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Abstract: The density of rockfill material is an important index to evaluate the quality of rockfill dams.
It is of great significance to accurately obtain the densities and permeability coefficients of rockfill
material dams quickly and accurately by scientific means. However, it takes a long time to measure
the permeability coefficient of rockfill material in practice, which means that such measurements
cannot fully reflect all the relevant properties. In this paper, using a convolutional neural network
(CNN), a machine learning model was established to predict the permeability coefficient of rockfill
material with the full scale (d10~d100), pore ratio, Cu, and Cc as the inputs and the permeability
coefficient as the output. Through collecting the permeability coefficient and related data in the
literature, the set samples were sorted for model training. The prediction results of the trained
CNN model are compared with those of the back propagation (BP) model to verify the accuracy of
the CNN model. Laboratory constant head penetration experiments were designed to verify the
generalization performance of the model. The results show that compared with the BP model, the
CNN model has better applicability to the prediction of the permeability coefficient of rockfill material
and that the CNN can obtain better accuracy and meet the requirements of the rough estimation of
rockfill materials’ permeability in engineering.

Keywords: rockfill material; convolutional neural network; pore ratio; permeability coefficient

1. Introduction

As an important part of the national infrastructure, the water conservancy project
is vital to the sustainable development of agricultural production, urban water supply,
ecological environment protection, and other fields. The water conservancy dam is a crucial
structure in water conservancy projects, and its safety is directly related to the national
economic construction, improvements in the lives of the people, and the protection of the
ecological environment. In recent years, with the rapid development of national water
conservancies, higher requirements have been put forward for dam quality monitoring.
In rockfill material dam projects, the construction quality of the rockfill material for dam
building is the most important aspect of the overall dam quality control. The quality of
the rockfill material in dams directly affects the safety of the construction and operation of
the project, and it is crucial to the long-term development of water conservancy. The main
factor affecting the quality of rockfill material dams is the compaction quality, and the main
control index of compaction quality is the density of the rockfill material. Therefore, an
appropriate scientific method to study and control the density of rockfill material is needed.
For rockfill material dams, the main indicators of dam construction quality include density,
particle gradation, and permeability characteristics. The focus in the current construction
is to monitor these data quickly and accurately by developing effective methods. It is
crucial to monitor these data to control the compaction quality and the safety of the dam.
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Therefore, in the field of water conservancy engineering, the continuous improvement
of the methods for monitoring the quality of dam construction, effective control, and the
monitoring of dam quality indicators through scientific methods are important ensure the
safe operation of water conservancy projects.

In the past, permeability characteristic and permeability coefficient studies of dams
were mainly carried out in laboratories or in the field. The field tests mainly included the
trail pit seepage test and drilling grouting test, while the laboratory tests mainly included
the constant head permeability test and the model seepage test. However, field tests have
some disadvantages, such as their time-consuming processes, small monitoring range, and
low monitoring efficiency. For their part, laboratory tests also have certain limitations. The
actual working conditions may not be accurately reflected and the permeability coefficient
data might not be obtained promptly [1]. Some scholars have proposed empirical formulae
for estimating the permeability coefficient, including the Terzaghi [2] formula:

K = 2d2
10e2 (1)

and Kozeny’s formula:

K18 = 780
n3

(1 − n)2 d2
9 (2)

where e is the pore ratio, n is the porosity, and dm is the effective particle size of each
corresponding formula.

However, the use of empirical formulae to estimate the permeability coefficients of
rockfill materials is often inconsistent with the actual situation because these empirical
formulae cannot comprehensively take into account the influence of various factors. ,
Thus, empirical formulae have a limited scope of application [3]. The coefficient of per-
meability of coarse-grained soil is affected by many factors, such as the dry density [4],
particle shape [5,6], fine content [7,8], coefficient of uniformity [9,10], and pore ratio [11,12].
Chapuis [13] proposed a new equation to predict the saturated hydraulic conductivity of
sand and gravel using the effective diameter and void ratio, finding that the new equation
predictions were usually between 0.5 and 2.0 times the measured value for the considered
data using the values of d10 and e. Koohmishi [14] conducted a laboratory test on a coarse
aggregate to evaluate the effect of gradation and compaction on permeability and found
that gradation is the property that most affects permeability. Dolzyk et al. [15] proposed a
relationship between the void ratio, the coefficient of uniformity, and the effective size and
the coefficient of permeability.

Due to the development of artificial intelligence, some scholars began to use artificial
neural network methods to predict the permeability coefficient [16–19]. Yilmaz et al. [20]
predicted the permeability coefficients of coarse-grained soils by using neural networks and
compared and analyzed different prediction models, which provided a new methodology
and approach for obtaining the permeability coefficients of soils. Zhang et al. [21] developed
a predictive equation of the permeability characteristics of soil using gene expression
programming (GEP) and conducted a sensitivity analysis, including the effective size
(d10), mean grain size (d50), and void ratio (e). Al Khalifah et al. [22] used two machine
learning techniques to predict the permeability of carbonate rock and compared them with
seven conventional methods, finding that machine learning performed better than all the
conventional empirical methods, especially neural networks.

