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Abstract: With the development of urbanization, the accurate prediction of effluent quality has
become increasingly critical for the real-time control of wastewater treatment processes. The conven-
tional method for measuring effluent biochemical oxygen demand (BOD) suffers from significant
time delays and high equipment costs, making it less feasible for timely effluent quality assessment.
To tackle this problem, we propose a novel approach called En-WBF (ensemble learning based on
weighted BoostForest) to predict effluent BOD in a soft-sensing manner. Specifically, we sampled
several independent subsets from the original training set by weighted bootstrap aggregation to train
a series of gradient BoostTrees as the base models. Then, the predicted effluent BOD was derived by
weighting the base models to produce the final prediction. Experiments on real datasets demonstrated
that on the UCI dataset, the proposed En-WBF approach achieved a series of improvements, including
by 28.4% in the MAE, 40.9% in the MAPE, 29.8% in the MSE, 18.2% in the RMSE, and 2.3% in the
R2. On the Fangzhuang dataset, the proposed En-WBF approach achieved a series of improvements,
including by 8.8% in the MAE, 9.0% in the MAPE, 12.8% in the MSE, 6.6% in the RMSE, and 1.5%
in the R2. This paper contributes a cost-effective and timely solution for wastewater treatment
management in real practice with a more accurate effluent BOD prediction, validating the research in
the application of ensemble learning methods for environmental monitoring and management.

Keywords: wastewater treatment; soft measurement; biochemical oxygen demand; weighted boosting
forest; ensemble learning

1. Introduction

Wastewater treatment is of great significance in lowering urban pollution and pro-
moting sustainable urban development with the development of industrialization [1,2].
Wastewater treatment plants, or WWTPs, are intricate industrial structures that function by
utilizing a range of biological, chemical, and physical procedures in order to collect, recycle,
and reuse wastewater for consistent compliance with regulations on the conservation of
water environments [3,4]. Among these, the biochemical oxygen demand (BOD) is crucial
for treating municipal wastewater since it is a dominant indicator of the effluent quality
indicating the amount of organic contaminants in wastewater and is usually adopted in
various water environment monitoring systems [5].

It is challenging for WWTPs to provide real-time monitoring and accurate effluent
BOD measurements because the measurement of the BOD in effluent must be conducted
under rigorous experimental circumstances [6], and the water quality sensor for BOD
measurements is highly expensive [7]. To tackle this problem, the industry primarily
uses the method of soft measurement [8] to construct the predictive relationship between
the easily measured wastewater quality and the difficultly measured effluent BOD. In
recent years, the success of data-driven methods across various domains has prompted a
significant number of researchers to employ these approaches in wastewater treatment [9].
Currently, there are mainly two streams in predicting effluent BOD as the machine learning
and the deep learning methods.
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In the former, machine learning methods have demonstrated superior performance in
the prediction of effluent BOD, with their advantages primarily manifesting in three key
areas: interpretability, computational efficiency, and minimal data requirements. Firstly,
machine learning models offer notable interpretability, simplifying the comprehension
of the decision-making process. This is exemplified by Park et al. [10], who employed
an interpretable machine learning approach to investigate the impact of input variable
selection on model efficacy, utilizing Shapley additive explanations (SHAP) analysis to
provide insightful explanations for model predictions. Secondly, in comparison to deep
learning, machine learning models demand significantly fewer computational resources
and exhibit rapid training capabilities, as illustrated by El-Rawy et al. [11] in their work on
effluent quality prediction. Lastly, these models are adept at discerning effective patterns
within relatively small datasets, a fact underscored by Zhang et al. [7] through the deploy-
ment of an enhanced gradient boosting regression tree (Miss-GBRT), thereby highlighting
the supremacy of machine learning in scenarios of limited data availability. Given the
susceptibility of individual machine learning models to noise, overfitting, and often limited
prediction accuracy, researchers have increasingly employed ensemble learning approaches
to mitigate these challenges [12,13]. However, it is notable that most ensemble learning
strategies overlook the performance disparities among various base learners.

In the latter, deep learning has progressively taken the lead in solving industrial
challenges in recent years due to its favorable accuracy [14]. The dynamic, nonlinear, and
non-Gaussian behavior characteristics of wastewater quality can be successfully captured
by deep learning, which is further used to reliably forecast the BOD [15]. For instance,
the long short-term memory network (LSTM) [16] and the principal component analysis-
enhanced nonlinear autoregressive network with exogenous inputs (PCA-NARX) [17]
effectively capture these characteristics of wastewater quality but require extensive training
data. Therefore, although deep learning models may be learned from the training data and
can produce accurate predictions, the caliber and volume of the training data frequently
affect how well they work and how broadly they can be applied [18]. Particularly, when
there is scarce information available about the quality of the wastewater, it is challenging
for researchers to identify potential patterns in the data. Thus, it is hard to train a model
with small-size datasets to reliably predict the effluent BOD.

