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Abstract

Natech events, involving multi-hazard coupling and cascading effects, pose serious threats
to coal mine safety. This paper addresses flood-induced Natech scenarios in coal mining
and introduces a two-stage cascading analysis framework based on hazard systems theory.
A tri-layered network—comprising natural hazards, exposed elements, and secondary
hazards—models hazard propagation. In Stage 1, an improved adjacency information en-
tropy algorithm with multi-hazard coupling coefficients identifies critical exposed elements.
In Stage 2, Dijkstra’s algorithm extracts key risk transmission paths. A dual-dimensional
classification method, based on entropy and transmission risk, is then applied to prioritize
emergency responses. This method integrates the criticality of exposed elements with the
risk levels associated with secondary disaster propagation paths. Case studies validate
the framework, revealing: (1) Hierarchical heterogeneity in the network, with surface
facilities and surrounding hydrological systems as central hubs; shaft and tunnel systems
and surrounding geological systems are significantly affected by propagation from these
core nodes, exhibiting marked instability. (2) Strong risk polarization in secondary hazard
propagation, with core-node-originated paths being more efficient and urgent. (3) The
entropy-risk classification enables targeted hazard control, improving efficiency. The study
proposes chain-breaking strategies for precise, hierarchical, and timely emergency manage-
ment, enhancing coal mine resilience to flood-induced Natech events.

Keywords: flood; coal mine; Natech; hazard chain; exposed element; complex network

1. Introduction

With the rapid advancement of industrialization, incidents of secondary technological
hazards induced by natural hazards have become increasingly frequent [1]. These nat-
ural hazard-triggered technological accidents, known as Natech (natu-ral-technological)
events [2], represent a unique class of cascading hazards characterized by multi-hazard
interactions and cross-sectoral propagation [3]. Although relatively rare, Natech events are
capable of triggering domino effects that significantly amplify their impact beyond that of
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conventional accidents [4]. As a result, they have drawn growing attention from emergency
management authorities across various administrative levels [5,6].

Coal mines, characterized by complex geological conditions and harsh operational
environments, are particularly vulnerable to natural hazards—especially flood-induced
compound safety incidents [7]. Floodwater energy can severely impact critical infrastruc-
ture within the mining system, often triggering secondary hazards. When such energy
exceeds the system’s protective capacity, it may lead to abrupt operational failure, causing
significant casualties and systemic disruption [8,9]. For instance, in 2016, heavy rainfall
in Nasheng, Guizhou Province flooded the industrial zone of a local coal mine, resulting
in eight missing persons due to floodwater backflow. In 2021, torrential rains caused a
shaft flooding incident at the Dafengshu Coal Mine in Dazhu County, Sichuan Province,
leaving two miners missing and causing direct economic losses of approximately CNY
8.85 million. Similarly, in 2022, prolonged rainfall in Liiliang, Shanxi Province led to
multiple flood-related emergencies across coal mining sites [8]. Such flood-triggered coal
mine accidents—hereinafter referred to as coal mine—flood Natech events—not only lead
to severe injuries and infrastructure failure but also cause cascading impacts including
production disruption, workday losses, reduced enterprise profits, and weakened investor
confidence [7,10]. Studies have indicated that post-accident shutdown periods, driven by
regulatory inspections and safety restructuring, can extend over several weeks or months,
posing substantial strain on corporate cash flow [10]. Moreover, the total economic impact
extends beyond immediate production losses to encompass indirect costs such as medical
compensation, equipment restoration, customer attrition, and reputational damage. These
combined factors significantly undermine the competitive capacity of mining enterprises
and may further result in decreased regional tax revenues, labor market instability, and
increased social security burdens [10,11]. Given the high risk and substantial socioeco-
nomic cost of such compound hazards, a proactive and systematic investment in hazard
prevention strategies is both urgent and practically necessary.

Conceptually, Natech events comprise three fundamental components: hazard-causing
factors, hazard environments, and exposed elements [12]. Among these, the hazard envi-
ronment provides the foundational conditions for the formation of hazard-causing factors,
while natural hazards, as hazard-causing factors, directly impact the exposed elements of
the coal mine through physical shocks or chemical pollution. Under the influence of natural
hazards, the exposed elements in coal mines may transform into new hazard-causing
factors, leading to severe consequences, including casualties, property losses, ecological
pollution, and social unrest [13]. For example, the hazard process of heavy rain — coal
mine — flooding of the well — casualties among miners clearly illustrates the two-stage
chain evolution path of Natech events. From the dual perspectives of hazard impact and
causation, once the exposed element, acting as an “intermediary,” undergoes a state change,
it will trigger a chain reaction of secondary hazards, resulting in a more complex and
diverse evolution path [14]. Identifying key evolution paths of varying risk levels from
numerous paths is crucial for formulating targeted hazard reduction strategies [15]. There-
fore, accurately identifying key exposed elements and the propagation paths of secondary
hazards, as well as classifying and grading them, followed by implementing precise inter-
vention measures for weak or high-risk links, is vital for breaking the hazard chain and
reducing hazard losses.

Natech events often evolve through multiple cascading chains, gradually leading to an
interconnected disaster network that exhibits distinct characteristics of complex systems [3].
Recognizing this intrinsic feature, researchers have introduced network modeling and
graph-theoretical approaches into the assessment of Natech scenarios [16-19]. In these
models, nodes are typically defined as hazardous events or exposed elements, while edges
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represent the relationships among crises, thereby enabling the construction of a complex
network model of Natech accidents. The strength of this approach lies in its ability to
capture latent transmission pathways and identify critical exposed elements within the
system [14]. Typically, topological indicators based on complex networks (such as degree
centrality, betweenness centrality, closeness centrality, K-shell decomposition, and eigen-
vector centrality) can be used to assess the importance of exposed elements, ranking their
criticality [20-22]. Additionally, some emerging algorithms (such as gravitational centrality
and PageRank algorithm) have also been introduced to this field [23,24]. However, these
methods are often applicable only to specific types of networks (such as undirected un-
weighted networks or directed weighted networks), which presents certain limitations [25].
To develop a more widely applicable method, reference [26] proposed a network node
importance identification algorithm based on Adjacency Information Entropy (AIE). This
algorithm is versatile for different types of networks and requires only information from
nodes and their neighboring nodes to complete the calculations, offering high computa-
tional efficiency, particularly suitable for hazard networks that are urgent and structurally
complex. Nevertheless, the aforementioned methods primarily consider factors such as
time, efficiency, and cost when determining the weights of nodes or edges, but do not
adequately address the coupling issues between them. This issue is crucial in studying
Natech events [6], as Natech events often involve the joint action of multiple hazard types,
manifesting as a multi-chain coupled network evolution pattern [3]. The coupling effects
between hazard chains often lead to consequences that far exceed the mere superposition of
single hazard chains [27]. Therefore, when identifying key exposed elements, it is essential
to fully consider the coupling effects between hazard nodes to ensure accurate identification
of the entities most vulnerable to severe impacts.

In the field of critical path identification, various mature methods have been widely
applied, such as analysis methods based on maximum flow, structural holes, and shortest
paths [28-30]. Among them, maximum flow analysis focuses on path capacity, struc-
tural hole analysis emphasizes network connectivity, while shortest path analysis high-
lights efficiency—here, “efficiency” can be reflected in factors such as distance, time, or
cost [31-33]. Natech events are characterized by typical suddenness, instantaneousness,
and urgency [34]. In the propagation path from the failure of the exposed element to the
final accident consequences, the fewer nodes experienced, the shorter the time, and the
greater the loss cost, the higher the propagation efficiency of secondary hazards, and the
corresponding risk of that path also increases [35]. Therefore, in disaster chain network
analysis, particular attention should be directed to high-risk propagation routes—namely,
the shortest paths with the greatest potential to cause severe cascading consequences. Dis-
rupting these critical pathways can significantly delay or even prevent the rapid escalation
of disaster impacts. Dijkstra’s algorithm, a classical shortest-path detection method based
on the greedy principle, computes the minimum-distance routes from a source node to all
other nodes within a graph [36]. It is well-suited for both directed and undirected graphs
with non-negative edge weights [37]. In this paper, Dijkstra’s algorithm is employed to
identify the shortest propagation paths of secondary disasters initiated by various ex-
posed elements, enabling the detection of high-risk pathways and facilitating targeted
mitigation strategies.

In summary, the secondary hazards triggered by natural hazards acting on exposed
elements are often more complex and difficult to control. Therefore, classifying and grading
emergency action targets based on key exposed elements and key propagation paths is of
great significance for formulating effective hazard reduction strategies. However, current
research still faces many challenges. First, the propagation mechanism of Natech events
is complex, involving multiple interactions between primary hazards, exposed elements,
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and secondary hazards, which adds difficulty to the construction of Natech networks.
Second, Natech events have typical characteristics of multi-hazard coupling, requiring
existing algorithms to fully consider this complex coupling mechanism when identifying
key exposed elements, thereby further increasing the complexity of the algorithms and the
demand for adaptability to Natech events. In addition, the evolution paths of secondary
hazards are more diverse and complicated compared to primary hazards, making the
identification of the shortest evolution paths and the classification and grading work based
on key exposed elements and the shortest paths more difficult. Therefore, there is an urgent
need to develop a network analysis framework suitable for Natech events to effectively
identify key exposed elements and key propagation paths of secondary hazards, and to
classify and grade them, thus providing scientific support for formulating differentiated
hazard reduction strategies.

