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Abstract: Soil water content (SWC) plays a vital role in agricultural management, geotechnical
engineering, hydrological modeling, and climate research. Image-based SWC recognition methods
show great potential compared to traditional methods. However, their accuracy and efficiency
limitations hinder wide application due to their status as a nascent approach. To address this, we
design the LG-SWC-R3 model based on an attention mechanism to leverage its powerful learning
capabilities. To enhance efficiency, we propose a simple yet effective encoder–decoder architecture
(PVP-Transformer-ED) designed on the principle of eliminating redundant spatial information from
images. This architecture involves masking a high proportion of soil images and predicting the
original image from the unmasked area to aid the PVP-Transformer-ED in understanding the spatial
information correlation of the soil image. Subsequently, we fine-tune the SWC recognition model
on the pre-trained encoder of the PVP-Transformer-ED. Extensive experimental results demonstrate
the excellent performance of our designed model (R2 = 0.950, RMSE = 1.351%, MAPE = 0.081,
MAE = 1.369%), surpassing traditional models. Although this method involves processing only a
small fraction of original image pixels (approximately 25%), which may impact model performance,
it significantly reduces training time while maintaining model error within an acceptable range. Our
study provides valuable references and insights for the popularization and application of image-based
SWC recognition methods.

Keywords: soil water content (SWC); image processing; deep learning; attention mechanism; encoder-
decoder architecture

1. Introduction

Soil, as a complex natural resource, plays a crucial role under the integrated influence
of water and human factors [1]. Water, an essential element in various forms and composi-
tions, gives rise to intricate mechanisms and pathways that significantly influence the soil
environment at multiple levels [2,3]. In the field of agriculture, soil water content (SWC) is
vital for plant growth and development [4]. Adequate water supply at different growth
stages is essential for any crop, as both too much and too little water can negatively impact
crop yield and quality [5]. Accurately measuring SWC and distribution can assist farmers
in scientifically scheduling irrigation, efficiently utilizing water resources, and avoiding
issues such as soil salinization and water depth exceeding root zones caused by excessive
irrigation [6]. In geotechnical engineering, changes in SWC significantly influence soil
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mechanical properties, permeability, and stability [7,8]. Even minor variations in SWC can
lead to significant changes in soil strength, compressibility, and water conductivity, posing
potential threats to the stability and safety of engineering structures [9]. Therefore, the
accurate estimation and monitoring of soil water conditions are of paramount importance
for geotechnical engineering design and construction. This can help engineers assess soil
engineering properties and take appropriate measures to ensure the stability and safety of
engineering projects [10]. Additionally, dynamic SWC data play a crucial role in disaster
prevention and response. Monitoring SWC levels can serve as a precursor signal for geolog-
ical disasters (such as landslides, debris flows), providing timely alerts and warnings [11].
In the fields of climate and water resources management, understanding the distribution
and changes in SWC is critical for predicting and evaluating the risks of extreme weather
events such as droughts and floods [12]. In summary, in-depth research and real-time
monitoring of SWC are not only essential for the sustainable development of agricultural
production and the safety of geotechnical engineering but also for disaster prevention and
hydrological assessments.

There are various methods available for measuring SWC, which can be broadly clas-
sified into direct and indirect methods [13]. Direct methods include the oven-drying
method [14]. Due to the high accuracy of this method, its results are usually considered
as standard values. However, despite the high precision of these methods, they are time-
consuming and destructive, thereby facing certain limitations in practical applications.
In contrast, indirect methods include neutron moisture probe (NMP), resistance method
(ERM), time domain reflectometry (TDR), frequency domain reflectometry (FDR), gamma-
ray attenuation method (GRA), and remote sensing methods [3]. NMP and GRA methods
exhibit high accuracy and response speed, but due to their involvement with radioactive el-
ements, potential risks to human health and the environment may exist [15]. Other sensors
(such as ERM, TDR, and FDR) require good soil contact, thus generating significant impact
on measurement results in soils with cracks and voids [16]. Remote sensing methods,
although capable of providing extensive data, are greatly influenced by climate and soil
surface vegetation cover, and are only suitable for shallow soil layers [17]. Despite the
availability of these methods, the widespread implementation of non-destructive SWC
monitoring remains challenging due to their inherent limitations.

The machine learning-based methods using digital image analysis have been widely
applied as a non-contact and on-site indirect measurement approach in studying soil
properties, such as the hydraulic conductivity of soils [18], soil roughness [19], soil type [20],
soil texture [21], soil bulk density [22], and total soil nitrogen content [23]. Many studies
have focused on utilizing soil surface images to estimate SWC [13,24]. This is because the
presence of water causes various changes in the spectrum of incident light around soil
particles, including scattering, refraction, reflection, and absorption, which can be visually
captured in a digital image taken by a camera [13]. Meanwhile, as the water content
increases, the spectral reflectance of the soil decreases, and the soil image information
typically becomes darker. Therefore, the distinct image information differences between dry
and wet soil serve as the basis for image-based SWC prediction techniques [25,26]. Devices
such as spectrometers, multispectral cameras, and thermal cameras can provide more
spectral information for SWC prediction [27,28], but due to their high cost and complex
operation, they are primarily used for scientific research. In contrast, digital cameras, with
their relatively lower cost, offer a convenient way to indirectly assess SWC [29], attracting
significant attention in the academic community. Previous research has concentrated on the
real-time assessment of SWC variations by monitoring changes in soil image information.
For instance, ref. [30] pioneered the utilization of Linear Regression to predict moisture from
soil images in the RGB and HSV color spaces. Subsequently, notable research endeavors
emerged: ref. [29] employed a multilayer perceptron (MLP) artificial neural network to
recognize the moisture content of tropical soils taken by digital cameras. Ref. [31] opted
for a simple linear regression model to recognize soil moisture between the saturation (S)
and value (V) of soil images in the HSV color space. More recently, ref. [32] also utilized
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soil images captured by digital cameras to recognize SWC by constructing traditional
machine learning models using features extracted from different color spaces in the images.
Ref. [33] employed AlexNet (convolutional neural network) to build a classification model
for predicting SWC based on soil surface images. These studies have shown that SWC
recognition models based on soil images can rapidly, non-destructively, and conveniently
measure SWC. However, as an emerging technology, there are still some important topics
that require further discussion and research, which will be outlined in the following sections
to address the current limitations in research.

1. There is a need for more effective image-based SWC recognition regression methods.
Previous studies have primarily utilized simple traditional machine learning models
such as linear models [31], polynomial models [25], exponential models [34], and
basic deep learning models [29,33]. However, research has shown that the response of
soil image information to changes in SWC is not a straightforward relationship [13,31].
Simple models can lead to poor accuracy and stability in recognition, failing to meet
application demands. Therefore, more effective regression models are needed to
learn the complex patterns and feature representations in soil images, enhancing the
accuracy and stability of SWC recognition regression.