The factors influencing the permeability coefficient are complex in rockfill material.
The neural network model has more input parameters, and less research has been con-
ducted on predicting permeability coefficients with convolutional neural network (CNN)
models. In recent years, with the development of machine learning technology, CNNs
have gradually received increasing attention. With their special architecture and powerful
feature analysis and processing ability, CNNs can more easily handle multi-dimensional
data, such as the particle gradation and permeability coefficient, in the field of rockfill
materials, and they extract the features of these materials for fitting predictions to improve
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the accuracy. Therefore, in this paper, a CNN was used to build a machine learning model,
and a BP neural network was also built to make contrastive analysis. In addition, the
applicability of the CNN in the prediction of the permeability coefficient of rockfill material
was verified through a laboratory permeability test.

2. CNN Predictive Models

CNNs are well known for their excellent feature extraction capabilities in image
processing, but they are equally suitable for processing other types of data, including
one-dimensional data. Even though our data are one-dimensional, there are still local
correlations and structural features. CNNs are able to capture these features efficiently
and are effective tools for working with one-dimensional sequential data. CNNs are able
to extract important local patterns and global structure from the data, which makes the
model’s representation of the data more efficient and accurate.

2.1. Basic Principle of Convolutional Neural Network

The CNN is a kind of deep feed-forward neural network with local connection, weight
sharing, and other characteristics. As one of the representative algorithms of machine
learning, it is good at dealing with images, especially image recognition and other related
machine learning problems, and it can also be used in data regression prediction. CNNs
have representational learning capabilities and are able to classify input information accord-
ing to its hierarchical structure in a translation-invariant way, allowing both supervised
and unsupervised learning [23]. Compared with traditional neural networks, CNNs have
the following advantages. They can automatically learn the features in the data instead of
designing the features manually, which makes them more efficient and flexible in dealing
with large-scale data. In addition, CNNs can capture local features in data and extract
more abstract and important features through pooling operations. Moreover, CNNs can
construct deep networks by stacking multiple convolutional and fully connected layers to
further improve performance.

2.2. CNN-Model Structure

The CNN is divided into a 3-layer structure: input layer, hidden layer, and output layer.
The input layer is responsible for importing data. The hidden layer includes convolutional
layer, pooling layer, and fully connected layer. The convolutional layer uses convolutional
operations to extract features from the input data. It consists of multiple convolution
kernels and each convolution kernel detects features of the input data, such as edges and
texture. The convolution operation is computed on the input data by sliding filters to
generate a feature map as input to the next layer. The pooling layer is responsible for down-
sampling the feature map output from the convolutional layer to reduce the computation by
retaining the maximum and average values in the region. The pooling layer helps to reduce
the size of the feature map while retaining the key features. The fully connected layer is
usually located at the end of the network and its nodes are connected to all the nodes in the
previous layer. The fully connected layer transforms the features extracted from the pooling
layer into the final output by combining and learning the features and producing the final
output. The output layer is responsible for receiving signals from the fully connected layer
and generating the output predicted by the model [24]. Therefore, to make the model fit
the dataset better and improve the prediction accuracy, the convolutional layer–pooling
layer–convolutional layer structure is designed so that the model is convolved once, pooled,
and then convolved again to make the model obtain more features for fitting learning. The
structure is shown in Figure 1.



Water 2024, 16, 1135 4 of 14

Figure 1. CNN network structure diagram.

2.3. Model Construction

For the permeability-coefficient-prediction task, the input data are a one-dimensional
array containing permeability-related features, including gradation, inhomogeneity coeffi-
cients, pore ratios, and curvature coefficients, as well as the permeability coefficient. In this
paper, MATLAB-R2022a is used to construct a CNN [25]. The specific steps are as follows:

(1) Data input. The dataset was imported in the form of an Excel table and divided
into the training set and test set.

(2) Data preprocessing. To ensure that the dataset allows the model to identify and
learn features, it is necessary to preprocess the input data, and the specific steps include nor-
malization and data tiling. Normalization is used to change all the data to the (0, 1) interval,
using the function mapminmax. Data tiling is used because the CNN is mainly used for im-
age processing; the images are generally in three dimensions, and they need to be converted
to one dimension to ensure that the dimensionality of the data and the dimensionality of
the input layer of the model are consistent. The following is the mapminmax function:

y =
(ymax − ymin)× (x − xmin)

xmax − xmin
+ ymin (3)

where x is the original data, xmin and xmax are the minimum and maximum values of the
original data, respectively, ymin and ymax are the minimum and maximum values of the
target range, respectively, and y is the normalized data.

