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Abstract

Related studies analyzing the spatial structure of soil moisture from both horizontal and
vertical directions, as well as the spacing interval distances of soil moisture sampling
points in typical karst demonstration zones, are relatively rare. This study applied classical
statistics, geostatistics, and “3S” technology to analyze the spatial structure, influencing
factors, and spacing interval distances of soil moisture sampling points in the Guohua
Demonstration Zone. The results showed that Moran’s I indices of soil moisture at different
soil depths in the Guohua Demonstration Zone presented positive spatial correlation, and
the spatial distribution of soil moisture at different soil depths showed a distinct spatial
clustering pattern, with few spatially isolated zones. The spatial autocorrelation distance
for soil moisture at 5 cm and 10 cm soil depths was 2400 m, while the autocorrelation
distances for soil moisture at 20 cm and 30 cm soil depths were 2200 m and 2000 m,
respectively. The spatial range value for soil moisture at a soil depth of 20 cm in the Guohua
Demonstration Zone was the largest (Range = 6318.0 m), while the spatial range value for
soil moisture at a soil depth of 30 cm was the smallest (Range = 646.0 m). The minimum
value (threshold: 646.0 m) between the spatial autocorrelation distance and the spatial range
of soil moisture at different soil depths in the Guohua Demonstration Zone could serve as
an appropriate spacing interval distance of soil moisture sampling points. Soil moisture
at different soil depths in the Guohua Demonstration Zone was primarily influenced by
rock desertification, vegetation cover, soil layer thickness, and elevation. The synergistic
effect of “rocky desertification + vegetation”, “rocky desertification + soil thickness”, and
“vegetation + soil thickness” had a greater influence on soil moisture. Through high-density
soil moisture sampling points in typical karst areas, the study results strengthened the
application research on soil moisture in typical karst areas, providing scientific references
for studies on the spatial structure, influencing factors, and appropriate spacing interval
distance of soil moisture sampling points in karst areas.

Keywords: soil moisture; spatial structure thresholds; spacing interval distances; soil
moisture sampling points; Guohua Demonstration Zone

1. Introduction
The spatial structure and spatial heterogeneity of soil moisture are crucial for study-

ing the spatial distribution characteristics of soil moisture in terrestrial ecosystems [1–5],
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exploring the gas exchange mechanisms of atmospheric photosynthesis [6], and optimizing
agricultural management [7–9]. The acquisition of soil moisture values is a critical step in
studying the spatial distribution, spatial structure, and influencing factors of soil moisture.
The measurement and spatial mapping of soil moisture have become one of the primary
research areas in soil moisture studies [10–12]. The application of soil moisture spatial
variability is increasingly widespread [13–17], playing a significant role in exploring the
spatial distribution patterns and influencing factors of soil moisture [18]. Interpolation
methods combined with neural network technology, hydrological models, and clustering
methods have been widely applied in estimating soil moisture [19,20]. Emerging technolo-
gies have made new progress in obtaining soil moisture values, such as using satellite
data and crop models to invert soil moisture [21], using ESA CCI products with ANN for
spatial interpolation of soil moisture [22], and employing remote sensing image fusion
technology from different sensors to estimate soil moisture [23,24]. With the widespread
application of downscaling and machine learning methods in the field of soil moisture
interpolation [25–30], it is now possible to effectively assess high-precision data on soil
moisture at different soil depths [31] and map the spatial distribution of soil moisture [32,33].
In addition to the spatial measurement of soil moisture, the spatial distribution and spatial
structure of soil moisture have also attracted significant attention from scholars [34–38].
Related studies have provided scientifically validated analytical tools, including the Global
Moran’s I, Local Spatial Autocorrelation (LISA), and semivariogram analysis. These tools
have established a reliable methodological foundation for investigating the spatial auto-
correlation and variability of soil moisture in this study. These mature and operationally
feasible methods ensure the scientific rigor of this study, thereby enhancing the reliability
of the research findings.

Previous studies have primarily focused on the spatial distribution and spatial struc-
ture of soil moisture in non-karst areas at the horizontal level. Research on the spatial
heterogeneity of soil moisture should not only be limited to horizontal variations but
also focus on vertical differentiation. The water-holding capacity of soil varies with soil
depth, which is the primary cause of vertical spatial heterogeneity in soil moisture [39].
Relatedstudies on the spatial heterogeneity of soil moisture in typical karst demonstration
zones, combined with high-density soil moisture sampling points in both horizontal and
vertical directions, are relatively rare. Although soil moisture inversion methods based on
remote sensing technology have become relatively mature, the results of remote sensing
inversion of soil moisture still need to be validated using monitoring data.