To address the above challenges, this paper proposes a systematic solution. First, the
evolution path of Natech events is divided into two stages: “natural hazards—exposed
elements” (Stage I) and “exposed elements—secondary hazards” (Stage II). A three-layer
network of Natech events is constructed with hazards and exposed elements as nodes, and
the propagation and evolution of hazards as edges, thereby revealing the laws of hazard
transmission more clearly. Secondly, for Stage I, a Coupled Adjacency Information Entropy
(C-AIE) algorithm is proposed to calculate the importance of exposed elements in Natech
events. This method fully considers the coupling effects in Natech events, explores various
coupling scenarios in depth, and provides a more comprehensive understanding of the
complex coupling relationships in the network, offering a more scientific theoretical basis
for determining the priority of exposed elements. For Stage II, Dijkstra’s algorithm is used
to search for the shortest propagation path of secondary hazards, with the weights of edges
based on hazard propagation time and loss costs. Finally, based on real coal mine case data,
a detailed analysis and classification of key exposed elements and the evolution path of
secondary hazards in coal mines are conducted, and corresponding chain break hazard
reduction strategies are proposed.

The main research contributions of this paper are as follows:

e  This paper proposes a two-stage analytical framework for Natech events, centered
around the identification of critical exposed elements. By recognizing their dual role
as both victims and facilitators of hazard transmission, the framework systematically
analyzes key propagation pathways and introduces a tailored link classification and
grading method for disaster evolution.

e An enhanced algorithm for node importance identification based on adjacency infor-
mation entropy is developed. Incorporating the concept of coupling enhancement
coefficients, the algorithm captures the inherent multi-hazard coupling features of
Natech scenarios. Comparative analyses against classical methods validate its effec-
tiveness and robustness in identifying critical exposed elements.

e  To prioritize intervention targets, a dual-dimensional link classification strategy in-
tegrating entropy and risk is introduced. This approach adheres to the principle
of concentrating efforts on decisive hazards, enabling targeted interventions under
limited conditions and enhancing the overall efficiency of Natech disaster mitiga-
tion efforts.

e The proposed framework is validated using a comprehensive dataset of real-world
coal mine—flood Natech cases. The findings offer actionable insights for emergency
decision-making and strategic risk mitigation. Specifically, the results support targeted
classification of exposed elements and focused interventions along high-risk propaga-
tion routes, facilitating the formulation of differentiated emergency response plans
and enhancing the accuracy and timeliness of coal mine disaster governance.
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The remainder of this paper is structured as follows. Section 2 introduces the evolu-
tionary chain analysis framework for flood-induced coal mine disasters. Section 3 details
the data sources and presents an algorithm for identifying critical exposed elements and
mitigating secondary disasters. Section 4 presents an empirical study based on the pro-
posed methodology and collected data. Section 5 provides analysis and discussion of the
empirical results. Finally, Section 6 concludes the paper by summarizing the main findings,
discussing the study’s limitations, and outlining directions for future research.

2. Analytical Framework

Considering the pivotal role of exposed elements within the Natech network, the haz-
ard evolution process is divided into two stages: from natural hazards to exposed elements
(representing the primary hazard), and from exposed elements to accident consequences
(representing the secondary hazard). In the primary hazard stage, the C-AIE for exposed
element nodes is analyzed to evaluate their vulnerability to impact and their potential for
hazard propagation. In the secondary hazard stage, shortest-path analysis is employed
to identify high-risk propagation routes. Interrupting these critical nodes and paths can
effectively delay or prevent the rapid spread of hazards. Figures 1 and 2 illustrate the
two-stage network model of coal mine-flood Natech event evolution and its fundamental
network structure, respectively.

Dijkstra algorithm
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Stage 1: Evolution of primary hazards Stage 2: Evolution of secondary hazards in coal mines

Figure 1. Schematic diagram of the two-stage evolution network model for coal mine-flood Nat-
ech events.

o: natural hazards

e: disaster-prone environment

f: hazard-triggering factors

b: exposed elements

s: secondary accidents in coal mines
c: consequence of the accident

Figure 2. Basic structure of the coal mine-flood Natech evolution network.

In Figure 2, Stage 1 describes the direct impact of natural hazards such as heavy rain
and floods on the exposed elements in the coal mine system (such as equipment, facilities,
surrounding ecosystems, etc.). The core of this stage is the direct destruction or impact of
natural hazards on the exposed elements, which is the starting point of hazard transmission.
Stage 2 describes how the exposed elements, after being affected by natural hazards, further
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trigger secondary accidents (such as flooding of wells, explosions, leaks, etc.) and their
consequences. The core of this stage is the interaction between exposed elements and the
chain reaction of accidents, which is the expansion and deepening of hazard transmission.

In Stage 1, the C-AIE algorithm is used to identify key exposed elements and rank
their importance, which can help managers determine the priority exposed elements for
protection. In Stage 2, using the key exposed elements as source points, Dijkstra’s algorithm
is employed to determine the shortest evolution path from the exposed elements to the
consequences of the incident. This method can systematically reveal the transmission
mechanism of secondary hazards, identify high-risk intermediaries and propagation paths
during the hazard evolution process, thereby providing scientific support for formulating
effective hazard reduction strategies for chain breaks.

3. Datas and Methods
3.1. Data Sources

This paper systematically classifies exposed elements in coal mines based on the
Technical Specification for the Investigation of Exposed elements in Coal Mine Natural
Hazards [38]. In addition, a total of 264 coal mine emergency cases characterized as
flood-induced Natech events, spanning the years 2000 to 2024, were collected from the
following sources:

e The National Institute for Occupational Safety and Health (NIOSH) and the Mine
Safety and Health Administration (MSHA) in the United States. Accident data are
publicly accessible via their official websites (https://www.cdc.gov/niosh/ (accessed
on 5 March 2025) and https:/ /www.msha.gov/ (accessed on 6 March 2025));

e  China Safety Production Yearbook (2000-2017), compiled by the China Academy of
Safety Science and Technology, accessible through the National Library of China and
relevant academic databases;

e  The Coal Mine Safety Production Network (http://www.mkaq.org (accessed on 9
March 2025)) and the Safety Management Network (http://www.safehoo.com (ac-
cessed on 10 March 2025)), both of which provide open-access mining accident cases
and safety analysis reports;

e  Official websites of emergency management authorities, such as the Ministry of
Emergency Management of China (http://www.mem.gov.cn (accessed on 11 March
2025)), where accident bulletins can be retrieved from the “News” or “Accident
Alerts” sections.

Based on a thorough review and extraction of these case sources, the study identified
101 key nodes representing typical Natech scenarios, with exposed elements as a core
component. The detailed node classification is presented in Table 1.

Table 1. Detailed scenario information of flood-induced coal mine Natech events.

No. Node Number Node Information No. Node Number Node Information
1 01 Heavy rain and flood 52 Soo Puddle in the tunnel
2 0y Strong wind 53 53 Damage to power system
equipment
Safety monitoring and
3 03 Thunderbolt 54 So4 communication system
equipment failure
Lightning current and strong Ventilation system equipment
4 €1 55 525 .
energy malfunction
5 e Wind pressure 56 52 Short circuit with electric

machinery



https://www.cdc.gov/niosh/
https://www.msha.gov/
http://www.mkaq.org
http://www.safehoo.com
http://www.mem.gov.cn

Water 2025, 17, 2181

7 of 35

Table 1. Cont.

No. Node Number Node Information No. Node Number Node Information
6 e3 Surface runoff 57 o7 Drainage system damage
7 e Surface water 58 528 Mud and slurry collapse in the
tunnel
8 es Old empty water 59 529 Collapse of mined-out areas
9 6 Croundwater 60 530 Wate1.* accumulation in
mined-out areas
10 f1 Lightning strike 61 531 Gas explosion
11 f2 Storm 62 S30 Increase in water flow
12 f3 Changes in the physical 63 533 Drainage failure
structure
13 fa Landslide and rockfall 64 S34 The fan stops blowing
14 fs Debris flow 65 S35 Toxic gas emissions
15 fe Ground subsidence 66 S36 Gas accumulation
16 f7 Mountain flood 67 S37 System false alarm
17 fs Mineral water 68 S38 Residential area damaged
18 fo Mine wagiérgssgirllgﬁltratlon, 69 S39 Hot air flow intake
19 f10 Goaf 70 S40 Heat wave burns
20 by Mining area ecosystem 71 S41 Building collapse
2 b, Surrounding hydrological 7 50 Damage to machinery and
system equipment
22 b3 Surrounding geological system 73 543 Power outage
23 by Surface facility 74 Sy Communication interruption
24 bs Shaft and tunnel system 75 545 Water supply interruption
25 be Mining system 76 546 Road traffic interruption
26 by Drainage system 77 547 Electric shock
27 bg Ventilation system 78 S48 The river water level rises
28 by Power system 79 S49 Object strike
29 b1o Transport lifting system 80 S50 Mechanical injury
30 b1 Security monitoring and 81 551 Coal mine material loss
communication system
31 1 Damage to ground facilities 82 552 Environmental pollution
32 Sy Industrial site destruction 83 S53 Ecological pollution
33 S3 Fire 84 S54 Land degradation
The spontaneous combustion
34 54 and collapse of the gangue 85 555 Crop damage
mountain
35 S5 Destrlizzzggfo;urface 86 S56 Drowning
36 S6 Damage to roads and bridges 87 Ss7 Personnel burial
37 sy Industrial site burial 88 558 Hypoxia asphyxia
38 S8 Factory destroyed 89 559 Shaft and tunnel damage
39 59 Burial of road bridges 90 S60 Work face shutdown
40 510 River channel damage 91 S61 Decline msjj‘l;iﬁt;nd tunnel
41 s11 Reservoir overflow 92 Se2 Shock wave impact
42 S12 Wellhead embankment collapse 93 S63 Suffocation from poisoning
43 513 Device submerged in water 94 S64 High-pressure impact
44 S14 Industrial site flooding 95 565 High-temperature burning
45 515 Road erosion damage 96 S66 Decreased recoverable reserves
46 516 Cable route damage 97 Se7 Missing persons
47 S17 Water pollution 98 a Social impact
48 S18 Soil pollution 99 o)) Casualties
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Table 1. Cont.