2. The high demand for computational resources has increased the threshold for appli-
cation, limiting the potential for widespread use. Previous research has primarily
focused on selecting useful input variables, such as mean and variance in the statistical
color space of soil images [30–33]. However, selecting variables to represent the entire
image may lead to the loss of valuable information within the image. As a viable
alternative, many current studies choose to input all pixels of the entire image into
the model without variable selection [32,33]. However, the computational and time
costs for handling large amounts of data increase the usage threshold, requiring more
expensive computational resources. This poses a challenge in resource-constrained en-
vironments. One way to address this issue is to develop more efficient algorithms and
technologies to reduce computational and time costs, thus lowering the application
threshold and increasing the potential for widespread use.

3. Highly redundant spatial information in soil images. Highly redundant spatial
information exists in traditional natural images [35,36]. However, soil images mainly
consist of a significantly larger proportion of soil regions and a smaller proportion of
non-soil areas (porous areas, mineral composition areas), where the redundant spatial
information between these regions is more pronounced and highly similar compared
to natural images. Yet, research on reducing the spatial redundancy in soil images to
prevent the model from merely focusing on the low-level statistical distribution of
images and truly understanding soil image characteristics is very limited.

To further propel the practical applications of image-based SWC recognition in relevant
fields, this paper, leveraging the aforementioned limitations, establishes two key objectives.
Firstly, to develop SWC models with superior performance compared to traditional models.
Secondly, assuming the high redundancy of information in soil images and less pixel
information can substitute the entire image, we aim to reduce the demand for computational
resources by this hypothesis. Hence, the main contributions of this study are as follows:

1. To reduce the demand for computational resources, we designed the PVP-Transformer-
ED from the perspective of reducing spatial redundancy in soil images. Its aim is to
randomly mask patches from the input image, reconstruct missing patches in pixel
space to learn more complex patterns and feature representations in soil images,
and then fine-tune the pretrained PVP-Transformer-ED on the regression model. It
enables the SWC model to identify SWC with minimal input patches, reducing the
recognition time by 50% or more. Additionally, it helps reduce memory consumption,
thus providing the potential to extend the PVP-Transformer-ED to more complex
large models and enhance generalization.

2. We designed the LG-SWC-R3 model based on the concept of local information and
global perception to effectively capture the intricate relationship between SWC and
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image features. Experimental results have demonstrated that this model outperforms
the aforementioned SWC recognition models across different evaluation metrics.

3. We developed an automatic image acquisition platform for constructing the undisturbed
loess dataset and established the Bailu highland soil dataset based on this platform. This
hardware and dataset support pave the way for future research endeavors.

2. Materials and Methods

The research framework is illustrated in Figure 1. Firstly, soil samples from Bailu high-
land were collected, and soil images with varying moisture levels were collected using the
developed soil image acquisition platform for training and testing the moisture recognition
model. Subsequently, a simple, effective, and scalable encoder–decoder architecture known
as the Patch-based Visual Perception Encoder–Decoder Architecture based Transformer
(PVP-Transformer-ED) was pretrained to endow certain regions within the soil images with
the ability to represent the entire image. Building on the concept of local information and
global perception, a local global SWC recognition regression model (LG-SWC-R3 model)
was designed. We will describe each of them in this section.
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Figure 1. The research framework of this study.

2.1. Soil Sampling and Preparation

The study area is located in the Bailu highland in Xi’an, Shaanxi Province, with
sampling coordinates at 34◦14′55′′ N, 109◦05′47′′ E (Figure 2a). Shaanxi Province is one of
the regions with the widest distribution of loess in China, and the Bailu highland is situated
about 15 km southeast of Xi’an, Shaanxi Province. It is a representative loess mesa with
an elevation ranging from 690 m to 780 m [37]. In our laboratory tests, we examined the
properties of the soil, with the results shown in Table 1. According to the Soil Classification
Guide [38] and FAO soil classification [39], the collected soil texture is classified as Clay,
and the soil type is classified as Calcisols. The soil contains the organic carbon (OC) content
of 9.3 g·kg−1, nitrogen (N) content of 1.7 g·kg−1, and a phosphorus content of 0.6 g·kg−1.
This indicates a relatively high organic matter content in the soil.

Table 1. Soil properties at the sampling location.

Study Sites Soil Texture Soil
Type

Sand
(%)

Slit
(%)

Clay
(%)

Organic Carbon (OC)
(g·kg−1)

Nitrogen (N)
(g·kg−1)

Phosphorous (P)
(g·kg−1)

Bailu
highland Clay Calcisols 11.7 30.6 57.7 9.3 1.7 0.6
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Figure 2. (a) Sampling location of undisturbed soil samples, (b) soil texture triangle [38] and the type
to which the sampled soil belongs, (c) partial display of collected soil images.

In contrast to the use of remolded loess in other studies [13,33,40], we focused on studying
undisturbed loess in its original state. To collect images of undisturbed loess, all soil samples
were collected as intact blocks in field, which were then cut with a cutter to the desired
dimensions in a laboratory. It is important to note that the minimum size for cutting is set at a
width of 48 mm, height of 72 mm, and thickness of 20 mm. The determination of width and
height ensures that the soil sample dimensions are larger than the imaging size of the camera,
while the thickness consideration primarily focuses on the uniformity of moisture infiltration.
As shown in Figure 3, the cut soil samples are then dried in an oven at 108 ◦C for more than
48 h, during which time they were weighed until there is no change in their weight; this is to
ensure the accuracy of the different moisture contents configured in the experiment. These
cut soil samples after drying are uniformly moistened with varying amounts of water. After
moistening, the soil samples are sealed with plastic wrap and placed in a constant temperature
chamber for 72 h to facilitate further even water penetration.
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2.2. Automatic Soil Image Collection Platform

To capture images of undisturbed soil uniformly moistened with varying amounts
of water, an automated image collection platform was designed, as depicted in Figure 4.
The hardware consists of a camera and ring light, cutting tool, longitudinal feed unit, and
transverse travel unit, while software has been developed based on MATLAB R2018b
to facilitate the automated control of image acquisition and is installed on a computer.
Industrial cameras are employed to capture soil images, equipped with a ring light as the
sole lighting source. The cutting tool, as shown in Figure 4, is used to cut the soil after
the images are collected. The longitudinal feed unit regulates the cutting feed rate, with
each feed increment set at 1 mm. Considering the loss of moisture and to further ensure
labeling accuracy, the longitudinal feed unit is fed a total of 5 mm for each moisture content
category, i.e., the cutting tool makes five cuts, and we assume that the moisture content of
the collected images is the same within these 5 mm. Once image capture is completed at a
specific location, the transverse travel unit moves to the next position for image acquisition,
ensuring non-overlapping image areas between consecutive captures. We collected the soil
from each cut using an aluminum box and measured the moisture content by drying, and
the SWC measurements were obtained. The experiments were conducted in a darkroom
to eliminate external light interference during image acquisition, ensuring data accuracy
and reliability.
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Figure 4. Undisturbed loess automatic image collection platform.