Additionally, how to appropriately determine the suitable spacing distance for soil
moisture sampling points in typical karst areas remains an unsolved scientific issue [40].
High-density soil moisture sampling points are advantageous for precise research. How-
ever, if the density of soil moisture sampling points is too high, it will inevitably lead to
significant consumption of human, material, and financial resources. Low-density soil
moisture sampling points are more economical in terms of human, material, and financial
resources. However, suppose the density of soil moisture sampling points is too low. In
that case, it will not be easy to ensure the research precision of soil moisture or other soil
physical and chemical indicators.

This study aims to address the following scientific questions: Selecting a typical karst
area with a total area of only 2.71 km2, conducting high-density soil moisture sampling
points, combining remote sensing technology with methods such as spatial autocorrelation
and spatial interpolation in geographic information spatial structures, and conducting a
comprehensive study of the spatial patterns and influencing factors of soil moisture in the
Guohua Demonstration Zone from both horizontal and vertical perspectives. This study
aims to reveal the appropriate spacing interval distances of soil moisture sampling points in
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typical karst areas. So, this study took soil moisture in the typical karst area of the Guohua
Demonstration Zone in Pingguo County, Guangxi, as the research object. Combining
soil moisture sampling points and field monitoring, the study applied classical statistics,
geostatistics, and “3S” technology to explore the spatial autocorrelation and spatial structure
of soil moisture in typical karst areas with high spatial variability. The study investigated
the spacing interval distances of soil moisture sampling points and controlling factors
influencing the spatial structure of soil moisture in karst areas, providing a scientific
basis for agricultural production guidance and ensuring the sustainable utilization of soil
resources in typical karst areas.

2. Materials and Methods
2.1. Site Description

Guohua Demonstration Zone (23◦22′28.7′′–23◦23′40.7′′ N, 107◦22′40.8′′–107◦23′56.9′′

E) is located in the western part of Guangxi Zhuang Autonomous Region, China, covering
an area of approximately 2.71 km2 (Figure 1). Guohua Demonstration Zone has a sub-
tropical humid monsoon climate, with an annual average temperature of 21 ◦C and an
annual average precipitation of 1322.3 mm, with most of the rainfall concentrated between
June and September. Guohua Demonstration Zone is characterized by typical karst peak
clusters and depressions as its primary landform, with elevations ranging from 176.4 to
535.0 m. The soil in the Guohua Demonstration Zone can be classified as “Loamic Haplic
Calcisol” according to the WRBSR soil classification system [41,42], with parent rock mainly
consisting of Late Carboniferous (C3) and Early Permian (P1q) dolomitic limestone. The
soil layer thickness ranges from 0 to 120 cm, with thicker soil in depressions and thinner
soil or varying degrees of bedrock exposure on peaks. The vegetation in the Guohua
Demonstration Zone is primarily composed of Alchornea trewioides, Vitex negundo Linn,
Cipadessa cinerascens, Neyraudia reynaudiana, Gramineae, and Microstenium vagans.

Figure 1. Location of the Guohua Demonstration Zone and soil moisture sampling points.

2.2. Experimental Design and Field Sampling

This study utilized base maps such as the administrative boundary map of the Guohua
Demonstration Zone, Digital Elevation Model (DEM), land use map, and soil map as a
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foundation, overlaying Landsat 8 remote sensing images from August 2024 to achieve
geospatial localization of soil moisture. Factors such as crop types, growth conditions, and
vegetation within agricultural areas changed with the seasons. The field monitoring of soil
moisture in the Guohua Demonstration Zone was also scheduled for August, ensuring
consistency between the field monitoring month of soil moisture sampling points and the
imaging month of remote sensing images. From August 23 to 25, the Guohua Demonstra-
tion Zone experienced moderate rainfall with southeast winds at force 2–3 and an average
daily sunshine duration of approximately 6 h. From August 26 to 28, skies were clear with
south winds at force 2. After grouping personnel on the morning of the 28th, the research
area was divided into smaller sections for measurements