No. Node Number Node Information No. Node Number Node Information
49 519 Mine flooding 100 c3 Property damage
50 S0 Water pressure impact on the 101 Cy Ecological destruction

tunnel
51 521 Tunnel collapse and blockage

3.2. Methodology
3.2.1. Problem Description

Based on the directionality and weight attributes of the edges in the network, the
network can be classified into four types: unweighted undirected network, unweighted
directed network, weighted undirected network, and weighted directed network [25].
In Natech events, the relationships between hazard nodes typically exhibit a one-way
triggering pattern, and the strength, probability, and coupling mechanisms of the hazard
chain vary. Therefore, different edges need to be assigned different weights. Based on
this, the coal mine Natech network is classified as a directed weighted network. This
network can be represented as G = (V,E, W), where V = {v4,v;...,v, } represents the set
of network nodes; E = {e1,e;...,e,} represents the set of network edges; W represents the
weight matrix of the edges, w;; indicating the weights on the edges connecting node v; to
node vj. The adjacency matrix of the network is denoted as A, x, = (aij), where if there is
an edge from v; to vj, otherwise, a;; = 0.

The phenomenon where two or more factors or incidents interact and trigger new
events or exacerbate the impact of the initial event is collectively referred to as the coupling
effect between emergent events. Depending on the mechanism of the emergent events,
coupling can be categorized as OR coupling, AND coupling, and CO coupling [39]. The
probabilities of these different coupling mechanisms occurring vary. Typically, the higher
the coupling probability of a parent node, the more likely it is to cause severe consequences
for the child nodes, meaning higher weights should be assigned in the network. Since
this coupling effect increases the weight of the nodes, we refer to this phenomenon as
the enhancement effect and use an enhancement coefficient to quantify its impact. To
comprehensively reflect the connections of a node and its indirect neighboring nodes while
considering the coupling effects of hazards in reality, this paper constructs an AIE model
that takes into account the node coupling mechanism. Additionally, using key exposed
elements as the source, Dijkstra’s algorithm is applied to determine the shortest evolution
path from the exposed element to the accident consequences. This method systematically
identifies high-risk intermediary nodes and propagation paths in the hazard evolution
process, providing scientific support for the development of effective chain-breaking hazard
reduction strategies.

3.2.2. Coupled Adjacency Information Entropy Model for Key Exposed
Element Identification

1.  Modeling of Enhancement Coefficients Under Coupling Mechanisms
e  Enhancement Coefficient Under OR Coupling

OR coupling indicates that two neighboring nodes operate independently, and the
output is the result of either one being activated. The characteristic of this coupling is a
loose dependency relationship, and the OR coupling coefficient can be understood as the
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probability or intensity of at least one of the two neighboring nodes participating in the
coupling. Under the OR coupling mechanism, the coupling coefficient of nodes j and r is

k(jorr) = P(j) + P(r) = P(jNr) (1)

where v; and v, are both neighbor nodes of v;, P(j) and P(r) represent the occurrence
probabilities of v; and vy, respectively, P(j Nr) denotes the probability of v; and v, occur-
ring simultaneously.

Thus, the enhancement coefficient of the edge under OR coupling can be obtained as

eor(ji)y =Y, P(j)+P(r)—P(jnr) (2)
rel;

r#j

where ey (ji) represents the enhancement coefficient of edge vj; under the OR cou-
pling effect.

e  Enhancement Coefficient Under AND Coupling

AND coupling indicates that effective coupling can only occur when both neighboring
nodes are activated simultaneously. This type of coupling has a stronger dependency,
and the coupling coefficient reflects the intensity of the simultaneous action of the two
neighboring nodes.

k(jandr) = P(jNr) 3)

where P(j M) represents the probability that v; and v, occur simultaneously.
Thus, the enhancement coefficient of the edge under the AND coupling effect can be
obtained as
erlji) = Y P(iN7) @
rel;

r#j
e  Enhancement Coefficient Under CO Coupling

CO coupling generally describes the coupling strength of synergistic coupling or
synergy, involving interaction terms between neighboring nodes. Its coupling coefficient is
usually represented as the correlation or interdependence between neighboring nodes.

k(jcor) = P(jnr) /\/P(j)-P(r) 5)

where P(j Nr) represents the probability that v; and v, occur simultaneously. V/P(j)-P(r)
is a normalization factor to eliminate the influence of the individual system strength.
Thus, the enhancement coefficient of the edge under the CO coupling effect can be
obtained as
elji) = X P(GNT) [\/PG)-P() ©)
rel;

r#j

There are mainly two methods for calculating the occurrence probability P of nodes:
one is the statistical probability value based on accident case statistics, but due to the low
frequency of certain accidents or incomplete data disclosure, this may lead to inaccurate
probability calculations; the other is the empirical probability value obtained from expert
scoring, which has a strong subjectivity. Therefore, this paper adopts a method that
combines statistical probability values and empirical probability values to calculate the
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occurrence probability P. Specifically, a weighted method is used to integrate the two
probability values, and the calculation method is as follows:

P=uaP+(1—a)P; (7)

Py = N;/N (8)

where P; and P, represent statistical probability and empirical probability, respectively, N
is the total number of statistical cases, and N; is the number of occurrences of accident v; in
the statistical cases. « is the weight coefficient, and the more sufficient the case data, the
larger the value of a.

To minimize the subjectivity of expert scoring as much as possible and improve the
applicability of the occurrence probability of nodes, this paper introduces Dempster-Shafer
(DS) theory [40] to fuse expert scoring values. Specifically, assuming that a certain node
in the network has two independent states T and F, m is the basic probability assignment
function (i.e., mass function) for each state. If i experts are invited to score the mass functions
for the two states of the node, their scoring results can be denoted as {my(T), m;(F)},
{my(T),my(F)}, ..., {m;(T), m;(F)}. According to the multi-evidence synthesis rule of DS
theory, the fused m value (denoted as m(X)) for the possible occurrence situation X (X € (T,
F)) of a certain node in the network is

Yox=x Il mi(Xz‘)/l—K,X#g

m(X) = 1<i<n
0,X=0

NX;=@ 1<i<n

©)

2. Coupled Adjacency Information Entropy Model

First, we define the following basic concepts:

Definition 1 ([25]). Adjacency Degree—Considering the influence of a node on its neighboring
nodes, the adjacency degree of v; in an unweighted network is defined as

Ai=) d; (11)

JETi

where vj is a neighbor of v;, I'jis the set of neighbor nodes of vi, anddrepresents the degree value

of vj.

Definition 2 ([25]). Selection Probability—To describe the probability of v; being selected among
all neighboring nodes of v;, the probability function is defined as follows:

Pj=d;/Aj, (j€T)) (12)

Definition 3 ([41]). Information Entropy—In 1948, Shannon proposed the concept of information
entropy. Information entropy starts from the uncertainty of system sample points and uses probabil-
ity and statistical methods to characterize the degree of disorder represented by the sample space.
This method can effectively measure the importance of network nodes. The adjacent information
entropy of v; is defined as

AIEl = _Ejer,- (Pl] 10g2 Pl]) (13)
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In a weighted network, the edges between nodes have weights. To more accurately
characterize the importance of nodes, the weights of the edges are converted into the
strength values of the nodes, that is

Si = Z]’eri wjj (14)

5j = Lier, Wi (15)

where s; is the strength value of v;, wj; is the weight of the edge between v; and v}, and T; is
the set of neighboring nodes of v;.

In a directed network, the strength values of nodes are divided into out-strength values
and in-strength values. It is generally believed that out-strength values and in-strength
values have different effects on nodes, that is

s; = 05" 4 (1 —0)s (16)

S::n = Z (1 + Eji)w]‘i (17)
jeli

s;}ut = Z (1 + 61‘]')601‘]‘ (18)
JjeTi

where s!" is the in-strength value of v;, s/

influence coefficient. In this paper, we take § = 0.85, which means that the in-strength

is the out-strength value of v;, and 6 is the

value of a node has a greater effect on the node than the out-strength value [26]. ¢j;
Represents the enhancement effect brought to v; by v; under the coupling effect with other
nodes in the neighbor node set of v;, that is, the enhancement coefficient.

The C-AIE of a node in a directed weighted network is calculated as

Ajzez Si]‘-i-(l—@)ZSji (19)
iel’j l€r]

pl']' = Si/A]‘ (20)

C-AIE; = Zjeri|(—Pij log, P;)]| (21)

where 4; is the comprehensive adjacency strength value of v;, s;; is the comprehensive
strength value from v; to vj, sji is the comprehensive strength value from v; to v;, and
C-AIE; is the C-AIE of v;.

3.2.3. Dijkstra’s Algorithm for Identifying the Shortest Propagation Path of
Secondary Hazards

The flow of Dijkstra’s algorithm is shown in Figure 3, where s represents the source
node, which is the starting node of the algorithm; ¢ represents the target or destination node;
d[s] represents the distance from the source node s to the current node, initially set to 0; p[s]
represents the parent node set, used to record the path to each node, initially empty; Num
represents the number of currently marked nodes, initially set to 1; N represents the total
number of nodes to be marked; k represents the currently checked marked node; j represents
the unmarked node; weight(k, j) represents the weight of the edge (k, j), that is, the distance
or cost from node k to node j; d[j] represents the minimum distance from the source point to
the unmarked node j; p[i] represents the nodes directly connected to node i; d[j] = min[d[/],
d[k] + weight(k, j)], where the min function is used to determine the shortest path from the
current node to the next node, d[k] represents the minimum distance from the source node
to the currently checked marked node k, and d[k] + weight(k, j) represents the distance from
the source node to node j via node k; Num-++ is an increment operator, indicating that the
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value of the variable Num is increased by 1. In the algorithm flow, Num may be used to
record the number of nodes that have been processed or the number of iterations. When
the algorithm finds a new shortest path and marks the corresponding node, the Num-++
operation will be executed, indicating that a new node has been processed.

