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Abstract: This paper presents the extension of the monolayer snow model of a semi-distributed
hydrological model (HYDROTEL) to a multilayer model that considers snow to be a combination of
ice and air, while accounting for freezing rain. For two stations in Yukon and one station in northern
Quebec, Canada, the multilayer model achieves high performances during calibration periods yet
similar to the those of the monolayer model, with KGEs of up to 0.9. However, it increases the KGE
values by up to 0.2 during the validation periods. The multilayer model provides more accurate
estimations of maximum SWE and total spring snowmelt dates. This is due to its increased sensitivity
to thermal atmospheric conditions. Although the multilayer model improves the estimation of snow
heights overall, it exhibits excessive snow densities during spring snowmelt. Future research should
aim to refine the representation of snow densities to enhance the accuracy of the multilayer model.
Nevertheless, this model has the potential to improve the simulation of spring snowmelt, addressing
a common limitation of the monolayer model.

Keywords: multilayer structure; snow water equivalent; ice/air mixture; snow modeling; snowmelt;
sensitivity analysis; snow height; winter snow peak

1. Introduction

Understanding the hydrological cycle is a paramount challenge for humanity, as it
is essential for protecting against floods, mitigating droughts, meeting water needs for
industrial and domestic purposes, and informing weather and climate predictions. Within
this cycle, one crucial component is snowfall. Although in the Northern Hemisphere, snow
typically constitutes around 6–10% of total precipitation, it can exceed 50% in specific
regions [1]. Accumulating as a heat-deficient solid water reservoir, snowpacks experience
rapid spring melting, leading to distinctive seasonal flooding patterns. Notably, snowmelt
has been found to contribute substantially to annual streamflow in various geographic
contexts. For example, in Indian glacier-fed basins, snowmelt accounts for 27–44% [2], and
in Czech Republic watersheds 17–42% [3]. Meanwhile, snowmelt can play a pivotal role in
groundwater recharge. For example, in the Nelson River Basin, Canada, Jasechko et al. [4]
determined that the fraction of precipitation recharging aquifers is 1.3 to 5 times higher
during cold months, with negative mean monthly temperatures, than during warmer
months. Snow can pose a challenge in mountainous areas like the Andes [5] or Iran [6], and
snowmelt remains a concern. Consequently, accurate modeling of snow cover becomes
crucial for streamflow modeling.

Snow–water equivalent (or SWE) represents one of the key physical characteristics
and is defined as the depth of water on the ground if the snow were in a liquid state. For hy-
drological models simulating water transfers within the hydrological cycle, SWE represents
an essential variable and is equivalent to the product of snowpack height and snow density
(mass of snow per unit volume of snowpack). Another key characteristic, albedo, represents
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the proportion of solar radiation reflected by the snowpack surface and thus directly affects
the amount of absorbed solar energy. In the case of fresh snow, assuming reflectivity is
isotropic, its specular component—which entails unidirectional reflection—strengthens
as the snowpack ages and undergoes repeated melting and recrystallization events [7],
affecting snow metamorphosis and sublimation [8]. Finally, the temperature or calorific
deficit of the snowpack assists in determining the snow maturation process and proximity
to melting.

Given our physical understanding of snow, multiple snow models have been devel-
oped to tackle specific issues related to water resource management, including integrated
management, avalanche prediction, climate studies, infrastructure planning, environmental
impact, or even scientific research in fields such as ecology or glaciology. As is typical with
modeling, the complexity of those models is tailored to the objective they seek to address.
Table A1 in Appendix A presents a selection of snow models that differ in their design
approach, consideration of the simulated phenomena given the available data, and thus
representation of the snowpack structure.