This study used stratified random sampling for the spatial layout of soil sampling
points. Given the study area’s small size of only 2.71 km2—a typical karst depression
landscape—villages were compact and situated in depressions, with houses scattered spo-
radically. The soil type is uniform, characterized as Loamic Haplic Calcisol influenced by a
subtropical monsoon climate. To effectively implement stratified random sampling, key
environmental attributes recorded at each sampling point within the study area were cate-
gorized into distinct strata. The stratification criteria for soil sampling points in this study
primarily encompassed: geological conditions, elevation, slope gradient, soil depth, vege-
tation cover, and degree of rock desertification. These six environmental factors showed
significant influence on the physicochemical properties of soil, including composition, tex-
ture, water-holding capacity, and soil moisture mobility. Given the study’s focus on spatial
autocorrelation, sample allocation within each stratum was proportional to the stratum’s
area to ensure adequate representation of variability [43,44]. Accordingly, sampling within
each defined stratum was conducted to select specific sampling locations. Soil moisture
sampling points were arranged to avoid roads, water bodies, and buildings; during field
monitoring, if access was difficult due to steep terrain, the location of soil moisture sampling
points was adjusted within a radius of 5 to 50 m. Soil moisture sampling points that could
not be adjusted were discarded. Therefore, within the study area, a total of 191 soil moisture
sampling points were collected at different depths from 0 to 30 cm (Figure 1). The average
spacing interval distance between soil moisture sampling points was approximately 120 m,
with a soil moisture sampling density of 70 points per square kilometer. Except for plots
where the soil depth was less than 30 cm, each soil moisture sampling point was taken from
a soil profile deeper than 30 cm. The 0–30 cm soil layer was divided into four sublayers: 0–5
cm, 5–10 cm, 10–20 cm, and 20–30 cm. Volumetric soil moisture content (abbreviated as soil
moisture) was measured using an Australian-made portable time-domain reflectometer
(TRASE TDR) and a dual-electrode probe. The calibrated TDR was used to monitor soil
moisture at different soil depths three times, and the average value of soil moisture was
taken as the basic data source for this study.

2.3. Statistical Analysis

To identify the primary environmental factors influencing soil moisture, descriptive
statistical analysis was conducted using SPSS software (version 23.0), including mean,
maximum, minimum, coefficient of variation (CV), standard deviation (SD), and skewness.
The normality of the dataset was assessed using the Kolmogorov–Smirnov (K-S) test,
combined with skewness and kurtosis values. For data that did not meet the criteria
for normal distribution, a logarithmic transformation was applied. Analysis of variance
(ANOVA) was used to calculate the differential effects of different geological backgrounds,
altitudes, slopes, soil thicknesses, vegetation coverages, and karst desertification levels on
soil moisture.
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2.4. Spatial Autocorrelation Analysis

Global spatial autocorrelation and local spatial autocorrelation are two different mea-
sures of spatial dependence. Moran’s I was a standard statistical method used in spatial
autocorrelation, with values ranging from −1 to 1. It is a weighted correlation coefficient
used to detect deviations from spatial randomness. Generally, Moran’s I is used to deter-
mine whether adjacent areas are more similar than expected under the null hypothesis. For
example, global Moran’s I, which indicates whether spatial autocorrelation is present or
absent overall, can be defined as

I =
N

∑i ∑j Wij
×

∑i ∑j Wij(Xi − X)(Xj − X)

∑i (Xi − X)
2 (1)

where I is the global Moran’s I, N is the number of soil samples, X is one kind of soil
indicators, X is the mean value of X, and Wij is the weight matrix.

Spatial association Local indicators (LISAs) measure the degree of spatial autocor-
relation at each specific location using local Moran’s I. LISA is typically used to assess
clustering within each spatial unit by calculating the local Moran’s I for each unit and
evaluating the statistical significance (Ii) at each specific location. Local Moran’s I can be
defined as

Ii =
N

∑i Zi
∑

j
Wij × Zj (2)

where Ii is the spatial correlation index (LISA), Wij is the weight matrix, Z is the deviation
of each soil indicator variable from the mean, and N is the number of soil samples.

2.5. Semivariogram Analysis and Kriging Interpolation

The semivariogram is a mathematical model used in geostatistics to describe the
spatial structure of regionalized variables. Its parameters primarily describe the spatial
correlation and variability of regionalized variables at specific spatial scales. The formula
for the semivariogram is as follows:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[
DN(xi + h)− DN(xi)]

2 (3)

where γ(h) is the semivariances function, h is the sample spacing (lag distance),, N(ℎ) is the
number of paired observations separated by distance h, DN(xi + h) is the grayscale value of
the pixel located at position (xi + h), and DN(xi) is the grayscale value of the pixel located
at position xi.