Read data
v

Set the source node s and the target node ¢

v

Mark s, set d[s]=0, p[s] = empty set, Num=1

e

Yes

Update the distance of unmarked neighbor nodes: d[j]=min[d[j], d[k]
+ weight(k,j)]

No Select the unmarked node i with the smallest distance

v

Mark i, set p[i]J=k, Num++

—

Yes

End

Figure 3. Flowchart of Dijkstra’s algorithm.

3.2.4. Priority Determination Based on Dual Dimensions of Exposed Element Management
and Secondary Hazard Disruption

The ABC classification method is derived from the Pareto principle, with the core
idea being “the vital few determine the overall effectiveness,” following the principle of
“concentrating resources to prioritize the management of key elements” [25,42]. Based
on this, this paper achieves differentiated resource allocation through dual-dimensional
classification (importance of exposed elements, risk level of paths), prioritizing the inter-
ruption of the cascading effects between high-entropy exposed elements and high-risk
paths, thus avoiding efficiency losses caused by “average” prevention and control. The
specific classification rules are as follows:

(1) Classification of Exposed Elements and Secondary Hazard Paths

Classify the exposed elements into different categories based on C-AIE. C-AIE reflects
the connectivity diversity and information transmission capability of exposed elements in
the hazard transmission network. The higher the entropy value, the stronger the hub role of
the exposed element in hazard transmission, and its failure may trigger more widespread
secondary hazards. Therefore, class A (high entropy) has the highest C-AIE value, with the
strongest connectivity diversity and information transmission capability. Class B (medium
entropy) has a moderate C-AIE value, with significant local hub functions. Class C (low
entropy) has a lower C-AIE value, with a single connection path.

Based on the shortest propagation path length, secondary hazard path categories are
divided. The shorter the path, the faster the propagation speed of secondary hazards, and
the higher the risk level. Therefore, class A (high risk) has the shortest path length and the
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fastest hazard propagation speed. Class B (medium risk) has a medium path length and
the next highest propagation efficiency. Class C (low risk) has the longest path length and
the slowest propagation speed.

(2) Priority Determination Based on Combined Dual-Dimensional Classification

By cross-combining the entropy level of exposed elements and the risk level of sec-
ondary hazard paths, a management priority matrix is constructed, as shown in Figure 4
and Table 2. In Figure 4, the color gradient from blue (bottom left) to red (top right) repre-
sents increasing priority levels, with blue indicating the lowest priority and red the highest.
The different regions correspond to four levels: I, II, III, and IV. For the highest priority
(A-A), high-entropy exposed elements should be avoided from overlapping with high-risk
paths. For the second highest priority (A-B/B-A), key nodes and rapid propagation paths
should be optimized. The basic priority (other combinations) requires regular maintenance
and dynamic monitoring.

Secondary
hazard path

>

C B A Exposed element

Figure 4. Management priority matrix under dual dimensions.

Table 2. Management priority classification based on “entropy-risk”.

Exposed Element Secondary Hazard Management e
level Path Level Priority Feature Description
High connectivity diversity and shortest
A A I propagation path easily trigger
multi-chain reactions
B High connectivity diversity and moderate
1I transmission speed
B Local hub function and rapid dissemination
B B Medium connectivity and medium
I transmission speed
High connectivity diversity and slow
A C .
conduction path
C A Single connection path but spreads quickly
B C
C B v Low connectivity or slow transmission
C C
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3.3. Numerical Analysis

To verify the effectiveness of the proposed C-AlIE algorithm in this paper, we con-
structed a network consisting of 50 nodes and 92 edges using UCINET (Version 6.186)
and Gephi (Version 0.10.1) for numerical analysis. The results were compared with those
obtained from degree centrality (DC), eigenvector centrality (EC), closeness centrality (CC),
and betweenness centrality (BC).

Based on the chain evolution law of natural hazards, exposed elements, and secondary
hazards, the three-layer network topology is shown in Figure 5. The network nodes
in the first, second, and third layers correspond to primary hazards, exposed elements,
and secondary hazards, respectively. The importance of each node was calculated using
the aforementioned algorithms, and the results are shown in Table Al (see Appendix B).
For ease of visual comparison, the calculation results were normalized and presented in
Figure 6. In addition, Figure 7 compares the distribution of node importance under different
centrality indicators.
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Figure 5. Network topology diagram for numerical study.
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Figure 6. Node identification results under different methods.

Figure 6 indicates that there are significant differences in the ranking of node impor-
tance due to the different focuses of the recognition methods. For out-degree centrality
(outDC), out-closeness centrality (outCC), and betweenness centrality (BC), the most impor-
tant node identified is B3; whereas for C-AlE, in-degree centrality (inDC), and in-closeness
centrality (inCC), the most important node identified is B7; feature vector centrality (EC)
identifies B8 as the most important node. Among these, inDC, outDC, inCC, outCC,
and BC mainly consider the position of the evaluated node in the network and the num-
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ber of directly connected nodes, that is, direct influence; while C-AIE and EC not only
consider direct influence but also focus on indirect influence (the quality of neighboring
nodes). Specifically:
(1) Degree Centrality focuses on the direct influence between nodes

In-degree indicates the extent to which a node is influenced by other nodes or its ability
to receive information, while out-degree indicates a node’s direct influence on other nodes
or its ability to disseminate information. Therefore, in a hierarchical directed network, the
results of in-degree and out-degree calculations often show completely opposite trends.
As shown in Figure 6a,b, nodes with higher in-degree values typically appear in later
hierarchical networks, while nodes with higher out-degree values are often found in earlier
hierarchical networks.

25

20

U_ﬁ 5 =S =

1 1 1 1 1 1 1
inbC outbC incC outcC BC EC C-AIE

Figure 7. Comparison of node distribution under different centrality indices.

(2) Closeness Centrality reflects the degree to which a node is positioned at the center of
the network; the closer a node is to the center of the network, the higher its importance

In directed networks, in-closeness reflects the efficiency with which a node “acquires”
information from the network. High in-closeness indicates that the node is easily accessible
by other nodes in the network and may play the role of an information “endpoint” or
resource “aggregation point.” Out-closeness reflects the efficiency with which a node
“transmits” information to other parts of the network. High out-closeness indicates that
the node can quickly disseminate information or resources and may serve as a “source” or
“hub” in the network. Therefore, in-closeness and out-closeness often differ significantly
due to directional differences, and this difference is more pronounced than degree centrality,
presenting a polarized phenomenon, as shown in Figure 6¢,d.

(3) Node Betweenness Centrality reflects the extent to which a node (or edge) acts as a
“bridge” or “intermediary” between other nodes in the network

Typically, nodes or groups that connect different parts play an important role in the
network, but the differences in importance between nodes are not sufficiently clear. As
shown in Figure 6e, it is difficult to reasonably assess the relative importance of nodes with
similar BC values.

(4) C-AIE and EC not only focus on the “direct influence” of nodes but also consider the
“indirect influence,” so the distribution trends of node importance for both are quite
similar, but C-AIE has higher discriminability

As shown in Figure 6f,g, C-AIE can more accurately distinguish the importance
differences in nodes with similar EC values, and this advantage of C-AlE is also reflected
in comparisons with inDC, outDC, inCC, outCC, and BC, as shown in Figure 7. This
characteristic is significant for identifying key exposed elements in reality.
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To explore the impact of node coupling mechanisms on node importance identification,
this paper sets the coupling mechanisms of the exposed element layer to OR coupling, AND
coupling, and CO coupling, while keeping the node occurrence probability unchanged,
and calculates the C-AIE values of nodes under different coupling mechanisms. The
calculation results and comparison charts are shown in Table A2 (see Appendix A) and
Figure 8, respectively. From Figure 8, it can be seen that under the influence of the coupling
mechanism, the C-AIE values of exposed element nodes show a significant increasing trend.
Among them, the impact of OR coupling is the most significant, followed by CO coupling,
and finally AND coupling.

140 =

- 4 -
--------------------

Figure 8. Comparison of C-AIE under different coupling mechanisms.

To further validate the effectiveness of the constructed model, Figure 9 shows the
linear relationship between the model built in this paper (C-AIE) and the metrics based on
EC, where the adjusted R-squared of the linear fit is 0.9837. Clearly, the proposed method
has a high similarity to the importance assessment of traditional methods, which to some
extent verifies the rationality of the proposed method.

0l y=37.39x + 15.79xx +0.1744
R?=0.9837

C-AIE
Quadratic
Minimum

"""" Maximum
rrrrrrrr Average value

.
y
0
0 0.1 0.2 0.3 0.4 0.5
EC

Figure 9. Fitting results between EC and C-AIE.

3.4. Algorithmic Workflow

Figure 10 presents the workflow of the proposed priority determination method,
which integrates exposed element management and the mitigation of secondary hazards.
The corresponding pseudocode can be found in the Appendix B.
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Figure 10. Workflow of the priority determination method based on exposed element management
and secondary hazard mitigation.