(3) The network structure construction, building convolutional, pooling, and fully
connected layers. First, the neural network’s input layer is created using the imageInputLayer
function, and the input-data dimension is set to [13, 1, 1], which corresponds to d10~d100, e,
Cu, and Cc, respectively. Next, the convolution layer is constructed using the Convolution2D
function, and the size of the convolution kernel is 3 × 1. The pooling layer is constructed by
the MaxPooling2D function, setting the pooling window to [2, 1] and the step size to [1, 1].
After the pooling layer, the same convolutional layer with the same convolutional kernel is
set, and the size of feature map is adjusted to 32. The Dropout function is used to introduce
the regularization technique, and the parameter size of the L2Regularization function is
set to 0.01, in order to reduce the risk of overfitting and the effect of multicollinearity of
the input features. Finally, the fullyConnectedLayer and Regression functions are used to
construct the fully connected layer and the regression layer, respectively. The Activation
function between layers uses the ReLU function to improve the nonlinear fitting ability of
the model in the following form:

f (x) = max(0, x) (4)

(4) Model training hyperparameter settings. Suitable parameters would allow better
model fitting, less training time, and better prediction accuracy. The maximum number of
model training is set to 1200. The number of samples per training is 30. The initial learning
rate is 0.01, and the learning rate’s decrease factor is 0.5. The SGDM function is chosen as
the optimization function, which serves to minimize the loss function by calculating the
gradient of each parameter and updating the parameters using momentum, which can help
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the neural network to converge to the optimal solution more quickly while reducing the
oscillations when the parameters are updated. Its expression function is as follows:

vt+1 = βvt + (1 − β)∇J(θt) (5)

θt+1 = θt − αvt+1 (6)

where θt+1 and θt are the model parameters before and after updating, respectively, ∇J(θt)
is the parameter gradient, α is the learning rate, vt and vt+1 are the momentum before
and after updating, respectively, and β is the momentum parameter, which takes a value
between 0 and 1.

(5) Data output. In the permeability coefficient prediction task, the output is a contin-
uous value that represents the predicted result of the permeability coefficient. Since the
permeability coefficient of the input dataset is a value that has already been processed in
the data preprocessing, the output can be directly used for the estimation of the permeabil-
ity coefficient. In the subsequent prediction process, we only need to input the relevant
parameters to obtain the predicted value of the permeability coefficient.

The CNN prediction model flowchart is shown in Figure 2.

Figure 2. Flowchart of CNN model prediction.

3. Data Acquisition and Processing

There are some factors that affect the permeability coefficient significantly, including
the gradation, pore ratio, coefficient of uniformity, and coefficient of curvature. For rock-
fill material, the size and distribution of particles may directly affect the velocity of the
permeability of water. Gradation reflects the particle distribution of the rockfill material.
The coefficient of uniformity measures the degree of dispersion in the particle size of the
rockfill material. The highly inhomogeneous stones create larger penetration paths, which
affect permeability. The coefficient of curvature characterizes the shapes of the particles.
The pore ratio reflects the volume of pores in the soil, which relates to the water-flow area
of the rockfill material and also affects permeability.
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Some scholars, through experimental research, put forward their own empirical for-
mulae to predict the coefficient of permeability of soil, such as Hazen’s formula, K = d2

10,

and Sauerbrey’s [26] formula, K18 =
cn3d2

17
(1−n)2 , as well as Terzaghi’s formula and Kozeny’s

formula, mentioned above, through which it can be concluded that the coefficient of per-
meability is a function of the parameters of the particle gradation, porosity, pore ratio, and
so on, and it is possible to estimate the coefficient of permeability from these parameters. It
can be concluded that the above parameters have a greater influence on the permeability
coefficient and play a major controlling role in the prediction of the permeability coefficient.
At the same time, the above parameters are easy to measure and obtain, which satisfies the
purpose of the non-destructive and rapid measurement of the permeability coefficients of
heap stone materials proposed in this paper.

Therefore, the neural network CNN model mainly learns the dataset, refines and
analyzes the features between each datum and establishes a fitting relationship, so as to
achieve the purpose of prediction. In this paper, by using the full feature particle size, Cc,
Cu, and e as the input parameters and the permeability coefficient as the output parameter,
a fitting relationship is established for the prediction of the permeability coefficient of heap
rock material.

3.1. Data Acquisition and Processing

The determination process of the permeability coefficient of rockfill material samples
using laboratory tests is cumbersome and the data format is difficult to unify. The data
on the permeability coefficients of rockfill material and coarse-grained soil samples were
obtained from the literature, scientific journals, academic papers, or research reports in
relevant fields. The permeability coefficients of the samples were selected to be in the range
of 10−3~10−1 cm/s to ensure the applicability of the dataset to the rockfill materials due
to the large permeability coefficients of rockfill materials. The particle-size range of the
selected samples was between 5 mm and 60 mm, which is a typical range for large particle
sizes. The permeability characteristics of the selected samples were similar to those of the
rockfill material, which met the requirements of model training.

The original data for the dataset were provided by Ding et al. [27]. Based on the
original data, the samples with permeability coefficients on the order of 10−4 cm/s were
removed. The coefficient of uniformity Cu and the coefficient of curvature Cc were added
to the dataset. The gradation, the pore ratio, the Cu, and the Cc were taken as the input
features of the model and the permeability coefficients were taken as the output features.
The collated dataset is shown in Table 1.

Table 1. Sample data sets.