Assume that the estimated value of a certain variable at n sample points within the
area is denoted as Z∗(x0), and its formula is as follows:

Z∗(x0) =
n

∑
i=1

λiZ(xi) (4)

where λi is the weighted coefficient related to the position of Z(xi). To ensure that the
estimate is optimal, it must satisfy the conditions of unbiasedness and minimum variance,
expressed as

E[Z∗(x0)− Z(x0)] = 0 (5)

σ2[Z∗(x0)− Z(x0)] = min (6)
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From the above equations, using the Lagrange multiplier method, a matrix relationship
between λi and the semivariance can be derived:

r11 r12 . . . r1n 1
r21 r22 . . . r2n 1

. . .
rn1 rn2 . . . rnn 1
1 1 . . . 1 0




λ1

λ2

. . .
λn

ϕ

 =


r10

r20

. . .
rn0

1

 (7)

where rij represents the semivariance at spacing of
∣∣xi − xj

∣∣, and ϕ is the Lagrange multiplier.
By solving the set of equations and determining the value of ϕ, the optimal estimate Z*(x0)
at the point x0 can be obtained.

Based on the fitting results of the semivariance function model for soil moisture at
different soil depths in the Guohua Demonstration Zone, the geostatistical module of
ArcGIS 10.2 was used to obtain spatial interpolation of soil moisture at different soil depths
in the Guohua Demonstration Zone, resulting in a spatial distribution map of soil moisture
at different soil depths in the Guohua Demonstration Zone.

3. Results
3.1. Descriptive Statistical Analysis Results

Soil moisture at different soil depths in the Guohua Demonstration Zone ranged from
0.10% to 31.10%, with average values between 5.10% and 22.06%, and coefficient of variation
(CV) values ranging from 18.30% to 67.73% (Table 1). The coefficient of variation (CV) for
soil moisture at 5 cm and 20 cm soil depths was relatively high (CV > 30%), while the
coefficient of variation (CV) at 30 cm soil depth was relatively low (10% < CV < 30%). Soil
moisture at 5 cm and 10 cm soil depths presented a positively skewed distribution, while
soil moisture at 20 cm and 30 cm soil depths presented a negatively skewed distribution.
The highest kurtosis value was observed at a soil depth of 5 cm (Kurtosis > 4), followed
by the 30 cm soil depth, while the remaining soil depths presented approximate normal
distributions. The coefficient of variation (CV) of soil moisture at different soil depths
generally decreased with increasing soil depth, indicating that surface soil moisture was
more susceptible to external factors compared to deeper soil depths.

Table 1. Characteristic values of soil moisture.

Soil Depth
(cm)

Minimum
(%)

Maximum
(%)

Mean
(%)

Variance
Coefficient

Standard
Deviation Kurtosis Skewness

5 0.10 23.40 5.10 67.73 3.45 4.17 1.52
10 0.60 29.10 9.62 65.76 6.33 1.35 1.47
20 2.70 31.10 16.87 35.75 6.03 −0.60 −0.06
30 6.90 30.00 22.06 18.30 4.04 2.69 −1.39

3.2. The Spatial Structure of Soil Moisture
3.2.1. The Global Spatial Autocorrelation of Soil Moisture

The blue circles represented the locations of various geographical elements, while the
red lines indicated the spatial weights or adjacency relationships between these elements.
(Figure 2). The Moran’s I indices for soil moisture at different soil depths in the Guohua
Demonstration Zone mainly showed positive spatial autocorrelation (Figure 2), indicating
that the spatial distribution of soil moisture at different soil depths presented overall
positive spatial autocorrelation. Among these, Moran’s I index for soil moisture at a depth
of 30 cm was relatively high, indicating more substantial positive spatial autocorrelation for
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soil moisture at this depth. In comparison, Moran’s I index for soil moisture at a depth of 20
cm was relatively low, indicating weaker positive spatial autocorrelation for soil moisture
at this depth.

Figure 2. Moran’s scattered point diagram of soil moisture in different soil depths.

Soil moisture sampling points at different soil depths in the Guohua Demonstration
Zone were predominantly distributed in the first and third quadrants shown in Figure 2
(belonging to the “ high-high” and “low-low” cluster types, respectively), indicating that
adjacent high-value zones of soil moisture mostly surrounded high-value zones of soil
moisture, while adjacent low-value zones of soil moisture mostly surrounded low-value
zones of soil moisture. The clustering characteristics of high/low-value zones of soil
moisture at different soil depths in the Guohua Demonstration Zone (Figure 2) showed that
high/low-value zones of soil moisture at a soil depth of 5 cm were relatively concentrated.
In comparison, those at the 10 cm and 30 cm soil depths were relatively dispersed. At a soil
depth of 20 cm, high- and low-value zones of soil moisture showed a relatively uniform
spatial distribution. Moran’s dot plots for soil moisture were sparsely distributed in the
second and fourth quadrants (corresponding to the “low-high” and “high-low” clustering
types, respectively), indicating that only low-value zones at a soil depth of 20 cm showed a
phenomenon where adjacent high-value zones of soil moisture surrounded them. Adjacent
low-value zones of soil moisture surrounded high-value zones of soil moisture.