4. Results

4.1. Construction of the Coal Mine—Flood Natech Event Chain Network

Based on the scenario information obtained in Section 3.1, this paper developed
a coal mine Natech event chain that follows the progression from natural hazard, to
exposed system, to secondary disaster, and finally to disaster consequence. First, individual
event chains were constructed by identifying causal relationships among the key nodes.
Then, through an analysis of causal couplings between these individual chains, they were
integrated to form a comprehensive coal mine—flood Natech event chain network, as

illustrated in Figure 11.
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Figure 11. Coal mine-flood Natech event chain network.
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4.2. Analysis of Exposed Elements
4.2.1. Importance Evaluation and Classification of Exposed Elements Based on the
C-AIE Algorithm
First, classify the coupling types of native hazards, as shown in Table 3.
Table 3. Coupling types of primary hazards.
Parent Node Child Node Parent Node Child Node
fi-f2-f3 b fo-(fe=17) bg
fa=fs=fe=f7 b3 f1-f2-fo-(fo =£7) bo
fi-f2-f3-(fa=fs=f6=f7) by fo-(a=f5=fe=f7) bio
fi-fo-(fa=fs5=f6=f7) bs fi-fa-fo-(fa=fs=fe=17) by
fo-(fs=f6=f7) be e4 -5 o
fo-(fe=f7) by

77

Note: “-” indicates OR coupling, “--” indicates AND coupling, and “=" indicates CO coupling. “A-(B=C)”
indicates that there is a CO coupling mechanism between B and C, while A can couple with either B or C.

Next, the statistical probability of each node is calculated using Equation (8), while
three experts are invited to assess the occurrence probability of the nodes. The expert
evaluation results are then synthesized using Equations (9) and (10). Since the case data
collected in this paper is relatively sufficient and complete, and the accuracy of the statistical
probabilities is high, the value is taken, and integration is performed using Equation (7).
Subsequently, based on Table 3, the enhancement coefficients for the edges acting on the
exposed elements are calculated using Equations (1)—(6). Finally, the C-AIE of the exposed
elements is calculated using Equations (11)—(21), and the exposed elements are classified
into high entropy (class A), medium entropy (class B), and low entropy (class C) using the
ABC classification method, as shown in Table 4.

Table 4. C-AIE of exposed elements.

Grading Sorting Node Exposed Element C-AIE
High 1 by Surface facility 134.301
entropy 2 by Surrounding hydrological system 60.705
Medium 3 bs Surrounding geological system 5.896
entropy 4 bs Shaft and tunnel system 2.199
5 by Mining area ecosystem 0.714
Low 6 b Power system 0.491
entro 7 bg Ventilation system 0.485
Py 8 b Mining system 0.418
9 by Drainage system 0.350
Others 10 b1o ;Franssort lift.i?g ‘systerrcll 0
11 byt ecurity monitoring an 0

communication system

4.2.2. Analysis of Key Exposed Elements by Category

(1) Class A exposed elements

Surface facility (bs): As an exposed element, surface facility is also an important barrier
to resist the damage of natural hazards to underground projects. Once the surface facility is
destroyed, the underground projects are also difficult to escape unscathed. Its C-AIE value
is the highest, indicating that it plays a strong hub role in the hazard transmission network,
capable of connecting multiple upstream natural hazards and downstream accident conse-
quences. This high entropy value reflects the diversity and complexity of surface facility
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in information transmission and hazard conduction, thus requiring priority prevention
and control.

Surrounding hydrological system (b,): The surrounding hydrological system serves as
an interactive interface between natural and artificial systems. Once damaged, it can easily
trigger a series of chain reactions and transmit hazards through various paths (e.g., rising
river levels — flooding of mining areas — casualties). Its high entropy value reflects the
multi-path connection characteristics of the hydrological system in hazard transmission,
thus requiring special attention.

(2) Class B exposed elements

Surrounding geological system (b3): The surrounding geological system is a secondary
carrier of natural hazard energy, capable of conducting hazards through moderately com-
plex paths, such as the conversion of flood kinetic energy into geological deformation
energy, causing ground subsidence. Its entropy value reflects the moderate connectivity
diversity of the geological system in hazard conduction, requiring enhanced monitoring
and maintenance, especially in earthquake-prone areas.

Shaft and tunnel system (bs): As the spatial carrier of underground production activi-
ties, the shaft and tunnel system connects subsystems such as drainage (sp7) and ventilation
(s25), serving as a local hub. Once a failure occurs, it can lead to serious consequences in a
short period, requiring regular inspections of its structural safety and the development of
emergency plans to respond to sudden accidents.

(8) Class C exposed elements

Mining area ecosystem (b1), power system (bg), ventilation system (bg), etc. The C-
AIE values of these exposed elements are relatively low, participating only in the hazard
transmission of specific paths, with lower uncertainty. They usually rely on the failure of
other systems to trigger accidents (such as power outages leading to ventilation stoppage),
so targeted protection needs to be strengthened.

Transport lifting system (by9) and security monitoring and communication system
(b11): These systems have a zero C-AIE, indicating that they do not directly participate in
hazard transmission in the current hazard transmission network. However, this does not
mean their role is zero; their failure often weakens emergency response capabilities. For
example, the failure of the transport lifting system may hinder the rapid dispatch of rescue
supplies and personnel, while the failure of the security monitoring and communication
system may weaken accident warning capabilities and information transmission efficiency.
Therefore, it is necessary to ensure their functional stability.

4.3. Analysis of Secondary Hazard Propagation Paths
4.3.1. Classification of Secondary Hazard Evolution Paths Based on Dijkstra’s Algorithm

Dijkstra’s algorithm is used to extract the shortest evolution paths of secondary hazards
triggered by exposed elements, resulting in a total of 36 paths. Based on the path lengths, the
ABC classification method is applied to classify these paths into high risk (class A), medium
risk (class B), and low risk (class C), as shown in Figures 12-14. Detailed information can
be found in Table A3 (see Appendix A).
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Figure 14. Low-risk paths of secondary hazards.

4.3.2. Analysis of Secondary Hazard Propagation Paths by Category

Figures 12-14 illustrate three distinct categories of secondary hazard evolution paths,
classified by risk level and extracted using Dijkstra’s algorithm. These path types ex-
hibit notable differences in their propagation mechanisms, structural configurations, and
corresponding response strategies.

(1) Class A propagation paths

Class A paths (Figure 12) mainly include those driven by class A (b, bs4) and class B
(b3, bs) exposed elements. They are characterized by fast propagation speed and strong
destructiveness, making them high-risk paths that need to be prioritized for blockage in coal
mine-flood Natech events. Specifically, the paths based on b4 (surface engineering) and bs
(shaft system) are the shortest due to the high exposure level of surface engineering and the
complex structure of the shaft system. Both have significant vulnerabilities, making them
prone to hazard amplification effects, which accelerate hazard propagation speed. Hazard
propagation driven by natural systems such as b, (surrounding hydrological system) and
bs (surrounding geological system) often triggers short-path cascading reactions, which
can lead to severe consequences by affecting technical systems. These paths usually have
strong propagation characteristics and are more likely to trigger serious consequences of
coal mine hazards.

(2) Class B propagation paths
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The class B paths (Figure 13) are mainly driven by class B exposed elements (b3, bs)
and class C exposed elements (b1, bg, by, bg, bg). The characteristics of class B paths are
moderate hazard propagation efficiency and controllable conduction time. Although the
destructiveness of these paths is relatively low, they still require special attention to delay
the further spread of hazards. These paths involve failures in natural systems and semi-
natural systems, which may cause significant ecological damage and social disruption,
and may also lead to casualties and property losses due to failures in technical systems.
Compared to class A paths, system failures in class B paths are usually slower, but may
lead to greater indirect impacts.

(3) Class C propagation paths

Class C paths (Figure 14) mainly include those driven by class C exposed elements
(be, by, bg, bg, byg, b11). The characteristics of these paths are significant hazard conduction
delays, lower destructiveness, and relatively small recovery difficulties. Although their
direct destructiveness is limited, the involvement of more intermediate nodes and longer
propagation paths may accumulate potential risks. In addition, some class C paths, while
not directly involved in hazard conduction, may still trigger chain reactions through indirect
effects, posing a potential threat to the overall safety of the mine.

4.4. Management Priority Determination Based on Exposed Elements and Secondary Hazard
Propagation Paths

By analyzing the shortest path of the comprehensive key exposed elements and
secondary hazards, corresponding management priorities can be derived, as shown in
Figure 15 and Table A4 (see Appendix A). The specific classification is as follows:

(1) Levell (class A exposed elements and class A paths)

A
Secondary
disaster path
A
o o A A
A A A
<&
o%e e I
B D¢ + A Levell
AN ‘00 eve
e + ® Levelll
4+ Levellll
® LevellV
* X
C * *  Level IV
*
A
»
C B A Exposed element

Figure 15. Coal mine-flood Natech event management priority matrix.

As a high-entropy exposed element, surface facility (bs) and surrounding hydrological
systems (bp) have many associated nodes in the system and a wide range of influence. The
hazard conduction paths based on high-entropy exposed elements are mostly high-risk
paths, making prevention difficult. High-risk paths are relatively short, with fast hazard
conduction speeds and wide impact ranges, and may quickly lead to severe consequences
(such as floods, ground subsidence, etc.) after the exposed element fails. Main paths include:
by-846-575-C1, D4-S46-575-C3, by-845-584-C4, b4-$38-578-C2, b2-840-584-C3, D2-S40-S83-Ca, b2-840-78-C2,
by-bg-s53-573-C1.
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(2) Level Il (class B exposed elements and class A paths)

Due to geographical reasons, the well and tunnel system (b5) as a medium entropy
exposed element and the surrounding geological system (b3) are easily affected by high-
entropy-exposed elements. Although the risk of medium entropy-high risk paths is high,
the relative uncertainty is lower. Generally, as long as the failure of high-entropy-exposed
elements is avoided, the occurrence of medium-entropy-high-risk paths can be effectively
prevented. These paths include: bs-s19-545-C1, b5-519-545-C3, D3-529-560-C3, b5-519-552-C4.