Without delving into the details of each snow model, which would go beyond the
scope of this paper, Table A1 highlights a major difference in complexity between monolayer
models, which are all daily models and consider only a limited number of phenomena, and
multilayer ones that can provide snow cover modeling at 10 min intervals and consider a
wider range of phenomena. The snow model of HYDROTEL stands out among monolayer
models as the most advanced in terms of physical representation. It encompasses phe-
nomena found in simple models like CEMANEIGE and HBV (i.e., snow accumulation and
melting), as well as numerous phenomena typically associated with multilayer modeling
approaches (e.g., convective heat, precipitation heat, soil heat, compaction, mixing, radia-
tion heat/melting degree-day, water retention). HYDROTEL [9,10] is the semi-distributed
hydrological model at the core of operational hydrologic forecasting systems in the Que-
bec [11,12], Yukon [13–15], and Southern Québec Hydroclimatic Atlas [16–18], as well
as in several other studies, such as on the effect of global warming on environmental
flows [19–21] or the role of wetlands on mitigating floods and droughts [22–24]. These ap-
plications are made in a Canadian context, where most watersheds are subject to significant
snowfall. In these regions, spring freshets often result in annual streamflow peaks, some-
times accompanied by rain-on-snow events [25], which can augment lateral outflows and
impede soil infiltration [26]. As a result, accurate simulation of snowmelt becomes critical
for effectively predicting streamflow, accounting for both surface runoff and groundwater
recharge [27]. One notable feature of HYDROTEL’s snow model is its consideration of snow
as a monolayer structure [28]. However, the literature suggests that adopting a multilayer
representation of the snowpack can significantly improve SWE dynamics. For instance,
Saha et al. [29] demonstrated substantial enhancements in snowpack height and SWE esti-
mations with the use of the six-layer Noah model compared to its conventional monolayer
version. In addition, Domine et al. [30] highlighted the significance of accurately modeling
the thermal properties of snow for estimating soil water mass balance, suggesting that a
multilayer structure can effectively capture density profiles and improve the representation
of thermal characteristics. In addition to incorporating a multilayer structure, some models
treat snow as a heterogeneous material, accounting for the proportions of air, ice, and water
in the snow cover. For example, the SNOWPACK model [31] considers these factors, while
the GEOTOP [32] and SeNORGE [33] models represent snow as a mixture of solid and
liquid water. Furthermore, the integration of freezing rain enables the direct formation of
an ice layer over an existing snow cover, as observed in studies by Henson et al. [34] and
Quéno et al. [35].

These different considerations offer potential directions of improvement for snow
modeling in HYDROTEL. Given the advancements in modeling sophistication and compu-
tational capabilities, this paper focuses on developing a multilayer version of the hybrid
energy balance/degree-day snow model of HYDROTEL, assuming snowpack is predomi-
nantly composed of ice with interspersed air. As ice exhibits distinct thermal properties
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compared to those of air, this development impacts heat transfer between layers while
creating discontinuities in the physical properties and ensuing temperature and density
profiles. This development aligns with the parsimonious structure of HYDROTEL, which
has positioned the model as a robust model in Canada. The end goal is not to transform
HYDROTEL into a complex and computationally intensive model but rather to assess the
potential improvements associated with using a multilayer structure within a relatively
simple, physics-based, semi-distributed model.

This paper is organized as follows. First, we describe the original snow model design
of HYDROTEL, detailing the modifications from a monolayer model to a multilayer one,
and present a sensitivity analysis of the additional parameters. The mono- and multilayer
models are then calibrated based on SWE, and the resulting differences are highlighted.
The modeling is validated using Gamma MONitor (GMON) stations in the Necopastic
watershed (Quebec), Lower Fantail, and Wheaton (Yukon) River basins. The effects of the
model design on energy balance dynamics, state variables, and characteristic dates of the
snowpack are analyzed, followed by a discussion and conclusion.

2. Materials and Methods
2.1. Core Equations of the Monolayer Snow Model

This section presents the governing equations of the monolayer snow model of HY-
DROTEL [28] focusing on modeling the phenomena introduced in Table A1, namely, snow
accumulation, advected heat transfer from precipitation, soil heat transfer, snow com-
paction, snow water content, and construction of the thermal energy budget (through
blending net short-wave radiation and degree-day concepts).

The operation of the model is parsimonious and only requires three input variables,
that is, daily total precipitation, and minimum and maximum air temperatures. The model
is physics-based, using degree-day equations while building a thermal energy budget based
on the heat deficit of a monolayer snowpack. This budget is as follows (see Appendix B for
a detailed mathematical description of each term):

∆U
∆t

= ur + uc + us−s + ua−s + uac − us (1)

where ∆U
∆t is the daily rate of change in the snowpack heat deficit (J.m−2.s−1); ur, uc, us−s,

ua−s, and uac are decreases in heat deficits due to rainfall, conduction, transfer from the
soil (at the snow–soil interface), net radiation (at the air–snow interface), and from the
water retained on the previous day, respectively; and us is the increase in heat deficit due
to solid precipitation.