Moran’s I values generally decreased with increasing spacing interval distances of soil
moisture sampling points (Figure 3). When the spacing interval distance of soil moisture
sampling points was less than 2400 m, the Moran’s I values for soil moisture at the soil
depths of 5 cm and 10 cm in the Guohua Demonstration Zone were positive, presenting
spatial clustering characteristics; When the spacing interval distances of soil moisture
sampling points exceeded 2400 m, the Moran’s I indices for soil moisture at the soil depths
of 5 cm and 10 cm in the Guohua Demonstration Zone were negative, presenting spatial
isolation characteristics, indicating that the spatial autocorrelation scale for soil moisture at
the soil depths of 5 cm and 10 cm was 2400 m. When the spacing interval distances of soil
moisture sampling points was less than 2200 m, the Moran’s I index for soil moisture at a
soil depth of 20 cm in the Guohua Demonstration Zone was positive, presenting spatial
clustering characteristics; When the spacing interval distances of soil moisture sampling
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points exceeded 2200 m, the Moran’s I index for soil moisture at a depth of 20 cm in the
Guohua Demonstration Zone was negative, presenting spatial isolation characteristics,
indicating that the spatial autocorrelation scale for soil moisture at a depth of 20 cm was
2200 m. When the spacing interval distances of soil moisture sampling points was less
than 2000 m, the Moran’s I index for soil moisture at a depth of 30 cm in the Guohua
Demonstration Zone was positive, presenting spatial clustering characteristics; When the
spacing interval distances of soil moisture sampling points exceeds 2000 m, the Moran’s I
index for soil moisture at a soil depth of 30 cm in the Guohua Demonstration Zone was
negative, presenting spatial isolation, indicating that the spatial autocorrelation scale for soil
moisture at a 30 cm soil depth was 2000 m. It was evident that the spatial autocorrelation
scale range for soil moisture at different soil depths in the Guohua Demonstration Zone
was 2000–2400 m.

 

Figure 3. Interval distance and Moran’s I indices of soil moisture.

3.2.2. The Local Spatial Autocorrelation Analysis of Soil Moisture

The spatial distribution of soil moisture at different soil depths in the Guohua
Demonstration Zone presented distinct spatial clustering zones, with fewer isolated zones
(Figures 4–7). Among these, “high-low” spatial isolated zones were located adjacent to
spatial aggregation zones, while “low-high” spatial isolated zones coexisted with “high-
high” spatial aggregation zones. As soil depth changed, spatial aggregation zones of soil
moisture at different soil depths showed not only aggregation trends but also a certain
degree of complexity.

 

Figure 4. Spatial correlation and Lisa’s significant level of 5 cm soil moisture.
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Figure 5. Spatial correlation and Lisa’s significant level of 10 cm soil moisture.

 

Figure 6. Spatial correlation and Lisa’s significant level of 20 cm soil moisture.

 

Figure 7. Spatial correlation and Lisa’s significant level of 30 cm soil moisture.

3.2.3. The Semivariogram Model Analysis of Soil Moisture

The soil moisture at different soil depths in the Guohua Demonstration Zone was
suitable for their respective optimal semivariance function models (Table 2). The coefficient
of determination (R2) of the soil moisture fitting models at different soil depths ranged
from 0.74 to 0.91, indicating that the semivariance function models for soil moisture at
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different soil depths fitted well (Figure 8). The blue circles in Figure 8 represented the actual
observed soil moisture, and the red lines represented the fitting results of the theoretical
models. The C0/(C0 + C) ratio for soil moisture at different soil depths in the Guohua
Demonstration Zone ranged from 25% to 75%, indicating that soil moisture at different soil
depths in the Guohua Demonstration Zone presented moderate spatial autocorrelation. In
terms of the range of spatial correlation (Table 2), the spatial range value for soil moisture
at a depth of 20 cm was the largest (Range = 6318.0 m), indicating the most extensive range
of spatial correlation; the spatial range value for soil moisture at a depth of 30 cm was the
smallest (Range = 646.0 m), indicating the smallest range of spatial correlation.

Table 2. The semivariogram models and related parameters of soil moisture.