To address these problems, this paper makes use of ensemble learning to aggregate
the prediction outcomes of a series of weighted base learners trained from sampled data to
overcome the susceptibility of single machine learning models to noise, overfitting, and
often limited prediction accuracy, the disadvantages of conventional ensemble learning
methods, and the small sizes of training datasets in WWTPs [19], with the goal of enhancing
the model’s prediction performance. Compared to a single model, ensemble learning
can better leverage the benefits of various models, lower the chance of overfitting, and
increase model generalizability. In this paper, we propose a novel approach called En-
WBF (Ensemble learning based on Weighted BoostForest), using ensemble learning-based
weighted BoostForest to predict the effluent BOD. First, the proposed En-WBF approach
makes use of BoostTree [20] as the base model to exert its easily trained merits on a small-
size dataset pertaining to the small sizes of training datasets in WWTPs. Furthermore,
the proposed En-WBF approach can reduce the bias of the prediction model by iterative
learning in the training process. In addition, the proposed En-WBF approach also uses the
bootstrap aggregating algorithm (bagging) [20] to sample several independent datasets
from the original training set, train multiple base models (i.e., BoostTrees), respectively, and
produce the final BOD prediction outcome by the weighted summation of the prediction
outcomes of the base models. Bagging ensemble learning can reduce the variance of
the prediction model and can also solve the problem of small-sized training data to a
certain extent.

The contributions can be summarized as follows: we propose a novel approach called
En-WBF that uses weighted aggregation of base models (i.e., BoostTrees) to reliably predict
the effluent BOD. The effluent BOD can achieve a satisfactory prediction result using the
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boosting mechanism of BoostTree to decrease the model’s prediction bias and the bagging
mechanism of weighted BoostForest to reduce the model’s prediction variance.

We propose using bootstrapping to sample independent training subsets for a series
of BoostTrees to address the problem of small-sized datasets in WWTPs.

We conducted a comprehensive evaluation of our work on publicly available datasets
and real wastewater treatment datasets. The results show that this method has good
performance in predicting the effluent BOD.

The rest of the paper is organized as follows. Section 2 presents related work. Section 3
describes the problem as effluent BOD prediction. Section 4 proposes the novel En-WBF
approach, including its overall architecture, BoostTree and its training process, as well as
the research questions. Section 5 presents the conducted experiments. Section 6 concludes
the paper.

2. Related Work

This section reviews two categories of related work on machine learning and deep
learning methods to study prediction models for effluent BOD prediction. First, we sum-
marize the research on machine learning methods for predicting the effluent BOD, such
as the single model and ensemble model, and their drawbacks. Second, we present the
studies of recent deep learning techniques and their applications in real practice.

2.1. Machine Learning Methods

Machine learning methods applied in wastewater quality prediction distinguish be-
tween two principal categories of approaches, i.e., single models and ensemble models. Due
to the simplicity, interpretability, and low computational cost of single models, many stud-
ies have used them for predicting effluent BOD. For example, Wang et al. [21] developed
a forward variable selection approach based on K-nearest-neighbor mutual information
to eliminate redundant variables from the wastewater quality dataset and used support
vector regression (SVR) to produce the effluent BOD. Zhang et al. [8] used an updated
gradient boosting regression tree (GBRT) to impute the missing value of effluent BOD,
accounting for the missing measurement of sewage indicators generated by anomalous
sensors in the sewage treatment process. Wang et al. [22] employed random forest (RF)
enhanced by latent Dirichlet allocation to reduce 12-dimension auxiliary feature vectors
to 3-dimension feature vectors. Their experiments demonstrated that this approach can
reduce data noise and redundant information while improving RF’s prediction perfor-
mance. Ching et al. [23] employed extreme gradient boosting (XG-Boost) to predict the
concentration of effluent BOD in wastewater. A collection of weak regression trees was
utilized to capture the dynamic and nonlinear behavior characteristics of the BOD in the
wastewater. Liu et al. [24] used the enhanced relevance vector machine (RVM) to predict
the effluent BOD concentration in wastewater treatment to address the complexity and
uncertainty that come with wastewater quality.

Due to the vulnerability of single models to noise, overfitting, and their often lower
predictive accuracy, several studies have turned to ensemble learning as a solution to these
challenges. For instance, Sharafati et al. [12] introduced three novel integrated machine
learning models: AdaBoost regression (ABR), gradient boosting regression (GBR), and
random forest regression (RFR) to predict key effluent quality parameters, such as the
total dissolved solids (TDS), the 5-day biochemical oxygen demand (BOD5), and chemical
oxygen demand (COD), demonstrating that the efficacy of these models varies across
different wastewater indices. Similarly, Nourani et al. [13] employed a composite artificial
intelligence (AI) model comprising feedforward neural networks (FFNNs), support vector
regression (SVR), and adaptive neuro-fuzzy inference system (ANFIS) for the prediction of
effluent biological oxygen demand (BODeff) and chemical oxygen demand (CODeff) using
daily data from real wastewater treatment plants (WWTPs). While ensemble learning has
proven effective in effluent quality prediction, the differential performance of base learners
has often been overlooked in the literature. Consequently, this paper proposes a weighted
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approach to aggregating predictions from diverse base learners to enhance the accuracy of
the final prediction outcome.