The energy assessment is applied to a snow layer. Liquid and solid precipitations are
derived from total precipitation, daily minimum and maximum air temperatures, and a
temperature threshold. When the air temperature is sufficiently cold (below the threshold),
all precipitation falls as snow (Equation (2a)), whereas when the temperature is warm
enough (above the threshold), it falls as rain (Equation (2b)). In between, total precipitation
results in a mix of snow and rain (Equation (2c)).

R = 0; S = Pt i f Tmax ≤ Ts (2a)

R = Pt; S = 0 i f Tmin > Ts, (2b)

R = Pt

(
Tmax − Ts

Tmax − Tmin

)
; S = Pt

(
Ts − Tmin

Tmax − Tmin

)
otherwise (2c)

where R, S, and Pt are liquid, solid, and total daily precipitation rates (m.s−1), respectively;
Tmax and Tmin are the maximum and minimum daily air temperatures, respectively; and Ts
is the temperature threshold.



Water 2024, 16, 1089 4 of 37

The density of falling snow is computed as follows:

ρs = 151 + 10.63
(

Tmax + Tmin
2

)
+ 0.2767

(
Tmax + Tmin

2

)2
if

Tmax + Tmin
2

≥ −17 (3a)

ρs = 50 i f
Tmax + Tmin

2
< −17 (3b)

where ρs is the density of fresh snowfall (kg.m−3), and Tmax and Tmin are the maximum
and minimum daily air temperatures, respectively.

The snowpack is subject to compression, and a reduction in height (Sett) is estimated
using Equation (4). Thus, Sett is subtracted from the current height of the snow layer. When
negative, Sett is set to 0.

Sett = H SetCoe f

(
1 − ρsnow

ρmax

)
(4)

where Sett is snowpack height lost to compaction (m), H is the snow height (m), SetCoe f is
the compaction coefficient (−), and ρmax is the maximum achievable density (kg.m−3).

When the total snowpack heat deficit is replenished, a potential snow melt is computed
from the excess heat, triggering a phase change as per Equation (5).

PM =
∆Utot

C f ρw
(5)

where PM is the resulting amount of SWE undergoing a phase change (m), ∆Utot is the
total heat deficit (J.m−2), ρw is the liquid water density (1000 kg.m−3), and C f is the latent
heat of the fusion of water (335,000 J.kg−1).

The maximum water retention capacity (RCmax) is computed as follows:

RCmax = 0.1
ρsnow

ρw
SWE (6)

where RCmax is the maximum snow cover capacity of water retention (m), and SWE is the
snow water equivalent following the removal of PM (m).

The actual snowmelt (AR) is computed as the difference between potential melt and
RCmax (Equations (7a) and (7b)).

AR =
PM
∆t

if PM ≤ RCmax then AM = 0 (7a)

AR =
RCmax

∆t
and AM =

PM − RCmax

∆t
otherwise (7b)

where AM is the actual snowmelt (m.s−1), AR is the actual retention, and ∆t is the compu-
tational time step.

Finally, the snowpack mass balance is the sum of the snowfall and rainfall when there
is snow on the ground; otherwise, rainfall either percolates or runs off.

∆SWE
∆t

= R + S − AM (8)

2.2. Extension of the Monolayer Snow Model

Several modifications to the model are considered, including a change from a mono-
layer to a multilayer structure. Additionally, some variables are estimated by considering
snow as a material composed of both ice and air. Furthermore, freezing rain is made
possible given its potential to alter the heat transfer inertia between each layer. Finally,
some modifications are introduced to the equations describing snow compression and
maximum water retention capacity to account for the changes. These modifications are
described in the next subsections.
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2.2.1. A Multilayered Structure

Any snowfall in the absence of snow on the ground or above a pure ice layer (layer
with a density of 917 kg.m−3) leads to the creation of a new layer with a specific mass and
heat deficit. If these criteria are not met, and if the snowfall water equivalent is less than
a threshold value St, then the incoming mass and heat deficit are incorporated into the
current layer at the air–snow interface. Otherwise, a new layer is established, as illustrated
in Figure 1. St serves as a calibration parameter, allowing for concurrent optimization of
energy transfers and restricting the number of layers. Some energy transfer processes solely
affect specific layers. For instance, heat input from the ground solely influences the layer at
the ground–snow interface, while radiation exclusively warms up the layer at the air–snow
interface. For the latter layer of the monolayer model, heat loss through conduction and
heat gain via radiation are enabled when the air temperature is below or above the melting
threshold temperature T0, respectively. Furthermore, in instances where melting exceeds
the water retention capacity, excess water seeps into the underlying layer at a temperature
of 0 ◦C. Excess heat is used for phase change; if the uppermost snow layer has undergone a
phase change, any residual heat is then transferred downwards. Consequently, the energy
balance can be expressed using Equations (9a)–(9c) for the top layer, any intermediate
layers, and the bottom layer, respectively.