Soil Depth
(cm) Model

Determining
Coefficient

(R2)

Nugget
(C0) Sill (C0 + C) Nugget/Sill

Ratio (%) Range (m)

5 Gaussian 0.90 0.46 1.78 25.84 3701.39
10 Spherical 0.91 0.20 0.41 48.78 776.00
20 Exponential 0.79 0.14 0.28 50.00 6318.00
30 Spherical 0.74 0.02 0.06 33.33 646.00

 
Figure 8. The fitting results of the semivariogram functions for soil moisture at different depths.

For soil layers at depths of 5 cm or 10 cm, soil moisture was primarily influenced
by short-term precipitation and evaporation. At the shallow surface layer at a depth of
20 cm, soil points with a relatively high grade of rocky desertification, resulting in extremely
poor water-holding capacity [45]. Soil moisture rapidly evaporated or infiltrated down-
ward through fissures, causing these locations to become exceptionally dry. Conversely,
in solution gullies, channels, and pits between rocks, soil accumulated to form relatively
deep layers with stronger water-holding capacity and higher moisture levels. However,
soil distribution within rock crevices and pits was highly random and fragmented [46].
Consequently, at a depth of 20 cm, soil sampling points might span multiple soil patches
separated by exposed rock. These patches showed vastly differing moisture conditions
(ranging from near saturation to near complete dryness), resulting in a large spatial variabil-
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ity value (6318 m). This indicated that a considerable distance was required to encompass
all possible conditions from extremely wet to extremely dry. At a depth of 30 cm or deeper,
soil moisture was primarily controlled not by short-term precipitation and evaporation, but
by the deeper karst fissure network. At these depths, moisture movement was primarily
directed vertically downward into dominant fissures rather than exhibiting substantial
horizontal variation. Consequently, soil moisture in layers 30 cm or deeper predominantly
showed the homogenizing effect of deep soil water convergence into subterranean karst
conduits, resulting in a significantly reduced spatial variability range.

3.2.4. Spatial Distribution of Soil Moisture

The spatial distribution of soil moisture at different soil depths in the Guohua Demon-
stration Zone presented heterogeneity, primarily manifesting as arc-shaped and patchy
patterns (Figure 9). The overall spatial aggregation characteristics of soil moisture at differ-
ent soil depths were as follows: high-value zones were observed in the northeastern part.
In contrast, low-value zones were distributed in the southwestern part. From the perspec-
tive of aggregation centers, the spatial dispersion of soil moisture at different soil depths
was relatively large, and the structural integrity of high-value and low-value aggregation
centers was poor, with no completely closed aggregation centers.

Figure 9. The spatial distribution maps of soil moisture at various depths.

The higher levels of soil moisture in the northeastern part of the Guohua Demonstra-
tion Zone were primarily attributed to the relatively low-lying terrain and the exposure
of surface karst springs. The relatively higher levels of soil moisture in the central and
south-central parts were closely associated with the construction of elevated water tanks
and rainwater collection ponds. Overall, soil moisture values in the Guohua Demonstration
Zone increased with soil depth. This phenomenon was primarily related to the shallow sur-
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face soil layer and its relatively weak water retention capacity, making it more susceptible
to evaporation and downward seepage. In contrast, deeper soil layers presented stronger
water storage and retention capabilities.

3.3. Main Controlling Factors of the Spatial Variations in Soil Moisture

From a geological perspective of the Guohua Demonstration Zone (Table 3), the
average values of soil moisture under the Lower Permian geological background were
relatively higher than those under the Upper Carboniferous geological background. As the
values of altitude and slope increased (Tables 4 and 5), the average values of soil moisture
at different soil depths decreased. The average values of soil moisture at different soil
depths increased with the increase in karstification degree (Table 6). Increases in soil depth
and vegetation coverage had a significant impact on soil moisture at different soil depths
(Tables 7 and 8), but no obvious patterns of change were observed.

Table 3. Average values of soil moisture from different geological backgrounds (unit: %).

Soil Depth (cm) Upper Carboniferous (C3) Lower Permian (P1q)

5 4.12 5.87
10 8.84 10.05
20 16.36 17.28
30 22.76 21.49

Table 4. Average values of soil moisture from different heights (unit: %).

Soil Depth
(cm)

176.4–260.5
(m)

260.5–327.7
(m)

327.7–379.5
(m)

379.5–432.8
(m)

432.8–535.0
(m)

5 8.13 5.13 4.52 4.20 4.52
10 13.48 7.66 8.58 6.43 10.29
20 19.55 15.66 16.20 16.88 14.69
30 23.13 21.96 21.75 21.84 20.79

Table 5. Average values of soil moisture from different slopes (unit: %).