Sample
Characteristic Particle Size/mm

e Cu Cc
K20/

(cm·s−1)d10 d20 d30 d40 d50 d60 d70 d80 d90 d100

1 1.30 6.04 7.49 8.90 11.52 16.34 23.19 33.52 46.13 60.00 0.27 12.57 2.64 0.050
2 1.45 6.06 7.57 9.19 12.36 17.86 25.52 36.01 47.84 60.00 0.27 12.32 2.21 0.050
3 2.10 6.15 7.84 9.88 13.86 19.91 28.42 39.86 49.65 60.00 0.27 9.48 1.47 0.040
4 2.94 6.18 8.12 10.80 15.15 21.37 30.88 41.80 50.84 60.00 0.27 7.27 1.05 0.030
5 3.14 6.29 8.52 11.60 15.98 22.68 33.96 44.62 52.06 60.00 0.27 7.22 1.02 0.021
6 3.30 6.37 8.88 12.46 17.47 25.69 37.56 46.51 52.99 60.00 0.27 7.78 0.93 0.021
7 3.46 6.48 9.48 13.45 18.76 28.76 40.57 48.19 53.95 60.00 0.27 8.31 0.90 0.020
8 3.46 6.56 9.88 14.03 19.91 32.19 43.05 49.65 54.27 60.00 0.27 9.30 0.88 0.010
9 2.36 6.52 9.15 12.83 17.68 24.65 34.36 44.09 51.75 60.00 0.28 10.44 1.44 0.011
10 2.36 6.52 9.15 12.83 17.68 24.65 34.36 44.09 51.75 60.00 0.27 10.44 1.44 0.010
11 2.36 6.52 9.15 12.83 17.68 24.65 34.36 44.09 51.75 60.00 0.24 10.44 1.44 0.008
12 2.36 6.52 9.15 12.83 17.68 24.65 34.36 44.09 51.75 60.00 0.22 10.44 1.44 0.007
13 0.25 0.50 1.00 1.61 2.54 4.06 6.03 8.38 12.42 20.00 0.35 16.24 0.99 0.008
14 0.25 0.50 1.00 1.61 2.54 4.06 6.03 8.38 12.42 20.00 0.37 16.24 0.99 0.022
15 0.25 0.50 1.00 1.61 2.54 4.06 6.03 8.38 12.42 20.00 0.44 16.24 0.99 0.033
16 0.25 0.50 1.00 1.61 2.54 4.06 6.03 8.38 12.42 20.00 0.46 16.24 0.99 0.038
17 0.25 0.50 1.00 1.61 2.54 4.06 6.03 8.38 12.42 20.00 0.51 16.24 0.99 0.072
18 0.25 0.50 1.00 1.61 2.54 4.06 6.03 8.38 12.42 20.00 0.53 16.24 0.99 0.087
19 0.25 0.50 1.00 1.61 2.54 4.06 6.03 8.38 12.42 20.00 0.56 16.24 0.99 0.094
20 0.25 0.94 2.32 4.69 7.70 10.45 12.73 14.95 17.26 20.00 0.45 41.80 2.06 0.067
21 0.25 0.87 2.11 4.04 6.44 9.05 11.57 14.09 16.75 20.00 0.45 36.20 1.97 0.045
22 0.25 0.75 1.69 2.74 3.94 5.89 9.22 12.42 15.87 20.00 0.45 23.56 1.94 0.024
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Table 1. Cont.