2.2. Deep Learning Methods

In order to accurately predict the effluent BOD, deep learning methods are proposed
to characterize the complicated, non-dynamic, and non-Gaussian wastewater quality be-
havior by building a predictive relationship between the easily measured wastewater
quality indicators and the difficultly measured wastewater quality indicators of the effluent
BOD. In both academics and industry, the deep learning method has been widely adopted
because of its favorable accuracy and real-time performance. Recently, many researchers
have proposed various deep learning methods to predict the effluent quality during the
wastewater treatment process. For instance, Foschi et al. [25] employed shallow artificial
neural networks (ANNs) to predict the quality of sewage, and they reported that, although
the shallow fully connected layer was unstable at mimicking the time dependency in
the time series, the shallow ANN was superior at capturing the nonlinear correlations
among the wastewater quality series. Based on time series analysis, Wongburi et al. [26]
employed long short-term memory networks (LSTMs) to predict forecast sewage quality
to resolve nonlinear and long-term dependent intricacies within the wastewater quality.
Yang et al. [17] developed a principal component analysis–dynamic nonlinear autoregres-
sive with exogenous inputs (PCA-NARX) model to forecast effluent quality. By employing
various time delay parameters and training algorithms to refine the system performance,
the model demonstrated exceptional predictive accuracy. Wang et al. [27] developed a
prediction model that leverages a novel integration of multi-source data fusion, pattern
decomposition, an enhanced Sparrow search algorithm (SSA), an attention (AT) mechanism,
and gated recurrent unit (GRU) technology (i.e., GRU-AT). This model aims to effectively
navigate the nonlinear, complex, and periodic nature of DO data sequences. In a related
study, Satish et al. [28] combined climatic and geospatial factors to construct a model
that delineates the causal relationships among urban land use elements. Building on this
foundation, they introduced a stacked ANN ensemble model, demonstrating its superior
performance over conventional single machine learning approaches.

While deep learning methods are pretty much effective in predicting effluent BOD,
most of them overlook the issue of small-sized data in real practice. When dealing with
small-sized datasets, there is large bias and small variation in the prediction outcomes
with deep learning methods. Nevertheless, some deep learning models are sensitive to
outliers, which may lead to model overfitting in the training phase. To tackle this problem,
we employed a hybrid approach that integrates both bagging and boosting techniques,
leveraging their respective strengths to achieve notable enhancements in model prediction
performance. Specifically, bagging enhances model stability by aggregating multiple
complex base learners, thereby reducing prediction variance. Conversely, boosting reduces
model bias by sequentially combining multiple simple base learners. Furthermore, in the
bagging approach, weighting base learners differently based on their performance further
improves model efficacy.

3. En-WBF Model Development

This section proposes an ensemble learning approach called En-WBF to predict effluent
BOD considering the dynamic, nonlinear, and non-Gaussian behavior of the wastewater quality.

3.1. Problem Statement

Accurate prediction of the biological oxygen demand (BOD) in wastewater is crucial
for treatment outcome assessment and environment protection in operating the wastewater
treatment plants. A large amount of data is needed to train deep learning models, which
usually cannot be satisfied in WWTPs. Meanwhile, traditional statistics-based models are
incapable of dealing with complex variations in sewage water quality when they are used
to predict the BOD. For this reason, this paper proposes using ensemble learning to predict
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the effluent BOD. Assume that the effluent BOD is a real-value scalar y ∈ R, and the other
wastewater quality is a vector x ∈ RD. The task of prediction is to learn a prediction model
g, as shown in Equation (1).

y = g(x) (1)

3.2. Overall Architecture of En-WBF

The proposed En-WBF approach combines boosting and bagging to predict the effluent
BOD. The boosting algorithm can integrate simple base learners to reduce bias, and the
bagging algorithm can sample different subsets of training data to train individual base
learners to reduce variance. This combination of boosting and bagging has the potential to
significantly address the issue of accurately predicting the effluent BOD with small-sized
datasets in WWTPs [8].

To guarantee the mutual independence of each sample dataset, the proposed En-WBF
approach, as illustrated in Figure 1, firstly samples K subsets randomly from the original
training dataset D as {D1, . . . , DK} using the bootstrap procedure. Secondly, the proposed
En-WBF approach uses each sampled subset Di to train a BoostTree Ti. The basic idea of
BoostTree is to apply gradient boosting to a single decision tree, which can be well adapted
to the dynamic and nonlinear characteristics of effluent BOD. The goal of the proposed
En-WBF approach is to take into account the performance difference between each base
learner (i.e., BoostTree) in an ensemble learning manner. By feeding each validation set Di
into the trained BoostTree Ti, it obtains the goodness of fit R2

i and the prediction outcome
ŷi. Then, the weight wi is obtained by Equation (2). Ultimately, the proposed En-WBF
approach weights each prediction ŷi using weight wi and sums them to produce the final
prediction ŷ, as shown in Equation (3).

wi =
R2

i
K
∑

j−1
R2

j

(2)

ŷ =
K

∑
i=1
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Figure 1. The overall architecture of En-WBF.