A total of 530 original RGB images were captured across 19 categories (10.929%,
11.276%, 12.178%, 12.236%, 14.061%, 14.787%, 15.919%, 15.984%, 16.592%, 17.186%, 17.634%,
19.844%, 21.257%, 22.400%, 22.558%, 22.685%, 24.395%, 25.049%, and 25.385%), with a res-
olution of 3072 × 2048 pixels. After cropping, a total of 3175 cropped RGB images were
collected, with a resolution of 256 × 256 pixels. The image format used was Bitmap (BMP),
which is an uncompressed file. BMP avoids the loss of information and distortion that may
be caused by other lossy compression formats. For dataset partitioning, 70% of the images
were randomly selected for training the SWC recognition model, while the remaining 30%
were used for testing the model. Within the training data, 20% was further randomly chosen
as a validation dataset to assess the convergence of the model. To prevent overfitting [41]
and enhance the robustness of the model, various data augmentation techniques were
employed, including random crop, horizontal flip, vertical flip, 40% increase in brightness,
and 40% decrease in brightness, as shown in Figure 5a–e. Additionally, data normaliza-
tion was performed to improve the predictive accuracy and model fitting speed. Each
feature variable was treated using normalization methods, which can boost the model’s
performance. The normalization formula used for data normalization was as follows in
Equation (1):

xchannel
output =

xchannel
input − meanchannel

stdchannel (1)

where channel is the three channels of the RGB color space, mean and std are the pixel
mean and variance of the corresponding channel. By calculating, the mean of the three
channels is (0.485, 0.456, 0.406) and the variance is (0.229, 0.224, 0.225).
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2.3. PVP-Transformer-ED

The loess images primarily consist of soil regions and non-soil regions (porous areas,
mineral composition zones), which are highly similar and recurrent. Inspired with previous
studies that used only limited statistical variables to characterize the whole image [30–33],
we propose an initial hypothesis that a small amount of pixel information can be utilized
to substitute the entire image as the input for SWC recognition models. This hypothesis
will significantly reduce the reliance on computational resources and lowers the barrier to
application. Hence, a pre-trained encoder–decoder architecture (PVP-Transformer-ED) was
designed to perform an image restoration task, as illustrated in Figure 6.
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Figure 6. Patch-based Visual Perception Encoder–Decoder Architecture-based transformer (PVP-
Transformer-ED).

In PVP-Transformer-ED, the encoder is responsible for learning representations of
visible patches, while the decoder takes the representations of visible and masked patches
as the input to predict the RGB pixel values of the masked patch. By using sparse patches
for soil image restoration, spatial redundancies and pre-training computational costs are
reduced. Moreover, reconstructing the image based on this sparse relational information
challenges the model to excel in pattern matching and correlation correction, preventing it
from simply relying on lower-level statistical distributions in the image. PVP-Transformer-
ED is required to truly understand an image by learning more abstract global information,
which can then be fine-tuned from the encoder to the SWC recognition model. Further
detailed explanations will be provided in the subsequent sections.

2.3.1. Masking Strategies

Various masking strategies have been proposed in the previous literature. For in-
stance, [42] introduced a central region masking strategy, while BEiT [43] suggested a
complex block masking strategy. More recent approaches such as MAE [44] and SiM-
mMIM [45] explored different patch sizes and mask ratios using a more direct random
masking method that follows a uniform distribution to avoid potential center bias (i.e.,
having more masked patches near the center of the image). In the PVP-Transformer-ED,
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we employed a uniform random patch masking strategy for loess images. As depicted in
Figure 6, a loess image of size (224 × 224 × 3) was initially divided into ( 224

P × 224
P ) equally

sized patches with shapes of (P × P × 3). Subsequently, a portion of these patches was
uniformly and randomly masked based on the mask ratio. In the experimental section,
we compared the effects of different mask ratios and patch sizes. The high masking ratio
random sampling (i.e., the proportion of patches removed) significantly reduced redun-
dancy, creating a task that is not easily extrapolated from visible neighboring patches,
as demonstrated in Figure 6. Finally, the highly sparse visible patches were fed into the
encoder of the PVP-Transformer-ED for representation learning. Next, we will detail the
encoder in the following section.

2.3.2. Encoder

The encoder in the PVP-Transformer-ED is responsible for modeling the potential
feature representation of unmasked patches in soil images. Our encoder adopts a trans-
former architecture but is specifically applied to visible, unmasked patches. As illustrated
in Figure 7d, the unmasked patches are flattened and mapped to one-dimensional vec-
tors through Linear Embedding in the encoder. For example, each patch with a shape
of (P × P × 3) is mapped to a tensor of length

(
3·P2) (referred to as tokens hereafter).

Subsequently, Position Embedding is applied to add positional representations of the same
shape as the tokens, serving as coordinates in the high-dimensional feature space of the
image. The process is illustrated in Equation (2).

z0 =
[

xcla, LE(x 1
p

)
, LE(x 2

p

)
, · · · , LE

(
xn

p

)]
+ Epos, xcla ∈ R1×(P2·C), Epos ∈ R(N+1)×(P2·C), n ∈ [1, N] (2)

Water 2024, 16, x FOR PEER REVIEW 9 of 23 
 

 

 

Figure 7. Transformer architecture in encoder and decoder. (a) Scaled Dot–Product Attention in 

Multi-Head Self Attention (MSA), (b) MSA, (c,d) are the overall architecture in transformer archi-

tecture, (e) The key of this figure. 

In Equation (2), the input image 𝑥 ∈ ℝ𝐻×𝑊×𝐶 and the patch 𝑥𝑝
𝑛 ∈ ℝ𝑃×𝑃×𝐶, there are a 

total of N patches, with N =
𝐻∙𝑊

𝑃2 . 𝐿𝐸(∗) denoting Linear Embedding, such that 𝐿𝐸(𝑥𝑝
𝑛) ∈

ℝ1×(𝑃2∙𝐶), where C represents the number of channels and P denotes the patch size. 𝑥𝑐𝑙𝑎 is 

a classification vector with the same shape as 𝐿𝐸(𝑥𝑝
𝑛), utilized for learning category infor-

mation during the transformer architecture training process. To preserve spatial posi-

tional information among input image patches, it is also necessary to include positional 

encoding vectors for all image block vectors and classification vectors, as indicated by 

𝐸𝑝𝑜𝑠. Finally, output vector is 𝑧0. 