Sample
Characteristic Particle Size/mm

e Cu Cc
K20/

(cm·s−1)d10 d20 d30 d40 d50 d60 d70 d80 d90 d100

23 0.25 0.72 1.48 2.40 3.28 4.42 6.29 9.44 13.84 20.00 0.45 17.68 1.98 0.023
24 0.25 0.69 1.31 2.13 2.77 3.44 4.42 7.26 13.11 20.00 0.45 13.76 2.00 0.021
25 0.25 0.73 1.09 1.41 1.79 2.49 3.67 5.92 11.43 20.00 0.45 9.96 1.91 0.019
26 0.25 0.63 0.91 1.15 1.36 1.60 2.11 4.02 10.32 20.00 0.45 6.40 2.07 0.010
27 0.25 0.56 0.66 0.74 0.83 0.97 1.25 1.94 7.21 20.00 0.45 3.88 1.80 0.010
28 0.25 0.53 0.61 0.67 0.71 0.77 0.84 0.97 1.78 20.00 0.45 3.08 1.93 0.009
29 0.25 0.32 0.38 0.45 0.76 5.00 6.71 7.94 10.00 20.00 0.39 20.00 0.12 0.003
30 0.25 0.38 0.57 1.03 2.52 5.00 6.56 7.84 10.00 20.00 0.39 20.00 0.26 0.006
31 0.25 0.38 0.78 1.67 3.05 5.00 6.48 7.80 10.00 20.00 0.39 20.00 0.49 0.006
32 0.25 0.39 0.97 2.11 3.44 5.00 6.40 7.75 10.00 20.00 0.39 20.00 0.75 0.007
33 0.25 0.42 1.16 2.29 3.54 5.00 6.40 7.70 10.00 20.00 0.39 20.00 1.08 0.007
34 0.25 0.46 1.37 2.39 3.59 5.00 6.36 7.70 10.00 20.00 0.39 20.00 1.50 0.013
35 0.25 0.54 1.56 2.57 3.69 5.00 6.32 7.66 10.00 20.00 0.39 20.00 1.95 0.012
36 0.25 0.94 1.98 2.86 3.83 5.00 6.29 7.66 10.00 20.00 0.39 20.00 3.14 0.016
37 0.25 1.28 2.24 3.03 3.92 5.00 6.25 7.61 10.00 20.00 0.39 20.00 4.01 0.016
38 0.25 1.63 2.45 3.18 3.99 5.00 6.21 7.61 10.00 20.00 0.39 20.00 4.80 0.024
39 0.25 0.33 0.40 0.50 0.71 1.00 1.25 1.51 2.00 5.00 0.55 4.00 0.64 0.022
40 0.25 0.37 0.50 0.71 1.00 1.42 2.00 2.73 3.70 5.00 0.55 5.68 0.70 0.055
41 0.25 0.39 0.56 0.82 1.28 2.00 2.61 3.27 4.03 5.00 0.55 8.00 0.63 0.056
42 0.25 0.40 0.63 1.00 2.00 2.53 3.07 3.60 4.23 5.00 0.55 10.12 0.63 0.060
43 0.25 0.36 0.50 0.79 1.29 2.00 2.61 3.27 4.03 5.00 0.71 8.00 0.50 0.014
44 0.25 0.43 0.68 1.00 1.46 2.00 2.57 3.23 4.02 5.00 0.71 8.00 0.92 0.020
45 0.25 0.50 1.00 1.32 1.63 2.00 2.52 3.17 3.99 5.00 0.71 8.00 2.00 0.034
46 0.25 0.78 1.15 1.41 1.67 2.00 2.50 3.14 3.97 5.00 0.71 8.00 2.65 0.041
47 0.25 1.00 1.26 1.47 1.69 2.00 2.48 3.12 3.96 5.00 0.71 8.00 3.18 0.055
48 0.82 2.66 5.91 10.28 13.23 16.55 19.97 23.55 27.60 31.50 0.22 20.18 2.57 0.794
49 0.60 2.26 5.32 9.81 12.85 16.26 19.74 23.41 27.43 31.50 0.20 27.10 2.90 0.789
50 0.17 1.26 3.81 8.12 11.98 15.42 19.17 22.86 27.27 31.50 0.09 90.71 5.54 0.070
51 5.00 7.36 9.50 12.99 17.84 26.00 35.84 45.05 52.46 60.00 0.27 5.20 0.69 0.354
52 5.00 7.36 9.50 12.99 17.84 26.00 35.84 45.05 52.46 60.00 0.22 5.20 0.69 0.290
53 2.40 5.00 7.50 10.22 15.58 22.00 30.41 39.59 49.48 60.00 0.27 9.17 1.07 0.101
54 2.40 5.00 7.50 10.22 15.58 22.00 30.41 39.59 49.48 60.00 0.25 9.17 1.07 0.090
55 1.00 2.13 5.00 7.58 11.03 16.00 24.91 32.63 43.23 60.00 0.27 16.00 1.56 0.010
56 1.00 2.13 5.00 7.58 11.03 16.00 24.91 32.63 43.23 60.00 0.22 16.00 1.56 0.008
57 0.48 1.08 2.00 5.00 7.94 12.00 17.12 25.06 37.34 60.00 0.27 25.00 0.69 0.008
58 0.48 1.08 2.00 5.00 7.94 12.00 17.12 25.06 37.34 60.00 0.25 25.00 0.69 0.004
59 0.48 1.08 2.00 5.00 7.94 12.00 17.12 25.06 37.34 60.00 0.22 25.00 0.69 0.005
60 0.20 1.51 2.50 3.71 5.00 6.50 6.96 8.03 10.00 40.00 0.44 32.50 4.81 0.016
61 0.20 1.22 2.30 3.56 5.00 6.70 7.55 9.42 14.24 40.00 0.44 33.50 3.95 0.023
62 0.20 0.87 2.00 3.41 5.00 6.90 7.88 10.33 17.56 40.00 0.44 34.50 2.90 0.037
63 0.20 0.51 1.80 3.21 5.00 7.10 8.33 11.85 21.11 40.00 0.44 35.50 2.28 0.046
64 0.20 0.41 1.40 2.94 5.00 7.30 8.99 14.21 24.48 40.00 0.44 36.50 1.34 0.059
65 0.20 0.36 1.00 2.64 5.00 7.50 10.00 17.20 26.93 40.00 0.44 37.50 0.67 0.080
66 0.20 0.34 0.60 2.23 5.00 7.60 11.63 20.00 28.79 40.00 0.44 38.00 0.24 0.100
67 0.20 0.32 0.50 1.74 5.00 8.20 14.04 22.34 30.18 40.00 0.44 41.00 0.15 0.121
68 0.20 0.30 0.43 1.14 5.00 9.50 16.89 24.31 31.32 40.00 0.44 47.50 0.10 0.202
69 0.20 0.30 0.40 0.75 5.00 11.50 19.27 25.90 32.16 40.00 0.44 57.50 0.07 0.266
70 0.20 0.29 0.38 0.56 5.00 15.50 21.19 26.87 32.84 40.00 0.44 77.50 0.05 0.291
71 2.50 6.50 12.78 20.86 25.07 30.14 36.54 43.53 50.52 60.00 0.26 12.06 2.17 0.950
72 2.50 5.70 9.32 13.83 19.97 25.07 31.76 40.59 49.21 60.00 0.26 10.03 1.39 0.730
73 0.60 1.60 3.18 5.47 7.89 10.92 14.70 21.05 31.48 50.00 0.26 18.20 1.54 0.066
74 0.10 0.35 0.95 1.87 3.67 6.70 12.22 21.43 29.30 40.00 0.33 67.00 1.35 0.007
75 0.10 0.35 0.95 1.87 3.67 6.70 12.22 21.43 29.30 40.00 0.24 67.00 1.35 0.001
76 0.18 0.80 1.55 2.44 3.97 6.75 12.32 21.60 29.30 40.00 0.32 37.50 1.98 0.012
C1 0.25 0.70 1.77 2.71 3.76 5.00 6.32 7.70 10.00 20.00 0.39 20.00 2.51 0.010
C2 0.25 0.80 1.95 3.32 5.10 7.43 10.14 12.96 16.16 20.00 0.45 29.72 2.05 0.028
C3 2.36 6.52 9.15 12.83 17.68 24.65 34.36 44.09 51.75 60.00 0.25 10.44 1.44 0.009
C4 0.25 0.50 1.00 1.61 2.54 4.06 6.03 8.38 12.42 20.00 0.41 16.24 0.99 0.023
C5 5.00 7.36 9.50 12.99 17.84 26.00 35.84 45.05 52.46 60.00 0.25 5.20 0.69 0.305
C6 1.00 2.13 5.00 7.58 11.03 16.00 24.91 32.63 43.23 60.00 0.25 16.00 1.56 0.009