3.3. BoostTree

BoostTree makes use of boosting gradients and node functions to train a linear or
nonlinear model on each node. The given input is first sorted into a leaf node by BoostTree,
as seen in Figure 2, and the output of each node model along the path from the root node
to that leaf node is then summarized to determine the final predicted outcome. Distinct
from gradient-boosted regression trees (GBRTs) [8], which enhance model performance
by sequentially incorporating new trees to address errors within the ensemble, BoostTree
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innovatively integrates gradient boosting principles directly within the growth of a single
decision tree. This integration is facilitated by the random selection of cut-points during
node splitting, a strategy that significantly increases model diversity (i.e., randomness),
contrasting with the ensemble-level boosting characteristic of GBRT.
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Assume that a BoostTree has M nodes except the root node. For the mth node
(m ∈ [1, M]), BoostTree will train a node function fm and predict its output using Equation (4),
as follows.

ŷn = Fm(xn) = ∑
m∈Pathq(xn)

fm(xn) (4)

where Pathq(xn) is the set of node indexes of the sample along the path from the root node
to the leaf node q(xn). To minimize the difference between the real value and predicted
outcome during the training phase, BoostTree minimizes the objective function (i.e., the
loss function) with Equation (5).

Loss(F) =
N

∑
n=1

l(yn, ŷn) +
M

∑
m=1

λΩ( fm) (5)

The difference between the real value and the predicted outcome is measured by the
error term, which is the first term in Equation (5). The regulation in the second term in
Equation (5) keeps BoostTree from overfitting. The regulation coefficient is denoted by λ. In
this paper, we set λ = 1 in accordance with the suggestion documented in the literature [20],
and Ω is the complexity of the tree, which is controlled by the maximum number of leaves
on the tree.

In general, it is impossible to explicitly optimize the objective function in Equation (4).
Therefore, BoostTree minimizes Equation (5) in an additional way, which is inspired by
the gradient-boosting algorithm. Assume that a BoostTree has T(T ≥ 2) leaf nodes after a
T − 1 round iteration and the number of non-leaf nodes should be M = 2T − 2. As a result,
Equation (5) can be changed to Equation (6), as follows.

Loss(F) =
T

∑
m=1

Lea f Lossm +
2T−2

∑
m=1

Ω( fm) (6)

where
Lea f Lossm = ∑

n∈Im

l(yn, ∑
i∈Pathm

fi(xn)) (7)

Im = {n|q(xn) = m} (8)
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Here, Im is the collection of all training samples that are associated with the leaf node
m, and Lea f Lossm is a measure of that node’s loss. A greedy learning technique is used by
BoostTree to add branches to the leaf node (i.e., split leaf node) that has the greatest loss in
each iteration.

Presume node m is the leaf node with the greatest loss. After the node splitting,
BoostTree splits Im into two subsets: the left node’s sample set IL, and the right node’s
sample set IR. If we assume that fL and fR are the left and right node functions that were
trained by IL and IR, respectively, then the decreased loss of Equation (5) is shown in
Equation (9), as follows.

δLoss = C − Loss( fL)− Loss( fR) (9)

where
C = ∑

n∈Im

l(yn, Fm(xn)) (10)

Loss( fL) = ∑
n∈IL

l(yn, Fm(xn) + fL(xn)) + Ω( fL) (11)

Loss( fR) = ∑
n∈IR

l(yn, Fm(xn) + fR(xn)) + Ω( fR) (12)

where Fm is the collection of models along the path from the root node to the leaf node,
and C is a constant. The left and right child nodes’ respective loss functions are denoted by
Loss( fL) and Loss( fR). Meanwhile, Equation (9) can be optimized by minimizing Loss( fL)
and Loss( fR), with node splitting and gradient lifting. One can refer to [20] for more details.

3.4. Weighted BoostForest

Multiple BoostTrees were integrated into a forest by using Weighted BoostForest
(En-WBF). Prior to obtaining the final prediction outcome by weighting (see Equation (3)),
the proposed En-WBF approach firstly sampled K training subsets using bootstrap. Next, it
trained a BoostTree on each sampled subset. Finally, it input each validation set into the
trained BoostTree to produce the weight of each base learner.

The issue of limited wastewater quality data can be successfully resolved with this
weighted integration method, which takes into account the performance variations of each
base learner to improve the accuracy of the produced prediction outcome. The training
pseudo-code that designates the improved forest is provided by Algorithm 1, as follows.

Algorithm 1 Training process of WBF.