The output tokens 𝑧0  pass through a stack of L blocks consisting mainly of Layer 

Normalization (LN), Multi-Head Attention (MSA), and Multi-Layer Perceptron (MLP). 

The process is illustrated in Equations (3) and (4) by describing a single block as an exam-

ple. 

𝑧ℓ
′ = 𝑀𝑆𝐴(𝐿𝑁(𝑧ℓ−1)) + 𝑧ℓ−1, ℓ = 1 … 𝐿 (3) 

𝑧ℓ = 𝑀𝐿𝑃(𝐿𝑁(𝑧ℓ
′)) + 𝑧ℓ

′ , ℓ = 1 … 𝐿 (4) 

In Equation (3), the output vector 𝑧ℓ−1 from the (ℓ − 1)th block undergoes layer nor-

malization and is then subjected to attention computation, denoted as 𝑀𝑆𝐴(𝐿𝑁(𝑧ℓ−1)) . 

Subsequently, this result is added as a residual connection to produce the intermediate 

vector 𝑧ℓ
′   for that block. Moving to Equation (4), the intermediate vector 𝑧ℓ

′   is passed 

through layer normalization and then processed by the MLP, represented as 

𝑀𝐿𝑃(𝐿𝑁(𝑧ℓ
′)). This is further augmented by a residual connection with 𝑧ℓ to yield the final 

vector 𝑧ℓ  for that block. At this point, the computational process for the ℓ th block con-

cludes, and 𝑧ℓ is subsequently input into the (ℓ + 1)th block to repeat the computation 

processes described in Equations (3) and (4). 

2.3.3. Decoder 

The input to decoder of PVP-Transformer-ED comprises the complete set of patches, 

including encoded visible patches and masked patches. It is then used to predict the orig-

inal signal in the masked regions of soil images. Each randomly initialized masked patch 

serves as a learnable vector to reveal the masked patches, and in the experimental section, 

we visualize this learning process. Position embedding is added to all tokens in this com-

plete patch set; without them, the masked tokens lack information about their positions 

in the image. The core structure of the decoder is also based on the transformer architec-

ture, but it operates independently from the transformer architecture in the encoder. Its 

input consists of the encoder’s input and positional information of the masked parts, while 

Figure 7. Transformer architecture in encoder and decoder. (a) Scaled Dot–Product Attention in Multi-
Head Self Attention (MSA), (b) MSA, (c,d) are the overall architecture in transformer architecture,
(e) The key of this figure.

In Equation (2), the input image x ∈ RH×W×C and the patch xn
p ∈ RP×P×C, there are a

total of N patches, with N = H·W
P2 . LE(*) denoting Linear Embedding, such that LE(xn

p) ∈
R1×(P2·C), where C represents the number of channels and P denotes the patch size. xcla
is a classification vector with the same shape as LE(xn

p), utilized for learning category
information during the transformer architecture training process. To preserve spatial
positional information among input image patches, it is also necessary to include positional
encoding vectors for all image block vectors and classification vectors, as indicated by Epos.
Finally, output vector is z0.

The output tokens z0 pass through a stack of L blocks consisting mainly of Layer
Normalization (LN), Multi-Head Attention (MSA), and Multi-Layer Perceptron (MLP). The
process is illustrated in Equations (3) and (4) by describing a single block as an example.
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z′ℓ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1 . . . L (3)

zℓ = MLP
(

LN
(
z′ℓ
))

+ z′ℓ, ℓ = 1 . . . L (4)

In Equation (3), the output vector zℓ−1 from the (ℓ− 1)th block undergoes layer
normalization and is then subjected to attention computation, denoted as MSA(LN(zℓ−1)).
Subsequently, this result is added as a residual connection to produce the intermediate
vector z′ℓ for that block. Moving to Equation (4), the intermediate vector z′ℓ is passed
through layer normalization and then processed by the MLP, represented as MLP

(
LN

(
z′ℓ
))

.
This is further augmented by a residual connection with zℓ to yield the final vector zℓ for
that block. At this point, the computational process for the ℓth block concludes, and zℓ is
subsequently input into the (ℓ+ 1)th block to repeat the computation processes described
in Equations (3) and (4).

2.3.3. Decoder

The input to decoder of PVP-Transformer-ED comprises the complete set of patches,
including encoded visible patches and masked patches. It is then used to predict the
original signal in the masked regions of soil images. Each randomly initialized masked
patch serves as a learnable vector to reveal the masked patches, and in the experimental
section, we visualize this learning process. Position embedding is added to all tokens in
this complete patch set; without them, the masked tokens lack information about their
positions in the image. The core structure of the decoder is also based on the transformer
architecture, but it operates independently from the transformer architecture in the encoder.
Its input consists of the encoder’s input and positional information of the masked parts,
while the output is the predicted values of the missing pixels. The final layer of the decoder
is a linear projection, with the number of output channels is equal to the number of pixel
values in the patches. The output of the encoder is reshaped to form the reconstructed
image. In Equation (5), our loss function calculates the Mean Square Error (MSE) between
the predicted image in pixel space and the original image, with the loss computed only on
the masked patches.

MSE =
∑(pi − p̂i)

2

N
(5)

where pi represents the original pixel value of the masked pixel, and p̂i denotes the pre-
dicted pixel value by the architecture for the masked pixel. N denotes the total number of
pixel values (in this case, N = 224 × 224). ∑(*) represents the summation symbol, ranging
from i = 1 to N.

2.4. Local Global SWC Recognition Regression Model (LG-SWC-R3 Model)

The encoder part of the PVP-Transformer-ED, which is capable of extracting “complete”
features after the aforementioned pre-training, is extracted and fine-tuned on the Local
Global SWC recognition regression model (LG-SWC-R3 model). The specific process is
illustrated in Figure 8a above. This section focuses on introducing the LG-SWC-R3 model.