Soil Depth
(cm) 0–10 (◦) 10–20 (◦) 20–30 (◦) 30–40 (◦) >40 (◦)

5 6.03 4.75 5.39 5.23 3.70
10 10.86 8.82 10.81 8.79 8.46
20 17.37 14.80 16.39 13.34 12.52
30 21.78 22.43 21.61 22.55 20.33

Table 6. Average values of soil moisture from different soil thicknesses (unit: %).

Soil Depth
(cm) 0–15 (cm) 15–30 (cm) 30–45 (cm) >45 (cm)

5 4.62 4.27 5.03 6.84
10 14.79 10.20 7.96 11.17
20 — 17.73 15.09 19.45
30 — — 21.38 22.96
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Table 7. Average values of soil moisture from different vegetation coverage(unit: %).

Soil Depth
(cm) 0–20 (%) 20–40 (%) 40–60 (%) 60–80 (%) 80–100 (%)

5 5.80 4.50 4.67 5.69 5.70
10 15.70 9.84 8.37 10.96 9.73
20 22.60 17.56 15.98 17.61 23.10
30 — 20.61 22.02 22.28 25.80

Table 8. Average values of soil moisture from different grades of rocky desertification(unit: %).

Soil Depth (cm) No Rocky
Desertification

Mild Rocky
Desertification

Moderate Rocky
Desertification

Fierce Rocky
Desertification

5 5.43 4.60 4.39 10.80
10 10.01 8.44 10.09 15.85
20 17.03 16.05 17.48 20.60
30 21.85 21.65 23.11 21.20

Soil moisture was primarily influenced by rock desertification, vegetation cover, soil
depth, and elevation (Table 9).

Table 9. Variance values of soil moisture under different influence factors.

Soil Depth (cm) Geological
Background Altitude (m) Slope (◦) Soil Thickness

(cm)
Vegetation

Coverage (%)
Rocky

Desertification

5 1.531 2.616 0.754 1.306 0.613 9.182
10 0.732 7.474 1.401 8.090 7.984 10.615
20 0.423 3.368 4.107 4.823 10.553 3.866
30 0.806 0.694 0.785 1.248 4.872 0.669

Mean 0.873 3.538 1.762 3.867 6.006 6.083
Rank 6 4 5 3 2 1

(a) The transition from non-rock desertification to mild rock desertification showed that
as rock desertification occurred and progressed, vegetation cover and soil depth
tended to decrease, and the water-holding capacity of vegetation and soil tended to
decline, leading to an overall decrease in soil moisture; However, with the emergence
of moderate or severe rock desertification, values of soil moisture at different soil
depths were generally higher than those at other levels of rock desertification. In
areas with moderate or severe rock desertification, soil depth distribution was uneven.
Therefore, in areas with less soil, soil typically accumulated in small depressions,
erosion pits, and caves, where it possessed greater water storage capacity and lower
evaporation rates.

(b) Soil moisture values varied significantly at different soil depths, primarily due to the
impact of vegetation cover on soil water storage capacity. Therefore, in areas with
vegetation cover of more than 20%, soil moisture values increased with increasing
values of vegetation coverage, and presented distinct layering characteristics as soil
depth changed. However, in areas with vegetation coverage of 0–20%, soil moisture
was relatively high because these soil moisture sampling points were primarily located
near villages where residents pumped the groundwater for irrigation, resulting in
surface spring water overflow phenomena.

(c) Soil moisture values increased with soil depth because soil moisture at the soil sur-
face was prone to evaporation and downward penetration. In contrast, deeper soil
layers had relatively stronger water-holding capacity. Since soil moisture evaporation
primarily occurred at the soil surface, the average evaporation rate of soil moisture
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tended to decrease with increasing soil depth, making it easier for soil moisture to be
retained in the soil.

(d) Elevation had a particular influence on soil moisture, as water—particularly soil
moisture in soils at higher elevations—tended to flow toward lower-lying areas of
slopes via surface runoff or subsurface runoff due to gravitational forces. This process
accumulated water in the soils of low-lying areas.

Based on the statistical method of the synergistic effect between factors affecting soil
indicators [47–52], the interaction between various factors affecting soil moisture in the
Guohua Demonstration Zone was obtained (Table 10). The synergistic effect of “rocky
desertification + vegetation”, “rocky desertification + soil thickness”, and “vegetation +
soil thickness” had a greater influence on soil moisture.