Input: Data = {(xn, yn)}N
n=1, N is the number of training samples, xn ∈ RD×1; n_estimators is

the number of BoostTree, Bootstrap_rate is the sampling proportion;
Output: WeightedBoostForest
1: Initialize WeightedBoostForest = {}
2: For i = 1: n_estimators do
3: Sample Data′ from Data according to Bootstrap_rate
4: Train BoostTreei on Data′

5: Add BoostTreei to WeightedBoostForest
6: End

3.5. Research Questions

We developed four research questions (RQs) to direct an examination of how well the
proposed En-WBF approach predicted the effluent BOD, as listed in Table 1. The proposed
En-WBF approach has an advantage over conventional machine learning techniques in
that it requires fewer training data. As a result, the first RQ investigates the performances
of the proposed En-WBF approach and the traditional machine learning techniques in
predicting BOD. One benefit of the proposed En-WBF approach is that it aggregates the base
learners’ expected outcomes in a weighted manner. In order to investigate the performance
comparison between the proposed En-WBF approach and the anticipated outcomes of the
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average aggregation (i.e., AveragedBoostForest, ABF), ablation studies were devised for
the second RQ.

Table 1. Research questions.

ID Question

RQ1 How are the performances of the proposed WBF approach compared with that
of traditional machine learning methods in predicting effluent BOD?

RQ2 Is weighted polymerization better than average polymerization for BoostForest?
RQ3 What are the optimal parameter settings for the proposed En-WBF approach?

RQ4 How does the proposed En-WBF approach perform on actual wastewater
treatment data?

Furthermore, there are strong correlations among the parameters used during the
training and the performance of the proposed En-WBF approach. The purpose of the
third RQ was to facilitate our analysis of the ideal parametric configuration for the pro-
posed En-WBF approach. Lastly, the fourth RQ investigates the practical application
of the proposed En-WBF approach on actual wastewater treatment plant datasets in or-
der to decide whether the proposed En-WBF approach can be used in real wastewater
treatment operations.

4. Experiment

This section provides an overview of the dataset, experimental settings, and evaluation
measures used. It further presents and discusses the experimental results addressing the
four research questions (RQs).

4.1. Dataset

In our experiments, we evaluated the performances of the proposed En-WBF approach
using a dataset that was acquired from a WWTP. This dataset has 527 instances and
38 water quality variables that were taken from the UCI machine learning repository
(UCI WWTP dataset, https://archive.ics.uci.edu/dataset/106/water+treatment+plant,
accessed on 20 January 2024). Daily sensor measurements from an urban WWTP make
up the data. In order to predict the effluent BOD using soft measurements, as indicated in
Table 2, 1379 complete data were collected by eliminating rows with missing values. The
best auxiliary input variable set was then filtered out using the K-nearest-neighbor mutual
information forward variable selection approach, as per the literature [21], as shown in
Table 2. All experiments were performed on a computer equipped with AMD Ryzen 5800H,
3.20 GHz CPU, NVIDIA GeForce RTX 3060 GPU (Nvidia, Santa Clara, CA, USA), and the
Windows 10 operating system.

Table 2. Optimal auxiliary input variable set and its description on UCI dataset.

Notation Description

DBO-D Input biological demand of oxygen to secondary settler
SS-D Input suspended solids to secondary settler

CONE-D Input conductivity to secondary settler
DQO-S Output chemical demand of oxygen
SED-S Output sediments

RD-DBO-S Performance input biological demand of oxygen to secondary settler
RD-SS-G Global performance input suspended solids

4.2. Evaluation Metrics

This research used seven evaluation metrics, including the mean absolute error (MAE),
mean absolute percentage error (MAPE), mean square error (MSE), root mean squared error
(RMSE), coefficient of determination (R2), Akaike information criterion (AIC) [29], and

https://archive.ics.uci.edu/dataset/106/water+treatment+plant
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Bayesian information criterion (BIC) [29], as shown in Equations (13)–(19), to evaluate the
performances of the proposed En-WBF approach in comparison with the baseline methods.
In order to mitigate the impact of random sampling, we repeated each experiment ten
times to average its performance. Ultimately, the average performance values of the ten
repetitions were used to derive these seven metrics.

MAE =

n
∑

i=1
|yi − ŷi|

n
(13)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (14)

MSE =

n
∑

i=1
(yi − ŷi)

2

n
(15)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (16)

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(17)

AIC = n log(
RSS

n
) + 2K (18)

BIC = n log(
RSS

n
) + K log(n) (19)

where yi is the predicted value of the ith sample, ŷi is the corresponding true value of the
ith sample, n is the number of samples, RSS is the residual sum of squares, K is the number
of parameters. MAE quantifies the average magnitude of prediction errors, providing a
straightforward measure of prediction accuracy without directionality. MAPE offers an
intuitive percentage-based assessment of prediction errors, facilitating comparability across
different scales of data. MSE captures the average of the squares of the errors, emphasizing
larger errors, which is particularly useful for highlighting significant prediction deviations.
RMSE provides error magnitudes in the same units as the predicted values, making their
interpretation more tangible. R2 indicates the proportion of variance in the dependent
variable predictable from the independent variables, reflecting the model’s explanatory
power. AIC affords a measure of the relative quality of statistical models for a given
dataset, penalizing model complexity to deter overfitting. BIC expands upon AIC by
introducing a stronger penalty for the number of parameters, balancing the model fit
against its complexity in a Bayesian context.

4.3. Experimental Results
4.3.1. RQ1: How Does the Performance of the Proposed WBF Approach Compare with
That of Traditional Machine Learning Methods in Predicting Effluent BOD?

