
tion, the selection of the Iforest value threshold requires manual judgment and determina-
tion based on specific circumstances. How to adaptively select the appropriate threshold
remains an important direction for future research.
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