We adopt a hierarchical design with four stages to formulate the LG-SWC-R3 model,
where the input resolution of each stage corresponds to

{
1
4 , 1

8 , 1
16 , 1

32

}
of the input model

features. As illustrated in Equation (6), the features input xB,E,h,w to the model initially
starting with a small kernel convolution stem layer [46] to embed the input feature:

x
B,C(j|j=1)

, h
4 , w

4 = stem
(

xB,E,h,w
)

(6)

where B represents the batch size, C denotes the channel dimension, h and w represent the
height and width of the input feature. j belongs to the set {1, 2, 3, 4}.
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Integrating local information can enhance the performance of the model [47]. Pool-
Former [48] and EfficientFormer [49] utilize 3 × 3 average pooling layers as local token
mixers. Substituting these layers with depth-wise convolutions (DWCONV) of the same
kernel size may introduce additional parameters, but these negligible parameters not only
do not incur latency overhead but also boost performance [46]. Furthermore, recent stud-
ies [47,50] suggest that injecting local information modeling layers into the Feed Forward
Network layer [51] with minor overhead can also be beneficial for performance improve-
ment. It is worth noting that by placing an extra 3 × 3 kernel size DWCONV in the FFN to
capture local information, the function of the original local mixer (pooling or convolution)
is replicated. Based on these observations, in the first stage, we designed a local FFN block,
and the output of the local FFN block is further connected via residual connections, as
depicted by Equation (7):

x
B,C(j|j=2)

, h
8 , w

8 = Si,j·Local FFN
(

x
B,C(j|j=1)

, h
4 , w

4

)
+ x

B,C(j|j=1)
, h

4 , w
4 (7)

where Si,j represents a learnable layer scale [48]. x
B,C(j|j=1)

, h
4 , w

4 is the output of Equation (6).
Local FFN(*) is the Local FFN block, as shown in Figure 8c. We first use 1 × 1 convo-
lutions for dimensionality reduction and add a segmented 3 × 3 kernel size DWCONV
(DW.CONV3 × 3-BN) to the Local FFN block to extract local information, followed by
1 × 1 convolutions for dimensionality expansion, creating a localized FFN layer enabled
with locality, where BN indicates the subsequent batch normalization. The computational
flow of the Local FFN block is illustrated in Equation (8).

Local FFN(x) = CONV1×1 − BN[GELU[DW.CONV3×3 − BN[GELU[CONV1×1 − BN(x)]]]] + x (8)

The first two stages focus on capturing local information at high resolutions; therefore,
we exclusively utilize the local FFN block with the inclusion of residual connections
(Equations (7) and (8)). In the penultimate stage (Figure 8e), both the Local FFN block
and the global MHSA block with the Global–Local Attention Downsampling Strategy
are employed, with the inclusion of residual connections. The calculation flow of the
penultimate stage is presented in Equation (9):

x
B,C(j|j=3)

, h
16 , w

16 = Local FFN
(

Si,j· Global − MHSAAttention Downsampling[Proj
(

x
B,C(j|j=2)

, h
8 , w

8

)
] + x

B,C(j|j=2)
, h

8 , w
8

)
(9)

In the final stage, the Local–Global block is utilized, comprising the locally connected
FFN block and the globally connected MHSA block (Figure 8d) with residual connections.
The calculation flow of the final stage is presented in Equation (10):
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x
B,C(j|j=4)

, h
32 , w

32 = Local FFN
(

Si,j·Global − MHSA
[

Proj
(

x
B,C(j|j=3)

, h
16 , w

16

)]
+ x

B,C(j|j=3)
, h

16 , w
16

)
(10)

The final output features are fed into a one-dimensional classifier layer to output the
SWC. The predicted values are compared with the ground truth labels using a regression
loss function commonly employed in regression models to assess their impact on recogni-
tion performance. In the experimental section, we separately demonstrate their effects on
recognition performance.

In Sections 2.4.1 and 2.4.2 below, we will introduce the global MHSA block and the
Global MHSA block with the Attention Downsampling Strategy.

2.4.1. Global MHSA Block

The attention mechanism, such as Multi-Head Self-Attention (MHSA) [52], is beneficial
for enhancing the model’s performance. As depicted in Figure 9, for the current input
features, they are transformed into three distinct implicit spaces (Q, K, V) representing
three different views of the same feature, where Queries (Q), Keys (K), and Values (V) are
obtained by projecting input features using linear transformations. We first inject local
information into the value matrix (V) by adding a DW.CONV with a kernel size of 3 × 3.
Subsequently, we facilitate communication between attention heads by incorporating the
fully connected layer over the head dimensions [53]. The process of the Global MHSA
block is as Equation (11).

Global − MHSA(Q, K, V) = Talking Head
[
so f tmax

(
Talking Head

[
Q·KT + PosE

])]
·DW.CONV3×3(V) (11)

where PosE serves as a trainable attention bias for position encoding. Talking Head[*]
denotes a fully connected layer applied over the head dimensions. This process effectively
integrates local information and facilitates information exchange between different heads
during the attention calculation process.
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However, applying it to high-resolution features in the early stages can lead to effi-
ciency issues, as it incurs a quadratic time complexity relative to spatial resolution [54].
Therefore, we only employ the Global MHSA block in the final 1/32 spatial resolution,
corresponding to the last stage, while designing the Global MHSA block with a global–local
attention downsampling strategy.

2.4.2. Global MHSA Block with Global–Local Attention Downsampling Strategy

We explored the effective application of the Global MHSA block to higher resolutions
(early stages). Most vision models utilize strided convolutions or pooling layers for static
and local downsampling, forming a hierarchical structure. Recent studies have started to
investigate attention downsampling. For example, LeViT [55] and UniNet [56] propose
reducing the feature resolution by half using attention mechanisms to achieve context-
aware downsampling of the global receptive field. Specifically, the number of tokens in Q
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is halved, resulting in downsampling of the output of the attention module. In contrast,
we devised a combination strategy as shown in Figure 10. To obtain downsampling Q, we
employ the pooling layer for static local downsampling, 3 × 3 DWCONV for learnable local
downsampling, and then merge and project the results into the Q dimension. Furthermore,
the attention downsampling module is connected through residual connections [57] to
regular CONV, forming locality and global dependency.
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2.5. Model Performance Evaluation Metrics

Evaluation metrics are used to measure the difference between actual values and
predicted values to assess the performance of regression models. Currently, there are
numerous evaluation metrics used in SWC research. Among them, the Coefficient of
Determination (R2) is commonly employed [58–60]. Authors in [29,58,61] utilized Root
Mean Square Error (RMSE) for evaluation. Similarly, Mean Absolute Percentage Error
(MAPE) [62] has been used for soil moisture estimation. In this study, we use R2, RMSE,
MAPE, Mean Absolute Error [63] to evaluate the performance of the SWC recognition
model. Based on these metrics, the most suitable model can be compared from multiple
perspectives. Generally, models with high prediction accuracy and reliability exhibit the
following traits: R2 trending towards 1, RMSE trending towards 0, MAPE trending towards
0, and MAE trending towards 0.

2.6. Implementation Settings

The experimental computer system used was Windows 10, with an Intel Core i5-
12600KF CPU and a NVIDIA 2080ti GPU. The model’s code was executed on this computer
system. The development language employed was Python 3.8, and the PyCharm 2022
platform was utilized for training and testing deep learning networks. All models were
implemented using PyTorch 2.0.0 [64]. The optimization was performed using the AdamW
optimizer [65] with a learning rate of 2 × 10−3 and a weight decay of 5 × 10−4.