The proposed En-WBF approach was evaluated in comparison with seven baseline
methods in predicting effluent BOD, including SVR [21], GBRT [8], RF [22], XG-Boost [23],
RVM [24], ANN [25], and LSTM [16], in order to compare its prediction performance.
The parameter descriptions and values of the above seven baseline methods are shown
in Table 3. In addition, Figure 3 shows the performance validation of En-WBF on the
prediction of effluent BOD. It depicts an elementwise comparison of the measured BOD
values (denoted by blue circles connected with a line) and the corresponding predicted
BOD values (indicated by red triangles connected with a line). The plotted data points
show the fluctuations in the BOD concentration over the samples. Both the measured
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and predicted values appear to follow a similar trend across the dataset, illustrating the
En-WBF’s predictive capability.

Table 3. Parameter settings and description of the baseline methods.

Method Parameter Description

SVR SVRc = 1,
SVRKernel = ‘rbf’

SVRc is the regularization parameter
of SVR;
SVRKernel is the kernel type of SVR;

GBRT n_estimators = 100,
min_samples_leaf = 5

n_estimators is the number of
estimators of GBRT;
min_samples_leaf is the minimum
sample number of GBRT leaf nodes;

RF n_estimators = 110,
min_samples_leaf = 5

n_estimators is the number of
estimators of RF;
min_samples_leaf is the minimum
sample number of RF leaf nodes;

XG-Boost n_estimators = 100, max_depth = 4,
max_leaves = 5

n_estimators is the number of
estimators of XG-Boost;
max_depth is the maximum depth
of XG-Boost;
max_leaves is the maximum number of
leaf nodes per tree of XG-Boost;

RVM RVMKernel = ‘linear’ RVMKernel is the kernel type of RVM;

ANN nfirst = 32,
nsecond = 16

nfirst is the number of hidden units in
the first dense layer;
nsecond is the number of hidden units in
the second dense layer;

LSTM nlstm = 32 nlstm is the number of hidden units in
the LSTM layer.
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Table 4 shows the seven metrics of the effluent BOD predicted by the proposed En-
WBF approach and the seven baseline methods. It can be seen that the performance of the
proposed En-WBF approach for five metrics is better than that of the baseline methods of
effluent BOD prediction, with an MAE of 0.2573, MAPE of 0.0171, MSE of 0.1869, RMSE of
0.4323, and R2 of 0.9938. The proposed En-WBF approach outperformed the SVR model,
which achieved the second-best prediction performance, by 28.4% in the MAE, 40.9% in
the MAPE, 29.8% in the MSE, 18.2% in the RMSE, and 2.3% in the R2. This reveals that
the proposed En-WBF approach, by repeatedly sampling the training sets, can effectively
address the problem of the small size of the UCI dataset when compared to the other
baseline effluent BOD prediction methods. Although the proposed EN-WBF approach
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exhibited a slightly lower performance in terms of the AIC and BIC metrics compared
to the SVR model, it nonetheless secured the second-best position, achieving an AIC of
147.7845 and a BIC of 861.7589. This indicates that the En-WBF model demonstrates a
robust fit to the data.

Table 4. Comparison results between the proposed En-WBF approach and the baseline methods.

Method MAE MAPE MSE RMSE R2 AIC BIC

En-WBF 0.2573 0.0171 0.1869 0.4323 0.9938 147.7845 861.7589
SVR 0.3667 0.0241 0.2610 0.5109 0.9713 99.5610 641.4165

GBRT 0.8821 0.0586 1.6393 1.2803 0.9452 572.4742 1343.8216
RF 1.0001 0.0778 2.9375 1.7139 0.9018 1128.8830 2620.5796

XG-Boost 0.8734 0.0559 1.7999 1.3416 0.9398 1029.2039 2501.7761
RVM 1.2383 0.0771 2.5810 1.6066 0.9137 183.7237 206.0354
ANN 0.8454 0.0491 1.5282 1.1577 0.9467 1677.9122 4231.0082
LSTM 0.8373 0.0447 1.4913 1.2211 0.9501 2469.7556 6348.8042

It is possible to alleviate the impact of some overfitting base learners on the final
prediction by weighting the base learner’s contribution. Furthermore, the proposed En-
WBF approach does a good job in capturing the dynamic and nonlinear behaviors of
effluent BOD. The findings demonstrate that the proposed En-WBF approach can mitigate
the noise issue in wastewater quality by integrating different learning models, reduce the
model prediction variance, and alleviate the possible overfitting of each base learner.

4.3.2. RQ2: Is Weighted Polymerization Better Than Average Polymerization for
BoostForest?

The authors of this paper removed the weighting in the proposed En-WBF approach
and devised a comparative experiment to see whether there was any improvement in order
to further investigate the efficacy in weighting the base learners. Equation (20) illustrates
how average BoostForest (ABF) produced the final prediction result by averaging the
predictions made by each base learner.