(3) Level III (class B exposed elements and class B paths)

The risks and uncertainties of this type of path are at a medium level, and serious
consequences can be avoided as long as the failure of the exposed element is prevented.
For example: b5-549-573-C2, b3-559-579-C2, b3-b5-549-575-C1, b3-b5-549-582-C4-

(4) Level IV (class C exposed elements and class B/C paths)

The risks and uncertainties of these paths are relatively low. Due to the longer path,
consequences will gradually arise after the failure of the exposed element, allowing for
a longer time to take response measures. Although the urgency is lower, systematic
optimization and long-term monitoring are still required.

5. Discussion
5.1. Hazard Reduction Strategies for Coal Mine-Flood Natech Events

In coal mine accidents caused by natural hazards, the power system, ventilation
system, mining system, and drainage system are artificial technical systems characterized by
their reliance on equipment stability and power supply. The speed of hazard transmission
is fast but can be partially controlled through technical means; while surface engineering,
hydrological systems, geological systems, and shaft systems are natural or semi-natural
systems, directly impacted by natural forces, resulting in more severe hazard consequences
and greater difficulty in restoration. Therefore, differentiated prevention, monitoring, and
emergency strategies should be adopted for different systems to comprehensively enhance
the overall hazard resistance capability of the mining area.

e  Surface facility (bs) and surrounding hydrological systems (b,), as well as the secondary
hazard propagation paths that act as conduits between them, should be monitored as
the highest priority. After a natural hazard occurs, the status of surface facility and sur-
rounding hydrological systems is most likely to change, easily expanding the hazard
scope through the hazard-causing environment, and the rate of destruction is extremely
fast. Therefore, in daily protection, surface facility should be reinforced to improve
its hazard resistance; real-time monitoring devices (such as hydrological monitoring
and ground subsidence monitoring) should be deployed in surrounding hydrological
systems to promptly detect anomalies, prevent the failure of surrounding hydrological
systems, and thus avoid cascading effects in other hazard-bearing systems.

e  The well and tunnel system (bs) and the surrounding geological system (b3), as well
as the secondary hazard propagation paths that act as conductive intermediaries,
should be monitored as a second-high priority. These systems are highly susceptible
to the impacts of surface facility and surrounding hydrological systems; for example,
flooding of industrial squares or damage to river channels may directly lead to well
and tunnel collapses or geological structure damage. Therefore, geological exploration
should be conducted regularly to identify geological risk points such as faults and
landslides in advance, optimizing the layout of wells and tunnels; strengthening
well and tunnel reinforcement and dynamic monitoring, using high-strength support
materials and sensor networks to monitor well and tunnel deformation and pressure
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changes in real time; and setting up emergency isolation doors or waterproof flood
walls at key nodes of the wells and tunnels to prevent the spread of hazards.

e  The ecological system of the mining area (b1), power system (by), ventilation system
(bg), mining system (bg), drainage system (b7), and the secondary hazard transmis-
sion paths that use them as conduits should be prioritized for management. These
systems are at a higher risk of indirect impact from natural hazards and need to
comprehensively reduce their indirect risks in natural hazards through technical re-
dundancy design (such as backup power supply, multi-level drainage), intelligent
monitoring (real-time fault diagnosis and data linkage), ecological protection measures
(vegetation buffer zones and pollution emergency response), and remote automated
operations, thereby enhancing the system’s hazard resilience and rapid recovery capa-
bilities, and avoiding secondary hazard transmission caused by equipment failure or
ecological damage.

e  The transportation lifting system (by), safety monitoring and communication system
(b11), and the secondary hazard propagation paths that serve as conduits for them
should be optimized as basic support systems. Although their direct risks are relatively
low, the failure of the transportation lifting system and the safety monitoring and com-
munication system may hinder rescue efforts and information transmission. Measures
such as planning emergency transportation routes, reinforcing transportation lifting
equipment, deploying multi-modal communication redundancy, and implementing
hazard linkage response should be taken to ensure smooth transportation and uninter-
rupted information transmission in extreme environments, providing reliable support
for overall emergency response.

5.2. Comparative Analysis with Existing Studies

To further validate the effectiveness and rationality of the proposed C-AIE algorithm,
this section presents a comparative study from both quantitative and qualitative per-
spectives. The method is compared against several classical benchmark algorithms and
representative entropy-based node identification approaches.

5.2.1. Comparison with Benchmark Algorithms

The C-AIE algorithm is evaluated alongside several widely used centrality metrics to
examine differences in the ranking of exposed element importance. As shown in Table 5
and Figure 16, although the ranking outcomes vary among algorithms, nodes by and
by consistently appear in the top positions across most methods, demonstrating high
consensus with the results derived from the proposed model.

Table 5. Node importance rankings of exposed elements under different benchmark algorithms.

Benchmark Algorithm Importance Ranking of Exposed Elements
Out—degree Centrality (outDC) b4-b2-b5-b3-b1 -b6-b7-b8—b9-b10-b11
In-degree Centrality (inDC) by-bs-b11-bg-bg-b3-b19-b7-bg-b1-by
Eigenvector Centrality (EC) bs-by-by-b3-bg-bg-b7-bg-b11-b10-b1
In-closeness Centrality (inCC) b11-b4-b5-bg-b1-b10-b3-bg-b7-bg-by
Out-closeness Centrality (outCC) by-by-b1-b3-bs5-b7-bg-bg-bg-b1o-b11
Betweenness Centrality (BC) b4-b5-b9-b1-b6-b8-b3-b2—b7-b10-b11
PI‘OpOSGd method (C-AIE) b4-b2-b3-l’]5-b1-bg-bg-b6-b7-b10-b11

More importantly, the C-AIE algorithm shows superior discriminative capability in
identifying the most critical nodes (e.g., by and b,), with their computed C-AIE values
exhibiting a markedly higher magnitude compared to others. This underscores the al-
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gorithm’s higher sensitivity and precision in capturing key structural nodes within the
hazard network.

Figure 16. Comparison of node rankings between the proposed method and benchmark algorithms.

From the hazard propagation perspective, these top-ranked nodes (by and b,) also
tend to trigger broader and more interconnected chains of secondary hazards. This finding
is consistent with the results of reference [43], whose research on flood-induced coal mine
hazards identified similar key nodes in the critical hazard evolution chains. These parallels
further substantiate the applicability and validity of the C-AIE algorithm in real-world
Natech event analysis.

5.2.2. Comparison with Other Entropy-Based Node Identification Algorithms

To further verify the innovativeness and adaptability of the C-AIE algorithm, a hori-
zontal comparison is conducted between the proposed method and several entropy-based
node identification algorithms. Table 6 summarizes the applicability of related methods
across multiple dimensions.

Table 6. Comparison of different entropy-based algorithms.

Reference Main Method Neighbor Directed Network Weighted Network Coupling Mechanism

Consideration Support Support Considered
Adjacency
[25] information vV X X X
entropy
Information
[44] entropy \/ x x x
Local structure
[45] entropy vV X X X
Adjacency
[26] information Vv Vv vV X
entropy
Proposed
method C-AIE 4 v v v

Several existing studies have contributed valuable approaches to node identification
from an entropy-based perspective. For instance, reference [25], drawing on degree entropy
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theory, developed an adjacency information entropy algorithm tailored for urban rail transit
networks, which effectively identifies structurally vulnerable components. Reference [44]
constructed node input features by integrating information entropy with node degree and
the average degree of neighboring nodes, proposing a lightweight yet effective graph neural
network model. Reference [45] introduced a Local Structure Entropy method based on Taslli
entropy, where critical nodes are identified through simulated node removal. In contrast,
Reference [26] proposed an enhanced adjacency information entropy method applicable to
four network types: undirected-unweighted, undirected-weighted, directed-unweighted,
and directed-weighted. While these entropy-based algorithms have demonstrated con-
siderable potential in identifying important nodes across diverse networks, they still face
limitations in terms of directionality, edge weights, and the omission of inter-node coupling
dynamics. To address these shortcomings, this paper presents the C-AIE algorithm as an
innovative alternative, offering the following advantages:

(1) Well-suited for directed and weighted networks, enhancing applicability. The C-AIE
algorithm is specifically developed to accommodate directed and weighted networks,
aligning well with the structural attributes of hazard chain systems. In contrast,
methods proposed in References [25,44,45] are limited to undirected and unweighted
networks, rendering them inadequate for capturing asymmetric inter-node influences
or varying edge weights. By differentiating the impact of in-degree and out-degree
on node significance, the C-AlE algorithm offers a more refined understanding of
network structure.

(2) Computationally efficient with reduced data requirements. Unlike the method in
reference [45], which necessitates both first-order and second-order neighbor informa-
tion, the C-AIE algorithm relies solely on a node and its immediate neighbors. This
design simplifies the data processing pipeline while preserving high identification
accuracy, making it suitable for large-scale or data-constrained scenarios.

(3) Incorporates coupling mechanisms to model compound hazard dynamics. Although
reference [26] extends entropy-based methods to various network types, it—like other
compared methods—does not account for hazard coupling. The C-AIE algorithm
addresses this gap by modeling the collaborative impact of multiple parent nodes on a
shared downstream node, thus capturing the cascade amplification effects commonly
observed in multi-hazard hazard systems.

In conclusion, the C-AIE algorithm exhibits superior adaptability, discriminative
power, and interpretability in assessing the significance of exposed elements. It not only
identifies critical nodes more effectively but also encapsulates realistic features such as
propagation intensity and inter-node synergy within the disaster evolution process. Bal-
ancing data sufficiency, computational tractability, and model precision, C-AIE provides a
robust analytical foundation for studying complex hazard networks.