∆Uk
∆t

= ur + uc + ua−s + uac − us (9a)

∆Uk
∆t

= uc + uac + uex,k+1 + uperc,k+1 − uex,k − uperc,k (9b)

∆U1

∆t
= uc + us−s + uac + uex,2 + uperc,2 (9c)

where uex is the excess heat from melting in the upper layer or the heat transfer due to phase
change of freezing rain from the upper layer (more detail below in the article) (J.m−2.s−1),
uperc is the heat variation due to infiltration from the upper layer (J.m−2.s−1), and k stands
for the kth snow layer from the ground surface.

Figure 1. Snow layer creation scheme for the proposed multilayer model.
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The heat input from percolation, uperc, is evaluated in a similar manner to ur. In both
cases, the heat input to the snowpack comprises the cumulative sensible heat loss of the
liquid water lowered to 0 ◦C, the ensuing latent heat of fusion (phase change), and the heat
released to adjust the new ice crystals to the snowpack temperature. They are described
by Equations (10a) and (10b) for the modification of thermal energy from rainfall and
percolation, respectively. The rainfall occurred on the top layer, which is noted as k′ below.ur = ρw R

(
Cw Tm + C f

)(
1 − R

SWEk′+R

)
+

R Uk′
SWEk′+R if Tm > 0

ur = ρw R
(

Cs Tm + C f

(
1 − R

SWEk′+R

))
+

R Uk′
SWEk′+R otherwise

(10a)

uperc,k = ρw Ruk+1 C f

(
1 − Ruk+1

SWEk + Ruk+1

)
+

Ruk+1 Uk
SWEk + Ruk+1

(10b)

where Cw and Cs are specific heat capacities of water and snow (4184 J.kg−1.◦C−1 and
2093.4 J.kg−1.◦C−1), respectively; C f is the heat of fusion of water (335,000 J.kg−1); R is the
rainfall rate (m.s−1); Ruk+1 is the percolation rate of the k + 1th layer (m.s−1); Tm is the mean
air temperature (◦C); SWEk is the snow water equivalent (m); and Uk is the heat deficit of
the kth layer.

2.2.2. Snow as a Medium of Ice and Air

The snowpack is regarded as a medium comprising different constituents whereby
the properties and proportions of each component contributes to the estimation of various
snow characteristics. Appendix E describes how the volumetric proportions of air and ice
are estimated, assuming liquid water constitutes a non-significant portion of the snowpack
during winter. This assumption is based on observations made by Koch et al. [36], where
the volumetric liquid water content peaked at a maximum of 8% at the end of the melting
phase or during instances of liquid precipitation. This is consistent with the assumption that
liquid water in the original snow model is entirely frozen at the daily time step. Leveraging
the relationship derived for snow density (Appendix E) and the linear correlation proposed
by Evans [37] to gauge the relative dielectric permittivity of snow from those of ice and air,
all snow layer characteristics are determined based on the proportions of ice and air. For
heat loss by conduction, the thermal diffusivity of snow is computed for each layer using
Equation (11).

Ds,k =

(
ρs,k − ρa,k

ρi − ρa,k

)
Di,k +

(
ρi − ρs,k

ρi − ρa,k

)
Da,k (11)

where Ds,k is the snow diffusivity (m2.s−1); ρs,k, ρa,k, and ρi are the snow, air, and ice
densities (kg.m−3), respectively; Di,k and Da,k are the ice and air thermal diffusivities
(m2.s−1), respectively; and k stands for the kth snow layer.

The thermal diffusivities of ice and air are computed using Equation (12):

Dm,k =
Km,k

ρm,k Cs,m,k
(12)

where Dm,k is the thermal diffusivity of the kth snow layer made of a material m (m2.s−1),
Km,k is the thermal conductivity (W.m−1.◦C−1), ρm,k is the density (kg.m−3), and Cs,m,k is
the specific heat (J.kg−1.◦C−1).

Estimates of the thermal conductivities of ice [38] and air [39] are derived from
Equations (13) and (14), respectively.