3.2. Model Performance Evaluation

In this paper, the root mean square error (RMSE), coefficient of determination (R2), and
mean absolute error (MAE) are used as the evaluation indexes to assess the performance of
the model. The RMSE is an index to assess the difference between predicted values and
test values. A smaller RMSE indicates that the difference between the predictions and the
observations is smaller, meaning a better model performance. Its expression is as follows:

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (7)

R2 is used to measure how well the model explains the total variance. It represents the
proportion of the total variance explained by the model and takes a value between 0 and 1.



Water 2024, 16, 1135 8 of 14

A larger R2 indicates that the model explains the variability of the test data better and that
the model fit is better. Its expression is as follows:

R2 = 1 −
∑
i
(ŷi − yi)

2

∑
i
(yi − yi)

2 (8)

The MAE is the average of the absolute errors between the predicted and the test
values. A smaller MAE value indicates a smaller absolute error in the model prediction,
meaning better model performance. Its expression is:

MAE =
1
m

m

∑
i=1

|(yi − ŷi)| (9)

where yi and ŷi are the test and predicted values of the permeability coefficient, respectively,
m is the total number of samples, and yi is the mean of the test values.

4. Model Training and Results Analysis

Building the BP neural network model and the random forest model and comparing
them with the CNN model allows us to assess the performance of the CNN model with
respect to the BP model in the permeability coefficient prediction task. This comparison
helps us to understand the advantages of the CNN model.

4.1. Construction of the BP Model

The full name of the BP neural network is the backpropagation neural network,
which is a multilayer feed-forward network trained according to the error-backpropagation
algorithm. The BP neural network model is a classical neural network model that has been
widely used in a variety of prediction and classification tasks. It has a multilayer structure
and a backpropagation algorithm to model and learn complex nonlinear relationships. It
consists of input, hidden, and output layers. The construction of the BP neural network
can be achieved by the self-contained toolbox in MATLAB-R2022a [28]. The specific
construction steps are as follows:

(1) Data normalization and sample division.
(2) Define input, hidden, and output layers. The number of hidden layers is deter-

mined by the empirical formula J =
√

m + n + a (where J is the number of neurons in the
hidden layer, m is the number of neurons in the input layer, n is the number of neurons in
the output layer, and a is a constant between 0 and 10).

(3) Define the network training function and parameter settings. The activation
function is a sigmoid function, the number of iterations is set to 1000, the learning rate is
0.01, and the error threshold is 1 × 10−6.

(4) Training model and performance evaluation.
The BP model’s hyperparameter settings are shown in Table 2.

Table 2. BP model hyperparameters.

Parameters Value

Number of iterations 1000
Error threshold 1 × 10−6

Learning rate 0.01

4.2. Analysis of Training Results

The collected dataset was used in the model training. During the training process,
the hyperparameters needed to be adjusted according to the training effect to improve the
prediction accuracy. Furthermore, to verify the prediction performance of the model, the
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CNN model was compared to the traditional BP model and the error of each model was
calculated. The training effect is shown in Figures 3 and 4, and the evaluation index of each
model is shown in Table 3.