ŷ =
1
K

K

∑
i=1

ŷi (20)

The result of the ablation study is shown in Table 5. It is evident that the proposed
En-WBF approach yielded a better MAE and MSE than the ABF technique. The proposed
En-WBF approach increased the MAE by 1.49%, the MAPE by 1.73%, the MSE by 3.01%, the
RMSE by 1.53%, the R2 by 4.95%, the AIC by 2.57%, and the BIC by 2.04% when compared
to the ABF technique. These outcomes demonstrate the effectiveness of the weighting
strategy for BoostForest and its ability to accommodate the variations in the performance of
each base learner while alleviating the impacts of both possible overfitting and underfitting
within BoostTree.

Table 5. The results of the ablation study.

Method MAE MAPE MSE RMSE R2 AIC BIC

En-WBF 0.2573 0.0171 0.1869 0.4323 0.9938 147.7845 861.7589
ABF 0.2612 0.0174 0.1927 0.4390 0.9889 151.6813 879.7123

4.3.3. RQ3: What Are the Optimal Parameter Settings of the Proposed En-WBF Approach?

The training process of the proposed En-WBF approach involves three key param-
eters influencing its performance, including the number of learners at the learning base
n_estimators, the sampling ratio Bootstrap_rate, and the minimal sample number leaf nodes
min_samples_lea f . n_estimators dictates the total count of base learners that constitute the
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ensemble learning. Multiple learners are trained to solve the same problem, and their pre-
dictions are combined in some manner (e.g., averaging or weighted averaging) to produce
the final output. The number of learners is crucial because it directly influences the model’s
ability to capture complex patterns in the data. Bootstrap_rate controls the proportion of
the training dataset to be used for training each base learner within the ensemble. This is
a strategy often associated with bagging (bootstrap aggregating) techniques, where each
learner is trained on a random subset of the data. In tree-based models, min_samples_lea f
specifies the minimum number of samples a leaf node must have. This threshold acts as a
constraint on tree growth, preventing the model from creating leaves that only contain a
small number of samples.

We employed MAE and MSE as performance metrics for parameter tuning, subse-
quently applying a greedy algorithm [30] to iteratively tune the above principal parameters.
First, we adjusted n_estimators to the desired value and set the other two parameters to
their default settings. Second, we changed Bootstrap_rate so that n_estimators was set to
the ideal value and min_samples_lea f was the default value. Lastly, we found the ideal
value for the remaining two parameters by adjusting min_samples_lea f .

The outcomes of the parameter adjustment are shown in Tables 6–8. As can be seen, the
best MAE and MSE were 0.2718 and 0.2108, respectively, when n_estimators = 40. When
the sample ratio Bootstrap_rate was varied and n_estimators was set to 40, it was found that
the best MAE and MSE were 0.2675 and 0.1996, respectively, with Bootstrap_rate = 0.75.
When min_samples_lea f was set as 5, the proposed En-WBF approach performed the best,
with an MAE of 0.2573 and an MSE of 0.1869, with settings of n_estimators = 40 and
Bootstrap_rate = 0.75 in this case.

Table 6. Parameter tuning of n_estimators with Bootstrap_rate = 0.75 and min_samples_leaf = 5.

n_estimators MAE MSE

10 0.3263 0.3134
20 0.3085 0.2819
30 0.2910 0.2612
40 0.2718 0.2108
50 0.2744 0.2176
60 0.2789 0.2178
70 0.2884 0.2223

Table 7. Parameter tuning of Bootstrap_rate with n_estimators = 40 and min_samples_leaf = 5.

Bootstrap_rate MAE MSE

0.60 0.3478 0.3896
0.65 0.2909 0.2713
0.70 0.3027 0.2408
0.75 0.2675 0.1996
0.80 0.2775 0.2018
0.85 0.2847 0.2040
0.90 0.2886 0.2060

Table 8. Parameter tuning of min_samples_leaf with Bootstrap_rate = 0.75 and n_estimators = 40.

min_samples_leaf MAE MSE

1 0.4268 0.3449
2 0.3892 0.2905
3 0.3384 0.2453
4 0.3032 0.2209
5 0.2573 0.1869
6 0.2738 0.2184
7 0.2828 0.2223
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4.3.4. RQ4: How Does the Proposed En-WBF Approach Perform on Real Wastewater
Treatment Data?

We conducted experiments on a real wastewater quality dataset, which included a
total of 414 instances and 11 variables after data preprocessing, collected by the Beijing
Drainage Group’s Fangzhuang Wastewater Treatment Plant in order to confirm the efficacy
of the proposed En-WBF approach. Using the K-nearest neighbor mutual information
forward variable selection method, we identified an optimal set of seven auxiliary input
variables, detailed in Table 9. Table 10 shows the effluent BOD prediction performance of
the proposed En-WBF approach. The proposed En-WBF approach significantly performed
better than SVR, GBRT, RF, XG-Boost, RVM, ANN and LSTM, with its MAE of 3.0647,
MAPE of 0.2272, MSE of 17.9724, RMSE of 4.2392, and R2 of 0.6838. The proposed En-
WBF approach outperformed the second-best SVR by 8.8%, 9.0%, 12.8%, 6.6%, and 1.5%.
respectively, on these five metrics. In addition, En-WBF achieved an AIC of 500.2910 and
a BIC of 1113.9190, second only to SVR. This demonstrates that the proposed En-WBF
approach, which can be used in wastewater treatment, has a considerable advantage over
the baseline methods for predicting effluent BOD.