5.3. Applicability of the Proposed Method Across Sectors

This paper presents a method for modeling flood-induced Natech disaster chains
in coal mines, aiming to support risk-informed decision-making by identifying critical
exposed elements, analyzing secondary disaster propagation paths, and prioritizing man-
agement strategies. The dataset comprises representative coal mine cases from various
countries and regions, encompassing multiple coal mine types. Therefore, the proposed
approach demonstrates a certain degree of generalizability under flood-prone scenarios.
However, we acknowledge that the current study does not yet address non-coal mines
(e.g., copper or tungsten mines) or systematically explore the differences in disaster chain
structures between open-pit and underground coal mining operations—both of which
represent promising directions for future research.
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To evaluate the method’s applicability beyond flood-related contexts, we distinguish
two categories of mining scenarios:

(1) Mines without natural hazard exposure. These scenarios involve accidents aris-
ing solely from human factors, such as technical failure or operational errors, and do
not fall under the definition of Natech events. As the model is built upon the two-stage
causal structure of “natural hazard — exposed element — secondary disaster,” its appli-
cation is not valid in the absence of natural triggers. This delineates a clear boundary for
methodological applicability.

(2) Mines exposed to non-flood natural hazards. This includes mines vulnerable to
events such as earthquakes, snowstorms, or landslides. In such Natech-related settings,
the proposed method can be adapted and applied effectively, provided that the following
modifications are made to account for disaster-specific and site-specific factors:

o  Reclassification of exposed elements. The critical infrastructure affected varies across
hazard types. Floods typically damage surface-level drainage and shaft systems,
whereas earthquakes are more likely to impact underground tunnels and support
structures. Hence, the node types and spatial distribution in the network must be
redefined accordingly.

e  Adjustment of coupling mechanisms. The current model is based on flood-induced
cascading effects. However, other hazards differ in their transmission mechanisms
and interdependency patterns. Therefore, the inter-node coupling logic and edge
weights must be revised to accurately capture the dynamic evolution under alternative
disaster scenarios.

e  Modification of hazard propagation mechanisms. Spatial and temporal characteristics
of hazard spread vary significantly. Floods tend to exhibit terrain-dependent flow
paths, while earthquakes propagate damage in a simultaneous, multi-point fashion.
As such, model parameters and propagation rules should be recalibrated to reflect
these differences.

Furthermore, the research framework developed in this study holds strong potential
for extension to other non-mining sectors that are exposed to Natech risks, such as the
chemical industry, transportation systems, and fisheries. However, to ensure effective
applicability, it is essential to implement targeted adjustments based on the three key
aspects discussed above.

6. Conclusions and Suggestions
6.1. Conclusions and Future Work

Compared to ordinary coal mine hazard chains, the most significant feature of coal
mine Natech events is that the coal mine hazard-bearing system acts as both the exposed
element and the hazard-causing factor. Natural hazards lead to the failure of the exposed
element, which in turn triggers more severe secondary hazards. In addition, the scale of
the coal mine Natech event network is larger, with more nodes and edges, and the relation-
ships between nodes are more complex. Therefore, identifying key exposed elements and
secondary hazard paths is of great significance for understanding the structure of the coal
mine Natech network and the mechanisms of hazard propagation, and for implementing
targeted hazard reduction measures.

This paper developed a classification and grading framework for coal mine Natech
events based on node importance identification and shortest path recognition. The frame-
work integrates three methods: complex networks, Adjacency Information Entropy, and
Dijkstra’s algorithm, each of which plays a specific role in the analysis of coal mine Natech
events. First, complex networks are used to illustrate the causal coupling relationships of
events, revealing the topological structure of the hazard propagation network. Second,
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a novel node importance identification method named C-AIE is proposed based on the
Adjacency Information Entropy algorithm. This method comprehensively considers the
position of the hazard-bearing nodes and their neighboring nodes in the network, as well as
the coupling effects of natural hazards on the exposed elements, allowing for more accurate
identification of key exposed elements. Next, Dijkstra’s algorithm is used to identify the
most dangerous secondary hazard propagation paths based on key exposed elements,
providing a basis for the classification and grading of response to hazards.

Building upon the proposed methodology, this paper constructs a directed weighted
network as the computational foundation and performs comparative analyses against
several state-of-the-art algorithms. Leveraging an extensive dataset of real-world cases,
the developed model is applied to coal mine Natech scenarios to identify the key exposed
elements and secondary hazard propagation paths most likely to result in severe economic
losses, ecological damage, casualties, and social impacts. These critical elements and
pathways are further categorized into prioritized levels. The findings reveal that surface
facility, surrounding hydrological systems, shaft and tunnel system, and surrounding
geological systems serve as central components in the Natech network. Propagation
paths mediated through these components exhibit higher urgency and risk. Based on
this analysis, a classification-based intervention strategy is proposed to interrupt critical
transmission links, providing scientific support for risk mitigation in coal mine Natech
emergencies. Nevertheless, the study has several limitations: (1) Although Dijkstra’s
algorithm is employed in this paper to identify the shortest transmission paths between
critical nodes for estimating potential disaster propagation risks, in real-world Natech
scenarios—such as those involving terrain obstructions, infrastructure damage, or the
early release of toxic substances—high-risk routes may not necessarily correspond to the
shortest ones. Future studies could incorporate path-specific risk weights (e.g., toxicity,
population density, and route capacity) to refine the risk assessment and enable more
accurate identification of high-risk transmission paths. (2) The current framework primarily
emphasizes the transmission mechanics of the disaster chain, with limited attention to
human, organizational, and societal influences. Subsequent research will aim to incorporate
these components into the network structure, enhancing the model’s representativeness
and enabling more adaptive responses to real-world Natech crises.

6.2. Suggestions

Although the methodology proposed in this paper was initially developed for mod-
eling flood-induced disaster chains in coal mines, its underlying logic and analytical
framework exhibit strong generalizability and scalability for various types of Natech events
in both coal and non-coal mining contexts. For researchers and practitioners aiming to
extend this work, we propose the following directions:

(1) Develop a multi-hazard Natech knowledge base and dataset. Establishing a compre-
hensive accident case repository in representative mining regions—including events
triggered by floods, earthquakes, landslides, and snow-related hazards—would allow
for systematic documentation of exposed element distributions, coupling chains, and
historical propagation patterns. Such a database would facilitate effective model
transfer and algorithm refinement.

(2) Conduct model adaptation studies for different types of mines. It is suggested to
investigate the characteristics of accident chains in different types of mines under the
influence of natural disasters, and to explore algorithmic models with high adaptabil-
ity and generalization ability in broader application scenarios.
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Appendix A

Table Al. Node importance calculation results under different methods.

No. Node inDC outDC inCC outCC BC EC C-AIE
1 m 0 1 2.000 2.811 0 0.012 0.141
2 ap 0 2 2.000 2.811 0 0.025 0.228
3 as 0 5 2.000 2.896 0 0.003 0.915
4 ay 0 7 2.000 2.896 0 0.005 0.909
5 as 0 6 2.000 2.605 0 0.005 0.951
6 ag 0 10 2.000 3.260 0 0.049 1.457
7 az 0 14 2.000 2.975 0 0.048 1.051
8 ag 0 7 2.000 3.258 0 0.183 0.934
9 ag 0 5 2.000 2.476 0 0.022 0.344
10 a0 0 10 2.000 3.480 0 0.090 1.482
11 an 0 5 2.000 2.975 0 0.018 0.878
12 a1 0 5 2.000 2.670 0 0.020 0.993
13 b 7 15 2.083 2.549 16.233 0.008 4.204
14 b, 8 14 2.083 2.489 13.671 0.012 3.253
15 b3 6 19 2.128 2.756 40.700 0.185 4.776
16 by 3 8 2.083 2.318 8.095 0.008 0.879
17 bs 13 6 2.083 2.427 13.617 0.097 1.892
18 be 12 2 2.083 2.427 15.000 0.040 1.120
19 b, 14 5 2.174 2.427 28.317 0.067 7.614
20 bg 5 17 2.083 2.318 10.800 0.547 0.308
21 by 3 12 2.083 2.427 12.833 0.105 0.841
22 by 6 2 2.083 2.427 10.733 0.029 0.798
23 1 4 5 2.126 2172 4.950 0.003 3.510
24 cy 12 5 2.219 2.220 15.460 0.010 21.151
25 c3 6 1 2.126 2.082 6.000 0.005 0.800
26 Cy 11 8 2.219 2.127 8.288 0.010 2.710
27 Cs5 7 3 2.555 2.172 27.969 0.020 0.357
28 Cq 12 4 2.491 2.172 29.900 0.121 16.599
29 cy 3 4 2.431 2.172 27.450 0.026 0.553
30 g 9 4 2.553 2.127 26.033 0.109 2.151
31 C9 11 6 2.320 2.172 15.317 0.125 8.660
32 €10 8 6 2.219 2.172 15.833 0.127 7.238
33 €11 8 6 2.126 2.172 5.733 0.356 0.554
34 c12 9 11 2.126 2.127 6.067 0.504 1.213
35 c13 3 5 2.264 2.041 2.000 0.004 0.530
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No. Node inDC outDC inCC outCC BC EC C-AIE
36 C14 2 1 2.317 2.041 3.750 0.001 0.459
37 c15 7 5 2.371 2.041 3.602 0.004 0.125
38 C16 7 1 2.826 2.041 9.064 0.006 0.115
39 c17 4 1 2.821 2.041 9.233 0.026 0.125
40 c18 5 6 3.167 2.041 16.250 0.010 0.454
41 c19 2 2 2.823 2.041 12.333 0.017 0.528
42 €20 8 2 2.747 2.041 6.717 0.144 2.417
43 1 5 1 2.821 2.041 8.050 0.042 0.553
44 C» 10 2 2.484 2.041 5.450 0.224 0.291
45 3 7 4 2.217 2.041 3.067 0.253 0.103
46 Co4 3 3 2.745 2.041 10.483 0.039 0.520
47 5 12 0 3.840 2.000 0 0.005 0.000
48 C26 8 0 4.325 2.000 0 0.004 0.000
49 Cy7 4 0 4.149 2.000 0 0.024 0.000
50 c8 9 0 3.465 2.000 0 0.105 0.000