As can be seen in Figure 3, the CNN model and the BP model both perform well on
the training set. However, the predicted values of the BP model fluctuate greatly, and the
predicted values of some samples deviate from the test values significantly. On the other
hand, the predicted values of the CNN model are closer to the test values, and the trends
are also consistent with the test values. Therefore, the CNN model fits the dataset better.

Figure 3. Comparison of predicted permeability coefficients for CNN (a) and BP (b) training sets.

As can be seen in Figure 4, the predicted values of the CNN model are closer to the
test values than those of the BP model, with less fluctuation in the curve and a more stable
trend, indicating that the CNN model has higher prediction accuracy and better model
performance. In addition, the CNN model has a better prediction effect when the test value
of the sample permeability coefficient is about 0.1 cm/s or less, but the prediction accuracy
is lower when the permeability coefficient is larger. The main reason for this is the small
number of datasets (76 groups). The permeability coefficients of the dataset samples are
concentrated around the order of 1 × 10−2 cm/s. The number of samples above 0.1 cm/s
is small, providing insufficient data for the CNN model. Even on the dataset with only
76 sets of samples, the CNN model has good results, showing the powerful learning and
fitting ability of the CNN, which also performs well in regression problems.

Figure 4. Comparison of predicted permeability coefficients between CNN (a) and BP (b) test sets.

In Table 3, the evaluation indexes of the CNN model and BP model are compared and
analyzed. For RMSE, the CNN model’s training set decreases by 65.6% and the testing
set decreases by 59.62% compared with the BP model. For R2, the CNN model improves
the training set by 21.56% and the testing set by 22.61% compared with the BP model. For
MAE, the CNN model decreases the training set by 35.71% and the testing set by 29.05%
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compared with the BP model. Thus, it seems that the convolutional and pooling layers in
the CNN model contribute to improving the ability to extract the feature information of
the data, which significantly improves the prediction performance and verifies the model’s
applicability in the prediction of the permeability coefficients of rockfill materials.

Table 3. Model-evaluation indexes.

Index
Training Set Testing Set

CNN BP CNN BP

RMSE 0.043 0.125 0.147 0.364
R2 0.902 0.742 0.808 0.659

MAE 0.027 0.042 0.105 0.148

The model’s prediction accuracy was tested using non-participating training data. The
comparison of the predicted values and test values is shown in Table 4. It can be seen that
the maximum relative error between the CNN model’s predicted values and the test values
is 7.83% and that the average relative error is 4.77%, indicating that the predicted values
are closer to the test values.

Table 4. Comparison of predicted and test values of the CNN model.

Number Test Value/(cm·s−1) Predicted Value/(cm·s−1) Relative Error/%

C1 1.00 × 10−2 1.07 × 10−2 7.00
C2 2.80 × 10−2 2.85 × 10−2 1.78
C3 9.00 × 10−3 8.83 × 10−3 1.89
C4 2.30 × 10−2 2.12 × 10−2 7.83
C5 3.05 × 10−1 3.23 × 10−1 5.90
C6 9.00 × 10−3 9.38 × 10−3 4.22

4.3. Model Effectiveness Evaluation

To validate the performance of the CNN model and the BP model, the mainstream
machine learning evaluation method of K-fold cross-validation is used. The steps of K-fold
cross-validation are as follows: first, the original dataset is divided into K subsets of similar
size, and next, K iterations are performed. In each iteration, one of the subsets is used as the
test set and the remaining K-1 subsets are used as the training set. Next, the training set is
used to train the model and the performance of the model is evaluated on the corresponding
test set. The performance-evaluation results obtained from K iterations are averaged as the
final performance-evaluation results.

In this study, the dataset was divided into seven subsets, one subset was used as the
test set each time, and the results of the seven subsets were obtained as shown in Table 5,
which shows that the CNN model performs well on each validation subset and that the
model is sufficiently reliable.

Table 5. MAE values for each subset of the CNN model and BP model.

Number
Training Set Testing Set

CNN BP CNN BP

1 0.035 0.069 0.098 0.216
2 0.027 0.023 0.173 0.252
3 0.035 0.063 0.093 0.137
4 0.028 0.048 0.095 0.190
5 0.033 0.018 0.102 0.183
6 0.032 0.031 0.026 0.053
7 0.024 0.027 0.159 0.277

average 0.031 0.039 0.106 0.187



Water 2024, 16, 1135 11 of 14

5. Validation of Permeability Test

To validate the generalization performance of the CNN model, a constant head per-
meability test was conducted to verify the prediction accuracy of the model [29]. In the
normal head infiltration test, since the infiltration head remains stable, the pore structure
of the soil body is more uniform after it is compacted by equal compaction work, and no
turbulence occurs during the test; the soil body can be described as having laminar flow,
and its infiltration coefficient can be calculated by applying Darcy’s formula.