3. Experimental Results and Discussion
3.1. Performance Comparison of Different Models

We evaluated the performance of a range of SWC recognition models on the test set,
including traditional machine learning regression models (Decision Tree [31], Random
Forest [66], Support Vector Regression [63], Linear Regression [40], and Multilayer Per-
ceptron [29]) and the LG-SWC-R3 model. The same as previous studies [30–33], the input
independent variables for traditional machine learning models were the mean and variance
of the RGB channels of soil images. During the evaluation process, we did not pre-train the
PVP-Transformer-ED.

As shown in Table 2, in terms of R2, the LG-SWC-R3 model performed the best, reach-
ing 0.950, followed by the Multilayer Perceptron and Linear Regression, which achieved
0.770 and 0.769, respectively. This indicates that the LG-SWC-R3 model better captures
the moisture content variations. In terms of RMSE and MAE, the performance of the
LG-SWC-R3 model is also the best, showing the lowest error levels of 1.351% and 0.886%,
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respectively. This means that the model’s recognitions are closer to the true values, demon-
strating higher precision and accuracy. The Decision Tree performed the worst, with higher
RMSE and MAE of 4.201% and 3.020%, respectively, indicating larger prediction deviations.
The Support Vector Regression and Linear Regression performed relatively well, but still
lag behind the LG-SWC-R3 model. The performances of the Random Forest and Multilayer
Perceptron are moderate, slightly better than the Decision Tree, but still inferior to the
Support Vector Regression and Linear Regression.

Table 2. Accuracy assessment of SWC recognition models under different evaluation metrics.

SWC Recognition Model R2 RMSE (%) MAPE MAE (%)

Decision Tree [31] 0.352 4.201 0.206 3.020
Random Forest [66] 0.559 3.657 0.156 2.745

Support Vector Regression [63] 0.717 2.968 0.141 2.379
Linear Regression [40] 0.769 2.882 0.127 2.169

Multilayer Perceptron [29] 0.770 3.004 0.126 2.243
LG-SWC-R3 model 0.950 1.351 0.054 0.886

In conclusion, we found that different choices of traditional model had a significant
effect on the recognition performance of SWC, which is similar to the results of previous
research [32,67], but overall, they were significant and challenging to meet application
requirements. In contrast, the LG-SWC-R3 model exhibited the best stability and satis-
factory accuracy (R2 = 0.950, RMSE = 1.351%, MAPE = 0.081, MAE = 1.369%, which is
lower than the maximum parallel error limit of 2% specified in [68]). To further analyze the
recognition performance of the different models, we visualize their recognition scatterplots
in Section 3.2.

3.2. Performance Analysis of Different Models

In this section, we visualize the recognition results of different models, as shown
in Figure 11. Different subplots represent different models, where the straight red line
within each subplot denotes the 1:1 line, with the scatter points representing the model’s
recognition results, and the dashed line indicating the trend line of the results used to
analyze the overall trend. From the perspective of trend lines, we observe that all models
can capture the impact of SWC changes on soil images. However, the trend lines of Decision
Tree [31] and Random Forest [66] deviate significantly from the 1:1 line, and Decision Tree’s
identification results are mostly concentrated around similar values, consistent with their
R2 results in Table 2, which are only 0.352 and 0.559, respectively. This accounts for the
poor performance of these two models. While Support Vector Regression [63], Linear
Regression [40], and Multilayer Perceptron [29] show some improvement in results, they
fail to effectively identify images with SWC exceeding 20%, exhibiting a trend of underesti-
mation compared to measured SWC. This inability contributes to the poor performance
of Support Vector Regression, Linear Regression, and Multilayer Perceptron, reflecting a
similar pattern in the Decision Tree and Random Forest. This may be because the response
of soil image information to changes in SWC is not a straightforward relationship [13,31].
However, the results of the LG-SWC-R3 model effectively overcome the drawback of low
sensitivity to high SWC and also respond well to soil images with lower SWC.
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Figure 11. SWC recognition results of the scatterplot of the six models. The dashed line is the linear
trend line of the recognition results.

3.3. Comparison of Different Loss Functions

We conducted a comprehensive experiment aiming to compare the impact of different
loss functions on the performance and convergence of the LG-SWC-R3 model. We selected
MSE loss, L1 loss, SmoothL1 loss, and Huber loss as the four common regression model
loss functions. We applied these loss functions individually to train the LG-SWC-R3
model and monitored the loss values on the training set as well as the performance on the
validation set.

Surprisingly, as shown in Table 3, the choice of SmoothL1 loss and Huber loss seems
to have little impact on the model’s performance, both in terms of prediction accuracy
and outlier handling capabilities, while L1 Loss exhibits the best performance. This may
be attributed to the fact that MSE loss penalizes large errors more significantly due to
squaring [69]. L1 loss is less sensitive to outliers compared to MSE loss. SmoothL1 loss and
Huber loss [70] both combine elements of both MSE and L1 loss, behaving like L1 loss for
small errors and like MSE loss for large errors. In the context of soil images, aberrant image
information can influence model training, and L1 loss is better equipped to handle such
scenarios. Therefore, for the subsequent experiments, we selected it as the loss function
for the LG-SWC-R3 model. Furthermore, as illustrated in Figure 12, we also observed that
models trained with these loss functions demonstrated similar convergence performance
on the validation set, without signs of overfitting [41]. This indicates that the LG-SWC-R3
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model is able to learn critical patterns in the data within an appropriate timeframe without
excessively fitting the training samples.

Table 3. Comparison of the performance of different loss functions on evaluation metrics.

Loss Function R2 RMSE (%) MAPE MAE (%)

HuberLoss 0.949 1.382 0.052 0.847
L1Loss 0.953 1.261 0.049 0.820

MSELoss 0.932 1.563 0.064 1.034
SmoothL1Loss 0.950 1.351 0.054 0.886
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Figure 12. Convergence of the LG-SWC-R3 model under different regression loss functions on the
validation set.

3.4. Stability Analysis of PVP-Transformer-ED

We conducted a thorough analysis on the impact of different hyperparameters (patch
size and mask ratio) on the convergence behavior of the PVP-Transformer-ED. As illustrated
in Figure 13, we observed that adjusting these hyperparameters did not significantly
affect the convergence iterations of the PVP-Transformer-ED on the validation set, as it
converged within 100 epochs regardless of the parameter settings. This suggests that
the PVP-Transformer-ED can converge rapidly and effectively under various parameter
configurations, exhibiting commendable optimization performance and stability. However,
echoing the argument put forth in [44,45] regarding the significant challenge posed by
larger patch sizes and mask ratios on reduction capabilities, upon a more detailed analysis
of convergence behavior, we noticed that with the same mask ratio, as the patch size
increased, the similarity between the reconstructed image and the original diminished,
resulting in the loss stabilizing at a higher level. Likewise, maintaining a constant patch
size while increasing the mask ratio also led to a decrease in the similarity between the
predicted image and the original.