Table A2. Node C-AIE calculation results under different coupling mechanisms.
OR AND co No Couplin
No. Node Coupling Coupling Coupling (AIEI; ®

1 m 0.1924 0.1827 0.1931 0.1408
2 a 0.3006 0.2873 0.3015 0.2275
3 as 0.9716 0.9590 0.9659 0.9148
4 ay 0.9647 0.9628 0.9822 0.9090
5 as 0.9817 0.9753 0.9761 0.9508
6 ag 1.2035 1.2927 1.2614 1.4572
7 ay 0.6936 0.8183 0.7774 1.0512
8 as 1.0131 0.9929 0.9943 0.9341
9 ag 0.3621 0.3602 0.3614 0.3439
10 ao 1.2907 1.3445 1.2835 1.4816
11 a1 0.9162 0.9047 0.9137 0.8779
12 ain 1.0341 1.0271 1.0321 0.9929
13 by 8.0890 8.0890 11.3855 4.2040
14 by 8.2462 6.5778 9.5119 3.2529
15 bs 22.9471 15.7376 23.6692 4.7756
16 by 0.5010 0.5694 0.4988 0.8790
17 bs 7.0632 4.9446 7.3978 1.8916
18 be 5.3460 2.9699 4.5748 1.1200
19 by 127.9241 70.2186 98.4316 7.6137
20 bg 1.2225 0.4000 0.5914 0.3081
21 by 0.3578 0.5434 0.4117 0.8411
22 b1o 0.3930 0.0483 0.5210 0.7979
23 c1 3.5096 3.5096 3.5096 3.5096
24 cp 21.1505 21.1505 21.1505 21.1505
25 C3 0.8002 0.8002 0.8002 0.8002
26 Cy 2.7100 2.7100 2.7100 2.7100
27 Cs 0.3571 0.3571 0.3571 0.3571
28 Ce 16.5988 16.5988 16.5988 16.5988
29 cy 0.5534 0.5534 0.5534 0.5534
30 cs 2.1513 2.1513 2.1513 2.1513
31 Cy 8.6596 8.6596 8.6596 8.6596
32 €10 7.2381 7.2381 7.2381 7.2381
33 11 0.5539 0.5539 0.5539 0.5539
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Table A2. Cont.

OR AND CcoO No Couplin

No. Node Coupling Coupling Coupling (AIE) ®
34 c12 1.2126 1.2126 1.2126 1.2126
35 €13 0.5299 0.5299 0.5299 0.5299
36 C14 0.4594 0.4594 0.4594 0.4594
37 15 0.1251 0.1251 0.1251 0.1251
38 C16 0.1151 0.1151 0.1151 0.1151
39 1y 0.1251 0.1251 0.1251 0.1251
40 18 0.4536 0.4536 0.4536 0.4536
41 19 0.5283 0.5283 0.5283 0.5283
42 20 2.4169 2.4169 2.4169 2.4169
43 €1 0.5534 0.5534 0.5534 0.5534
44 2 0.2905 0.2905 0.2905 0.2905
45 23 0.1028 0.1028 0.1028 0.1028
46 Co4 0.5200 0.5200 0.5200 0.5200
47 C25 0 0 0 0

48 C26 0 0 0 0

49 co7 0 0 0 0

50 28 0 0 0 0

Table A3. Shortest evolution path of secondary disasters caused by different exposed elements.

Grading Shortest Path Node Shortest Path Length
b4_516_545_C1 2.2
b4_516_545_C3 2.2
b4_Sg_S48_CZ 2.2
b5_519_543_C2 2.2
b4_515_s54_64 2.3
. . bz_b9_523_543_C1 2.3
High risk br510.545.0r 04
b5-S]9-S45-C1 2.5
b5_519_545_63 2.5
b2_510_554_C3 2.5
b2_510_553_C4 2.5
b3_529_S49_C2 2.5
b5-S]9_S52_C4 2.6
59-523_543_61 2.6
b9_Sz3_S43_C7_ 2.6
b9_523_543_63 2.6
b1_55_554_C3 2.7
b1_55_S48_C2 2.8
bg_525_558_C2 2.9
b1_517_552_C4 3.0
. . b3.529-560-C3 3.0
Medium risk b3.bs,519.545.C1 3.3
b3_b5_519_552_C4 3.4
bs-526-531-860-C3 3.5
b7.527.519-845-C1 3.5
by.827.819-545-C3 3.5
b7.527.519-552-C4 3.6
b1.85.848 519-845.C1 3.8
be-526-531-857-C2 4.0

b7.827.519-843-C2 4.0
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Table A3. Cont.

Grading Shortest Path Node Shortest Path Length
by_523-527.519-852.C4 4.3
Medium risk
be-526-531-523-543-C1 4.9
b $25.534-536-531-560-C3 5.4
. be-526-931-527-519-852-C4 5.6
Low risk b 5
8-525-534-536-531-527-519-552-C4 0
b $05.534-536-531-523-543-C1 6.8

Table A4. Management priority of key exposed elements and shortest paths of secondary disasters in
coal mine-flood Natech events.

Mane.lge.ment Exposed Path Exposed Shortest Path Node
Priority Element Level Level  Element
by by-s16-845-C1
by bs-516-545-C3
by by-5g-548-C2
I A A 24 ) b4b-515-554-C4
2 2-09-523-543-C1
by by-510-848-C2
by by-510-854-C3
by by-510-553-C4
bs b5-519-843-C2
I B A Zs 1;5-519-545-C1
5 5-519-545-C3
b3 b3-529-849-C2
bs bs-519-852-C4
e B B b3 b3-529-560-C3
b3 b3-bs-519-545-C1
b3 b3-bs-s19-552-C4
by bg-523-843-C1
by by-523-543-C2
by by-$23-543-C3
by b1-s5-s54-C3
by b1-s5-848-C2
bg bg-sp5-858-C2
by by-s17-852-C4
C B be be-526-531-560-C3
by b7-597-519-845-C1
v by b7-527-519-845-C3
by b7-527-519-852-C4
by b1-55-848-519-845-C1
be be-526-531-557-C2
b7 b7-597-819-543-C2
by bg-523-527-519-852-C4
bs bs-526-531-523-543-C1
bg bg-525-534-536531-560~C3
C C be be-526-531-527-519-552-C4
bg bg-525-534-536-531-527-519-552-C4

bg bg-525-534-536-531-523-543-C1
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Appendix B

Algorithm A1 Steps of the priority determination method based on exposed element

management and secondary hazard mitigation

1 Start
2 Input: Directed weighted graph G = (V, E, W)
3 where V = set of nodes, E = set of edges, W = edge weights
4 // Step 1: Node activation probability modeling
5 For eachnodei € V do
6 Compute occurrence probability using Equations (7)—(10):
7 End for
8 // Step 2: Edge-level coupling enhancement coefficient calculation
9 For each edge (j — i) € Edo
10 Set e(j—i) < 0
11 For each neighbor r € Predecessors(i), r # j do
12 Determine coupling type T <— C(j, 1, i)
13 Compute joint probability p(j N r)
14 Switch T:
15 Case OR based on Equation (1):
¢ « k(jorr) = P(j)+ P(r) — P(jNr)
16 Case AND based on Equation (3):
¢ < k(jandr) = P(jNr)
17 Case CO based on Equation (5):
18 If p() x p(r) # 0 then
. _ P(jnr)
¢ < k(jcor) = WOEG)
19 Else:
20 c+0
21 End Switch
22 Accumulate: e(j—1i) < e(j—i) + ¢
23 End for
24 End for
25 // Step 3: Coupling-adjacency information entropy computation
26 For eachnodei € V do
27 Compute strength values using Equations (16)—(18)
28 Compute entropy using Equations (19)—(21):
29 End for
30 // Step 4: Shortest path analysis using Dijkstra
31 For each source node s € Sdo
32 Run Dijkstra(G, source = s)
33 For each destination node t € V do
34 Store I(s, t) + distance from s to t
35 End for
36 End for
37 // Step 5: Priority classification based on entropy and path risk
38 For eachnodei € V do
39 If H(i) > 6_high — class_i +- ‘A’
40 Else if H(i) > 6_mid — class_i < ‘B’
41 Else — class_i <+ 'C’
42 End for
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43 For each (s — t) € all stored shortest paths I(s, t) do

44 If1(s, t) < 1_short — class_I(s,t) < A’

45 Else if I(s, t) < 1_mid — class_I(s,t) < ‘B’

46 Else — class_I(s,t) + ‘C’

47 End for

48 // Step 6: Cross-dimensional priority matrix assignment

49 For each (s — t) do

50 Retrieve c_i = class_s, c¢_l = class_I(s, t)

51 Assign priority level:

52 If (cCi= A Acl=A)— priority < I

53 Else if (c_.i=A A c_1=B) V (c_i =B A c_1 =A) — priority <+ II
54 Else if (c_i =B A c_l = B) — priority < III

55 Else — priority < IV

56 End for

57 Output

58 -Node importance classification: EntropyClass(i) € {A, B, C}
59 -Path risk classification: PathRiskClass(s — t) € {A, B, C}

60 -Combined priority matrix: PriorityLevel(s — t) € {I, II, III, IV}
61 End
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