5.1. Permeability Test Design

The permeameter sample gradation adopted the reduced scale of the field gradation
of the rockfill dam. The samples were formulated to ensure good gradation, which is
controlled by the coefficient of uniformity and the coefficient of curvature. Furthermore, the
large particles greater than 60 mm in size were excluded, and the particle-size range was
2–60 mm. The rockfill permeameter was used in the test as shown in Figure 5. The diameter
of the specimen bucket was 300 mm. The test was conducted with a water temperature of
20 ◦C as the standard temperature, and the permeability coefficient was measured at this
standard temperature.

Figure 5. Rockfill permeameter.

The specific steps of the permeability test are as follows:
(1) Instrument installation. The water pipe was connected and the water was filled

from the bottom of the instrument until the water level was slightly above the orifice plate
and the water supply was stopped. Samples were taken and the air-dried water contents of
the samples were measured. The temperature (T) during the test was recorded.

(2) The samples were filled into the specimen buckets in layers and lightly tamped
with a wooden hammer. After filling, the height from the top of the specimen to the top
of the bucket was measured and the net height of the specimen was calculated. The mass
of the filled samples was calculated by measuring the mass of the remaining samples. A
buffer layer of gravel approximately 2 cm thick was placed over the top of the specimen.
The water supply was slightly opened until the water level rose to the overflow hole, and
then the water supply was stopped.

(3) After a few minutes, the water level in each piezometer was checked to ensure that
it was flush with the overflow hole. The water supply was started to allow water to be
injected into the specimen bucket. During the test, the water supply should be adjusted to
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allow the supply water slightly more than the overflow water. The overflow pipe should
always have water overflow to maintain a constant water level.

(4) After the water level of the piezometer tube has been stabilized, the water level
of the piezometer tube should be recorded and the difference in water level between each
piezometer tube should be calculated. The volume of infiltration water in a certain period (t)
was taken with a graduated cylinder, and the measurement should be repeated according
to the regulations.

The permeability coefficient of the constant head permeability test should be calculated
according to the following formula:

KT =
2QL

At(H1 + H2)
(10)

K20 = KT
η T

η 20
(11)

where KT is the permeability coefficient of the specimen at the target water temperature
(T) (cm/s), Q is the volume of infiltration water in a certain period (t), in seconds (cm3),
L is the seepage diameter (cm), the height between the centers of the two pressure holes,
A is the cross-sectional area of the specimen (cm2), t is the time (s), H1, H2 is the differ-
ence between the water levels (cm), K20 is the permeability coefficient of the specimen
at the standard water temperature (20 ◦C) (cm/s), ηT is the coefficient of the dynamic
viscosity of the water at the target water temperature (T) (1 × 10−6 kPa·s), and η20 is the
coefficient of the dynamic viscosity of water under the standard water temperature (20 ◦C)
(1 × 10−6 kPa·s).

5.2. Permeability Test Results

The permeability test results of the samples are shown in Table 6.

Table 6. Test results of samples.

Sample
Characteristic Particle Size/mm

e Cu Cc
K20

(cm/s)d10 d20 d30 d40 d50 d60 d70 d80 d90 d100

1 0.39 1.34 3.52 7.19 11.63 17.36 24.25 32.13 40.04 60.00 0.540 44.30 1.82 0.1349
2 0.30 1.02 2.32 4.20 7.12 11.32 17.31 26.31 37.76 60.00 0.452 37.80 1.59 0.0933
3 0.24 0.44 1.31 2.82 4.98 8.93 14.17 19.89 33.90 60.00 0.184 37.83 0.81 0.0812

The comparison of the test values and the predicted values is shown in Table 7 and
Figure 6. The complexity of the infiltration path of the rockfill material is related to
many factors, such as the compactness, gradation, pore ratio, coefficient of uniformity,
etc. Therefore, some error exists between the predicted permeability coefficient obtained
with the CNN model and the test values. From Table 7 and Figure 6, it can be seen that
the difference between the predicted values of the CNN model and the test values of the
permeability test is not large and that the relative error is small, which meets the general
needs of rough estimation in engineering. Therefore, the CNN model is applicable when
evaluate the permeability coefficient of rockfill material.

Table 7. Predicted values and relative errors of the samples.

Sample
Permeability Coefficient (cm/s)

Test Value Predicted Value Relative Error

1 0.135 0.126 6.67%
2 0.093 0.103 10.75%
3 0.081 0.089 9.87%
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Figure 6. Comparison of tested and predicted values of permeability coefficients.

6. Conclusions

With the popularization of machine learning technology, the application of neural
networks in engineering practice has received increasing attention. In this paper, the CNN
was used to establish a machine learning model to predict the permeability coefficient of
rockfill material, and the following conclusions were obtained:

(1) Compared with the traditional BP neural network, CNNs can learn to obtain more
data features through their special convolution and pooling structures. Therefore, they
have higher accuracy in regression prediction.

(2) For the prediction of the permeability coefficient of rockfill material, the gradation,
coefficient of uniformity, coefficient of curvature, and pore ratio were used as the input
features and the permeability coefficient was used as the output feature to build a dataset,
which achieved better results.

(3) The laboratory permeability test was conducted to demonstrate that the CNN
model has good generalization performance.
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