Table 10. Synergistic effect values of soil moisture under different influence factors.

Soil Depth (cm) Geological
Background

Altitude
(m) Slope (◦) Soil Thickness

(cm)
Vegetation

Coverage (%)
Rocky

Desertification

Geological background 0.762 3.089 1.538 3.376 5.243 5.310
Altitude (m) 12.517 6.234 13.681 21.249 21.522

Slope (◦) 3.105 6.814 10.583 10.718
Soil thickness (cm) 14.954 23.225 23.523

Vegetation coverage (%) 36.072 36.534
Rocky desertification 37.003

4. Discussion
Since the parent material of the study area’s soil is carbonate-dominated limestone, the

inherent permeability of limestone itself exerts a certain influence on the overall water re-
tention capacity encompassing both rock and soil [53,54]. The Guohua Demonstration Zone
is a characteristic ecological industry demonstration area mainly planting pitaya, which has
formed a mature ecological industry model and has produced a wide range of radiation
effects in the southwestern region of China. There were currently no comparable studies
on soil moisture in the Guohua Demonstration Zone, making it impossible to directly
compare the soil moisture results from this study with those from previous research. From
a methodological perspective, this study integrated image processing technologies [55],
downscaling methods [56,57], and multi-source data [58] to design a novel soil moisture
sampling methodology featuring high-density and multi-depth soil moisture sampling
points. This methodology was supported by multi-source data and “3S” technologies,
enabling the accurate spatial distribution and environmental information of soil moisture
sampling points to be identified.

To ensure the accuracy of soil moisture research, determining an appropriate spacing
interval distance of soil moisture sampling points should consider not only the statistical
characteristics of soil moisture but also its spatial structure. Compared to classical statistical
methods, spatial autocorrelation and geostatistical methods could determine the spatial
arrangement, shape, and layout of soil moisture sampling points, providing valuable
guidance for the design of spacing interval distances of soil moisture sampling points. The
actual spacing interval distances of soil moisture sampling points (approximately 120 m)
were not only smaller than that of the minimum spatial autocorrelation distance (2000.0 m)
but also smaller than that of the minimum spatial range value (646.0 m), indicating that
the number of soil moisture sampling points in this study was excessive. According to
geostatistical theory, the spatial range value to some extent determines the spacing interval
distances of soil moisture sampling points, and the soil moisture sampling points should
avoid redundancy within this range. To achieve soil moisture sampling accuracy for soil
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moisture at different soil depths in the Guohua Demonstration Zone while minimizing the
use of human, material, and financial resources, the appropriate spacing interval distances
of soil moisture sampling points at different soil depths in the Guohua Demonstration Zone
could be defined as the minimum value of the spacing interval distances of soil moisture
sampling points obtained from both spatial autocorrelation and geostatistical methods
(threshold: 646.0 m). As long as an appropriate spacing interval distance of soil moisture
sampling points was ensured within a small range, high precision could also be achieved
over a larger range.

5. Conclusions
By employing classical statistics, geostatistics, and “3S” technologies, combined with

soil moisture sampling points and field monitoring, this study investigated the spatial
autocorrelation, spatial structure, and influencing factors of soil moisture in the Guo-
hua Demonstration Zone from both horizontal and vertical perspectives. The following
conclusions were drawn: positive global spatial autocorrelation existed in the spatial dis-
tribution of soil moisture at different soil depths within the Guohua Demonstration Zone;
The minimum spacing interval distance of soil moisture sampling points for both spatial
autocorrelation and geostatistical analysis of soil moisture at different soil depths in the
Guohua Demonstration Zone was 646.0 m (threshold), which was the appropriate spacing
interval distance of soil moisture sampling points at different soil depths in the Guohua
Demonstration Zone; Soil moisture at different soil depths in the Guohua Demonstration
Zone were primarily influenced by soil erosion, vegetation cover, soil depth, and elevation.
The synergistic effect of “rocky desertification + vegetation”, “rocky desertification + soil
thickness”, and “vegetation + soil thickness” had a greater influence on soil moisture.

This study identified rock desertification, vegetation cover, soil thickness, and eleva-
tion as the primary influencing factors; however, it provided a limited explanation of the
mechanisms through which these factors quantitatively influenced soil moisture. Future
research could utilize more complex models, such as process-based hydrological models or
machine learning methods, to quantify these relationships. Due to constraints on time, ef-
fort, and funding, this study was unable to investigate seasonal and interannual variations
in soil moisture. Further research will be conducted to employ more advanced research
methods and indicate additional spatial patterns and geographical significance.
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