Water 2024, 16, 1133 16 of 23

Water 2024, 16, x FOR PEER REVIEW 16 of 23 
 

 

3.4. Stability Analysis of PVP-Transformer-ED 

We conducted a thorough analysis on the impact of different hyperparameters (patch 

size and mask ratio) on the convergence behavior of the PVP-Transformer-ED. As illus-

trated in Figure 13, we observed that adjusting these hyperparameters did not signifi-

cantly affect the convergence iterations of the PVP-Transformer-ED on the validation set, 

as it converged within 100 epochs regardless of the parameter settings. This suggests that 

the PVP-Transformer-ED can converge rapidly and effectively under various parameter 

configurations, exhibiting commendable optimization performance and stability. How-

ever, echoing the argument put forth in [44,45] regarding the significant challenge posed 

by larger patch sizes and mask ratios on reduction capabilities, upon a more detailed anal-

ysis of convergence behavior, we noticed that with the same mask ratio, as the patch size 

increased, the similarity between the reconstructed image and the original diminished, 

resulting in the loss stabilizing at a higher level. Likewise, maintaining a constant patch 

size while increasing the mask ratio also led to a decrease in the similarity between the 

predicted image and the original. 

 

Figure 13. Convergence analysis of the PVP-Transformer-ED under different hyperparameters 

(patch size and mask ratio). 

3.5. Masking Strategy 

We selected a series of hyperparameters to investigate the effects of pre-training the 

PVP-Transformer-ED on the LG-SWC-R3 model. The baseline model refers to the LG-

SWC-R3 model without pre-training using the PVP-Transformer-ED. The errors are rec-

orded in Table 4. 

Our exploration into the impact of different patch sizes on SWC recognition did not 

reveal significant differences in the original SWC recognition results. This suggests that 

the patch size may have a relatively minor impact on model performance in this task. 

Additionally, our experimental results revealed that as the mask ratio increased gradu-

ally, the identification errors also showed a corresponding rise, which aligns with the find-

ings in [42–45]. However, even when masking 95% of the image, the maximum error was 

only R2 = 0.832, RMSE = 2.302%, MAPE = 0.092, and MAE = 1.546%. This demonstrates a 

high level of spatial redundancy in soil images. The approach of pre-training PVP-Trans-

former-ED and fine-tuning it on the SWC recognition model shows great potential in re-

ducing the computational demands of the model. 

Interestingly, the model exhibited insensitivity towards patch size. This could be as-

cribed to smaller patches offering restricted coverage of texture and other details in soil 

Figure 13. Convergence analysis of the PVP-Transformer-ED under different hyperparameters (patch
size and mask ratio).

3.5. Masking Strategy

We selected a series of hyperparameters to investigate the effects of pre-training the
PVP-Transformer-ED on the LG-SWC-R3 model. The baseline model refers to the LG-SWC-R3
model without pre-training using the PVP-Transformer-ED. The errors are recorded in Table 4.

Table 4. An ablation study on the impact of different patch sizes and mask ratios on the LG-SWC-
R3 model.

Model Masked Patch Size Masking Ration R2 RMSE MAPE MAE

Baseline × × 0.950 1.351 0.054 0.886

8 0.5 0.942 1.409 0.050 0.838
0.65 0.917 1.588 0.067 1.042
0.75 0.903 1.784 0.062 1.029
0.85 0.922 1.745 0.071 1.123
0.95 0.832 2.302 0.092 1.546

14 0.5 0.927 1.571 0.058 0.961
0.65 0.922 1.605 0.059 1.013
0.75 0.896 1.840 0.066 1.138
0.85 0.912 1.841 0.078 1.262
0.95 0.862 2.104 0.086 1.413

16 0.5 0.930 1.540 0.061 0.987
0.65 0.929 1.558 0.059 0.983

PVP-Transformer-ED 0.75 0.938 1.543 0.062 1.002
0.85 0.896 1.848 0.063 1.109
0.95 0.876 2.045 0.081 1.377

32 0.5 0.925 1.578 0.056 0.944
0.65 0.913 1.725 0.062 1.081
0.75 0.900 1.819 0.064 1.115
0.85 0.855 2.185 0.072 1.261
0.95 0.839 2.249 0.093 1.535

56 0.5 0.931 1.577 0.057 0.916
0.65 0.909 1.745 0.062 1.026
0.75 0.890 1.936 0.071 1.164
0.85 0.882 1.969 0.076 1.294

112 0.5 0.931 1.555 0.061 0.982
0.75 0.884 1.934 0.072 1.216
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Our exploration into the impact of different patch sizes on SWC recognition did not
reveal significant differences in the original SWC recognition results. This suggests that
the patch size may have a relatively minor impact on model performance in this task.
Additionally, our experimental results revealed that as the mask ratio increased gradually,
the identification errors also showed a corresponding rise, which aligns with the findings
in [42–45]. However, even when masking 95% of the image, the maximum error was only
R2 = 0.832, RMSE = 2.302%, MAPE = 0.092, and MAE = 1.546%. This demonstrates a high
level of spatial redundancy in soil images. The approach of pre-training PVP-Transformer-
ED and fine-tuning it on the SWC recognition model shows great potential in reducing the
computational demands of the model.

Interestingly, the model exhibited insensitivity towards patch size. This could be
ascribed to smaller patches offering restricted coverage of texture and other details in
soil images, thereby enabling the model to perform recognitions relying on the remaining
uncovered information. Conversely, larger patches might not provide as much reference
information, yet they promote a certain level of generalization capability [44] in the encoder,
leading to minimal impact on SWC recognition errors.

3.6. Visualization of PVP-Transformer-ED Restoration

We randomly selected five different soil images with varying moisture levels and
visualized the restoration results of the PVP-Transformer-ED at different mask ratios, as
shown in Figure 14. Regarding the mask ratio, we observed that different mask ratios
can impact the quality of the restored images. A smaller mask ratio (e.g., 50%) is more
effective in restoring detailed information in the missing areas while preserving more
semantic features from the original image. This is attributed to the richer features and
semantic information provided by the visible patches, enabling the predicted image to
closely resemble the original image. As the mask ratio increases, the similarity between
the predicted results and the original image decreases, as the model starts to interpret
the semantic information of the image based on limited patches. This may result in less
accurate details in the missing areas, a slight decrease in overall quality, and significant
changes in the size and position of pore structures in the predicted image, indicating that
the PVP-Transformer-ED is capable of generating images with new semantic information.
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Figure 14. Visualization of PVP-Transformer-ED restoration with a patch size of 16 for masking. The
first column displays the original image, while every two columns afterwards represent a different
combination, each indicating a distinct mask ratio.