Ki,k = 1.16
(

1.91 − 8.66. 10−3 Tk + 2.97.10−5 Tk
2
)

(13)

where Tk is the temperature of the kth layer (◦C).
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Ka,k = 1.5207.10−11(273.15 + Tk)
3 − 4.857.10−8(273.15 + Tk)

2

+1.0184.10−4(273.15 + Tk)− 3.9333.10−4 (14)

Tk is a function of the total heat deficit ∆Utot,k computed for the kth layer using
Equation (15):

Tk =
∆Utot,k

SWEk Cs ρw
(15)

For ice, the density and specific heat are deemed constant for any temperature and
are set at 917 kg.m−3 and 2093.4 J.kg−1.◦C−1, respectively. For air, the density (ideal
gas law under normal pressure conditions) and specific heat [39] are computed using
Equations (16) and (17), respectively:

ρa,k = 1.292
273.15

273.15 + Tk
(16)

Cs,a,k = 1.9327.10−10(273.15 + Tk)
4 − 7.999.10−7(273.15 + Tk)

3

+1.1407.10−3(273.15 + Tk)
2 − 4.489.10−1(273.15 + Tk)

+1.0575.103
(17)

where Tk stands for the temperature of the kth layer (◦C).
Snow albedo is determined by snow grain metamorphism, which also causes the

snowpack to become denser. However, our snow model assesses albedo based on snow
density since snow grain size and shape are not evaluated. Here, snow albedo is estimated
based on the proportion of ice and air in the surface layer. This approach is reminiscent of
the optical paths of radiation that are absorbed by ice crystals instead of being reflected or
transmitted through them. Nevertheless, since the albedo of air cannot be defined, fresh
snow was employed as a surrogate material. Indeed, fresh snow constitutes a blend of ice
and air with a very high porosity.

Perovich et al. [40] measured an ice albedo of 0.5 in the Arctic for snow on a frozen
pothole. The albedo of fresh snow is 0.9 [41] for a 50 kg.m−3 density, which is consistent
with that of snowfall computed in the monolayer mode. The albedo of snow as a composite
material is thus computed using Equation (18):

αs =

(
ρs − ρ f s

ρi − ρ f s

)
αi +

(
ρi − ρs

ρi − ρ f s

)
α f s (18)

where αi and α f s are albedos of ice (0.5) and fresh snow (0.9), respectively, and ρ f s is the
fresh snow density (50 kg.m−3).

2.2.3. Freezing Rain

Freezing rain occurs upon contact with surfaces when raindrops become supercooled
while passing through a freezing layer of air. It is characterized by a heat deficit due to
changes in both phase and air temperature. Like how the monolayer model manages
precipitation that freezes within the snow cover, the freezing rain heat deficit from the
newly created layer is computed using Equation (19):

us = ρw

(
C f − Cw

Tmax + Tmin
2

)
R (19)

where ρw is the liquid water density (1000 kg.m−3); C f is the heat of fusion of water
(335,000 J.kg−1); Cw is the specific heat capacity of water (4184 J.kg−1.◦C−1); Tmax and Tmin
are the maximum and minimum daily air temperatures, respectively (◦C); and R is the
daily liquid precipitation rate (m.s−1).
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Ice is a better heat conductor than air—about 100 times more, according to
Equations (13) and (14). That is why upon freezing, the excess heat from the phase change
is transferred to the snowpack (see Equation (20)). The ice-layer temperature subsequently
impacts the conduction heat loss of the lower layer.

uex = ρwC f R (20)

where ρw is the liquid water density (1000 kg.m−3), C f is the heat of fusion of water
(335,000 J.kg−1), and R is the daily liquid precipitation rate (m.s−1).

It is noteworthy that in the original monolayer model, the cooling of ice from 0 ◦C
down to the snow layer temperature was neglected. This oversight stands corrected in the
multilayer model.

2.2.4. Compression

Snow is made of ice crystals and can undergo compression due to its own weight.
Throughout this process, there is no melting or loss of mass, and the snow is contained
within a time-dependent volume, as the bonds between ice crystals strengthen, resulting in
a structure that can better withstand gravitational force. For this purpose, compaction is
computed using Equation (4), with a distinct maximum density ρmax,l .