Table 9. Optimal auxiliary input variable settings and descriptions on Fangzhuang dataset.

Notation Description

Q-E Effluent flow rate
MLSS Mixed liquor suspended solids
COD-I Influent biological demand of oxygen
BOD-I Influent chemical demand of oxygen

SS-I Influent suspended solids
P-I Influent phosphorus
P-E Effluent phosphorus

Table 10. Model validation of En-WBF on real wastewater treatment dataset.

Method MAE MAPE MSE RMSE R2 AIC BIC

En-WBF 3.0647 0.2272 17.9724 4.2392 0.6838 637.1084 1113.9190
SVR 3.3431 0.2494 20.5808 4.5366 0.6738 500.2910 835.2406

GBRT 3.3529 0.2502 20.8585 4.5671 0.6529 697.0014 1225.0396
RF 3.3678 0.2498 21.2829 4.6133 0.6501 1010.0689 1845.4727

XG-Boost 3.4259 0.2548 21.5569 4.6429 0.6233 1138.0689 2099.5714
RVM 3.6679 0.2749 23.7362 4.8720 0.5991 171.1084 188.8410
ANN 3.3542 0.2496 20.9333 4.5752 0.6317 1763.1911 3341.3949
LSTM 3.4317 0.2559 21.7285 4.6613 0.6091 2597.1671 4995.0124

Table 10 reveals that the En-WBF model exhibited suboptimal performance across
the MAPE, R2, and other metrics. The impact of outliers or noise was pronounced in the
MAPE, where percentage errors can be significantly inflated by outliers. These outliers,
if unaligned with predominant trends, can also depress the R2 values. Consequently, to
enhance the efficacy of En-WBF, future research will consider incorporating a refined outlier
and noise management module.

5. Discussion

This study introduced a novel ensemble learning approach, En-WBF, aimed at enhanc-
ing the prediction accuracy of effluent biochemical oxygen demand (BOD) in WWTPs. The
En-WBF approach was designed to address several prevalent challenges in the field, includ-
ing the propensity for single models to under-fit and the variability in performance among
traditional ensemble learners, especially when confronted with small-scale wastewater
quality datasets.

One of the core strengths of En-WBF lies in its innovative use of the bootstrap pro-
cedure to create independent data subsets, which mitigates the limitations imposed by
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small datasets. Furthermore, the training of multiple BoostTrees, aimed at overcoming
the under-fitting commonly associated with single-model approaches, and the strategic
weighting of these BoostTrees based on performance, significantly enhances the model’s
prediction accuracy. These methodological choices underscore the potential of En-WBF as
a robust solution for the BOD prediction of WWTPs.

The evaluation of En-WBF through established research questions revealed its superior
performance in comparison to conventional machine learning and deep learning techniques.
Specifically, an ablation study on the weighting strategy confirmed its effectiveness, and
a sensitivity analysis on key hyper-parameters helped in identifying the optimal model
configuration. Validation of the model using the Fangzhuang dataset further demonstrated
its proficiency across various metrics.

Despite these strengths, this study acknowledges certain limitations of the En-WBF
approach. Primarily, while the model performed well with small datasets, its efficacy in
contexts with extensive data, particularly when compared against advanced deep learn-
ing techniques, remains uncertain [16,17]. Additionally, its reliance on basic methods
for missing value imputation and outlier detection may undermine the model’s perfor-
mance [8]. These limitations highlight the necessity for further research and refinement of
the En-WBF approach.

In summary, when assessed against other state-of-the-art BOD prediction models
documented in the literature, En-WBF exhibits notable advantages, particularly in terms of
adaptability and precision. However, the scalability of En-WBF and its ability to manage
the complexities of diverse wastewater treatment scenarios warrant further investigation.

6. Conclusions and Future Work

The En-WBF model represents a significant advancement in the prediction of effluent
BOD in WWTPs, addressing critical challenges in the field through an innovative ensemble
learning approach. The model’s development, centered around the bootstrap procedure
and the strategic weighting of BoostTrees, marks a step forward in enhancing the accuracy
of BOD predictions. In conclusion, the En-WBF model offers a promising solution to the
challenges of effluent BOD prediction in WWTPs. Through continuous improvement and
expansion, it has the potential to significantly contribute to the field of environmental
science and engineering.

Future work of this research will aim to extend the capabilities of the En-WBF model.
This includes the integration of advanced modules for outliers and noise removal to further
improve performance, especially for larger and more complex datasets. Additionally,
considering the significant costs associated with effluent BOD prediction, its scope will
be expanded to include more wastewater quality indicators, such as the chemical oxygen
demand (COD), total nitrogen (TN), and ammonium nitrogen (NH4-N). These expansions
will not only enhance the model’s capability but also contribute to more comprehensive
environmental monitoring and management.
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