In Figure 15, images with various patch sizes are displayed to showcase the restoration
effects under a fixed mask ratio of 0.5. It is evident that smaller patch sizes result in the
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better restoration of details, thereby indicating weaker generalization ability [44] in the
learned representation. Restoration tasks on smaller-scale patch blocks may be more easily
accomplished by neighboring pixels or textures. Larger patch sizes cover a significant
portion of image details; for example, with patch sizes of 16 and 32, where the masked
patches do not fully cover complex and intersecting non-soil regions (such as pores, cracks,
and mineral composition information). In such cases, the PVP-Transformer-ED relies on
limited non-soil regions for restoration, leading to creative predictive structures where non-
soil regions are treated as generalizable information in terms of size and depth. However,
as the patch size continues to increase, the predicted masked patches exhibit poorer detail
representation, with texture information gradually replaced by overly smooth color blocks.
This phenomenon becomes more pronounced with a patch size of 112.
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Figure 15. Visualizing the restoration results of the PVP-Transformer-ED with different patch sizes
under a mask ratio of 0.5.

Our study demonstrates a finding that is the same as the previous study that different
hyperparameter settings do affect the experimental results to some extent [46,47,50,51]. In
particular, through the adjustment of patch size and mask ratio, we have identified fluctua-
tions in image clarity, detail retention, and overall visual impact. Our extensive analysis of
experimental data has reaffirmed that modifying patch size and mask ratio can significantly
impact the quality of generated images. These findings underscore the importance of
judiciously selecting appropriate hyperparameters in practical applications to achieve a
balance between hyperparameters, recognition accuracy, and computational efficiency.

3.7. Visualization and Analysis of the Iterative Process of PVP-Transformer-ED

In this experiment (Figure 16), we take the example of a patch size of 8 and a ratio of
65%. We visualize the restoration effects of the PVP-Transformer-ED during the training
process and document the corresponding results. We observe that the architecture’s recon-
struction effect becomes progressively clearer with the increasing epochs. Edges and details
gradually recover, and the image quality significantly improves. This result indicates that
the PVP-Transformer-ED is learning better reconstruction representations. Additionally,
the PVP-Transformer-ED successfully predicts key details in the original image (such as
pores, cracks, mineral compositions, and other structures), avoiding excessive smoothing
in patch prediction. This suggests that representations learned from visible patches can
better capture the characteristics of the original image and preserve important detailed
information during the prediction process.

Consistent with the experimental findings outlined in Section 3.4, we observe that the
predictions made before 10 epochs tend to be more abstract. This vividly illustrates the
progression of deep learning models, starting from learning simple features and gradually
advancing towards more abstract and complex features, as elucidated in prior research [43].
As the iterations progress, pores, cracks, and mineral information are gradually restored,
entering a stable phase after the 70th epoch. Surprisingly, in scenarios where specific
masked patches fail to completely obscure intricate and overlapping non-soil regions (e.g.,
pores, cracks, and mineral constituents), the PVP-Transformer-ED reconstructs the image
relying on the partially revealed non-soil areas, resulting in innovative predictive structures,
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such as a complete crack pattern being ultimately reconstructed as two cavities. This
underscores the model’s robust learning capability, as evidenced in prior studies [52,57].
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4. Conclusions

This study focuses on the undisturbed loess in the Bailu highland and addresses the
issue of inadequate model accuracy and stability in previous research on SWC recognition
based on images by developing a new deep learning model (LG-SWC-R3 model) to capture
complex patterns and features in soil images. To overcome the computational cost and time
required for handling large amounts of data, we conducted research from the perspective of
reducing spatial redundancy in soil images. Specifically, we designed the PVP-Transformer-
ED based on randomly masking soil images and predicting the original images using
limited visible patches for this task. Subsequently, the pre-trained PVP-Transformer-ED
was fine-tuned on the LG-SWC-R3 model. During the fine-tuning process, only sparse
patches are required for SWC recognition, significantly reducing spatial redundancy and
pre-training computational costs. The main conclusions are as follows.

1. Evaluation of various SWC models revealed significant constraints with traditional
machine learning models and highlighted the superior stability and satisfactory ac-
curacy of the LG-SWC-R3 model. Visualizing the scatter plots in Section 3.2 further
elucidated the performance differences among the models. While all models effec-
tively captured moisture content changes in soil images, Decision Tree and Random
Forest exhibited notable deviations from actual values. Additionally, Support Vector
Regression, Linear Regression, and Multilayer Perceptron displayed a tendency to un-
derestimate images with the SWC exceeding 20%. In contrast, the LG-SWC-R3 model
demonstrated robustness in identifying images with both high and low SWC levels.

2. Our pre-trained PVP-Transformer-ED can effectively restore the original soil image
by predicting it from a limited number of unmasked patches. The core principle
of PVP-Transformer-ED is its adeptness in computing and rectifying the relational
attributes among input patches. In this regard, it operates by encoding a subset of
randomly chosen patches to distill features and comprehend the image. This approach
is suited for soil images, which typically possess heightened information redundancy
owing to the pronounced local interconnections among pixels.

3. Restoring visible sparse patches as the input serves a dual purpose: it not only
diminishes spatial redundancy and alleviates the pre-training computational burden
but also compels the architecture to transcend mere dependence on low-level statistical
image distributions. This, in turn, necessitates a deeper and genuine comprehension
of the image content. Remarkably, variations in hyperparameters like patch size
and masked ratio imbue the model with a more “imaginative” capacity, facilitating
the recognition of nuanced changes in pore and crack size and location within soil
images. This enhanced perceptiveness aids the encoder in acquiring more versatile
and generalizable representations.

4. Fine-tuning the model after pre-training the PVP-Transformer-ED may slightly impact
SWC recognition compared to recognizing the entire image. However, this impact
remains within an acceptable range and offers substantial time and computational
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savings exceeding 50%. Such efficiency gains are particularly beneficial for applica-
tions in environments with limited computational resources and holds significant
value for further deployment and utilization.

In our study, we have identified some limitations that need to be considered and
addressed. Firstly, although the PVP-Transformer-ED demonstrates excellent performance
in SWC identification, it still relies on a small fraction of pixels in the input images (i.e.,
affected by the masked ratio and patch size), which may limit the model’s generalization
ability and applicability. Furthermore, while our method significantly reduces training
time, and research results indicate that model errors remain within a reasonable range, the
robustness and stability of the model across different soil types need further validation
due to variations in mineral composition and organic matter among different soil types.
Therefore, we recognize that improving the model’s generalization ability, reducing the re-
liance on input pixels, and further optimizing model performance are important directions
for future research. By continuously refining and adjusting our approach, we can better
address these limitations, enhance the accuracy and efficiency of the model, and better
meet the practical application requirements.
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