2.2.5. Maximum Water Retention Capacity

Some snow models, such as MASiN [42], estimate the maximum water retention
capacity of a layer as a proportion of the volume of air that can retain the melted snow.
Since the volume of air is now a variable in the proposed model (see the Section 2.2), this
capacity can be computed as follows:

RCmax,k = %air
ρi − ρs,k

ρi − ρa,k
Hk (21)

where RCmax,k is the maximum water retention capacity of the kth layer (m), %air is the
ratio of the volume of air that can be filled in by water (−), and Hk is the height of the kth

layer after melting (m).
Table 1 displays the calibration parameters and their respective physical ranges con-

sidered for the two versions of the snow model. They align with typical values employed
in HYDROTEL. However, the lower limit of parameter T0 is relatively small, intended for
an open vegetation environment. Despite the low probability of reaching this value during
the calibration of the hydrological model, it was retained to evaluate the behavior of the
snow model should an optimal solution be identified using such a value.

Table 1. Snow model calibration parameters.

Parameter Model Meaning Lower
Threshold

Upper
Threshold

ρmax Original Maximum snow density (kg.m−3) 250 550

T0 Original/multilayer Temperature threshold for net radiation heat gain (◦C) −8 3

Ts Original/multilayer Precipitation separation temperature (◦C) −1 3

SetCoe f Original/multilayer Settling coefficient (−) 0.0001 0.1

MRa−s Original/multilayer Melt rate at air–snow interface (m.day−1.◦C−1) 0.001 0.04

MRs−s Original/multilayer Melt rate at snow–ground interface (m.day−1) 0.0001 0.002

St Multilayer New-layer snow precipitation threshold (m.day−1) 0 0.06

ρmax,l Multilayer Settling maximum snow-layer density (kg.m−3) 350 750

%air Multilayer Ratio of the volume of air that can be filled in by water (−) 0.05 0.15
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It is noteworthy that the multilayer snow model introduces three additional calibration
parameters while removing one, keeping it relatively parsimonious while allowing for the
integration of one new phenomenon: freezing rain.

2.3. Framework for Evaluating Different Versions of the Snow Model

The models were calibrated using OSTRICH [43], which provides a choice of different
deterministic algorithms, such as steepest descent [44] or multi-start GML with trajectory
repulsion [45], as well as stochastic algorithms such as dynamically dimensioned search
(DDS) [46] or shuffled complex evolution [47,48]. For this study, we used DDS following
the guidelines proposed by Tolson et al. [46]. For the mono- and multilayer versions of the
snow model, there are six calibration parameters, requiring at least 18 calibration repetitions
(trials) of 100 iterations each.

The Kling–Gupta efficiency (KGE) was used as the objective function [49]:

KGE = 1 −
[
(1 − µs/µo)

2 + (1 − σs/σo)
2 + (1 − r)2

]1/2
(22)

where µs et µo are the simulated and observed SWE averages, respectively; σX is the
standard deviation; and r is the Pearson correlation coefficient.

We conducted a sensitivity analysis using the variogram analysis of response surface
(VARS) toolbox from Razavi et al. [50]. Among the various suggested tools, the STAR-VARS
method [51], based on a “star-based” sampling strategy, was retained because it is an
efficient global sensitivity analysis (GSA) technique for analyzing the variograms of the
model. A variogram characterizes the model’s spatial covariance structure and takes the
following form:

γ(
→
h ) =

1

2|N(
→
h )|

∑
(i,j)∈N(

→
h )

(y(
→
x

A
)− y(

→
x

B
))2 (23)

where
→
h is the distance (or direction) between the parameter sets

→
x

A
and

→
x

B
in the factor

space, N(
→
h ) is the number of pairs of points in the factor space with a distance

→
h between

them, and y(
→
x

A
) and y(

→
x

B
) are the response of the model in the parametric space at

locations
→
x

A
and

→
x

B
, respectively.

Therefore, an increase in the variogram in a direction
→
h in the factor space implies a

greater variation on
→
h , indicating a higher sensitivity of the model in this direction.

To combine the various variograms for each parameter, a sensitivity index (IVAR) is
generated for each one of them, which integrates the variograms over a scale interval from
0 to Hi for a parameter i:

IVARi(Hi) =
∫ Hi

0
γ(hi)dhi (24)

Based on the recommendation of Razavi and Gupta [52], we calculated the sensitivity
index for 50% of the interval (IVARi(0.5)), corresponding to a scale of Hi = 0.5. To
facilitate parameter comparison, a relative sensitivity index (IVARi,50n) is estimated for
each parameter i as follows:

IVARi,50n =
IVARi(0.5)

∑n
j=1 IVARj(0.5)

(25)

A temporal sensitivity analysis was performed by estimating the IVARi,50n for each
day using a generalized global sensitivity matrix approach (or GGSM) instead of the
previously employed GSA method.

The Latin hypercube sampling method was adopted to generate the parameter sets,
using a sampling of parameter sets based on 50 stars with a resolution of 0.1. The time
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frame aligns with each period of accessible data, which will be elaborated upon in the case
study section.

Two calibration strategies were evaluated to optimize the information obtained from
the different datasets of the SWE gauge stations presented below. The first strategy was to
test the prediction ability of both the monolayer model and the multilayer model. Various
calibrations were performed by extracting one year of the datasets for validation, while the
remaining years were used for calibration. All possible permutations were evaluated. The
second strategy involved using the complete dataset to compare the overall performance
of each model. The top ten KGE performances, assessed on SWE during the calibration
period (or as the optimal compromise between calibration and validation periods for the
first strategy), were compared for both models at every SWE gauge station. A Wilcoxon
rank sum test was performed to compare the median of these performances at each station.
A p-value of less than 0.05 indicated a significant difference at a 5% type-I error rate.
The second strategy consisted of using all available data for calibration with the KGE. In
addition to the KGE, the root mean squared error (RMSE) and Nash–Sutcliffe Efficiency
(NSE) [53] were computed. For the remainder of this paper, the monolayer model is referred
to as “Mo”, while the multilayer model is referred to as “Multi”.

RMSE =

√
∑n

i=1(SWEo,i − SWEs,i)
2

n
(26)

where n is the number of daily time steps, and SWEo,i and SWEs,i are the observed and
simulated SWE for day i (m), respectively.

NSE = 1 − ∑n
i=1(SWEs,i − SWEo,i)

2

∑n
i=1
(
SWEo,i − SWEo

)2 (27)

where SWEo is the mean observed SWE over the entire dataset.
Finally, to further substantiate differences between the Mo and Multi models, the

snowpack onset and end dates as well as the date of maximum SWE and height were
compared on an annual basis. The results are presented relative to their absolute seasonal
deviations for each set of parameters using Equation (28). The median results are then
compared between models at each SWE station.

Ac =
√
(Ck,m − Ck,o)

2 or Ac = 100

√
(Ck,m − Ck,o)

2

Ck,o
(SWE max, in %) (28)

where Ac is the mean value of characteristic C, and m stands for the tested model (Mo or
Multi) and o the observations for year k.

2.4. Case Study

Three SWE stations were selected for this study based on their differences in altitude
and climate. As shown in Figure 2, they are in two distinct regions of Canada. The first
SWE station (a.k.a. GMON station) and meteorological stations are in the Necopastic River
watershed, in a subboreal climate. It is in a 50 m-radius forest clearing, surrounded by a 7
to 8 m-tall spruce trees, with vegetation reaching 3 to 4 m beyond 30 m. The exact altitude
of the station is uncertain, but the altitudes of the watershed are between 100 and 180 m.
The observed data used in this study were taken from Oreiller et al. [54]. The two other
SWE stations are in the Upper Yukon River watershed, namely, the Lower Fantail and the
Wheaton stations [55]. The Lower Fantail stations are located on an outcrop surrounded
by a wetland, at the bottom of a river valley, while the Wheaton stations are located on
a ridge crest close to a glacier, surrounded partially by subalpine firs and shrubs. These
stations are located in the alpine, subalpine, and boreal eco-climatic regions of the Northern
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and Central Cordillera [56]. The exact station altitude is uncertain, but the altitudes of this
watershed fall between 640 and 2010 m.

Figure 2. Locations of the upper Yukon (left) and Necopastic (right) watersheds in Canada. Weather
and ground snow stations are in blue circles. LF stands for Lower Fantail, W for Wheaton, and Neco
for Necopastic.

The weather and SWE station metadata are provided in Table 2. During the study,
ground-based precipitation measurements were non-continuous in Yukon. Given these
conditions, the precipitation times series for modeling was assumed to be the daily increase
in observed water equivalents due to the lack of information about wind-related snow
transport. The modeled SWE was compared to data from the GMON stations, which
measure gamma rays naturally emitted by the Earth and attenuated by the snowpack.
The measuring principle, developed by Choquette et al. [57], converts gamma radiation
measurements into SWE (mm). The station sensors at Necopastic and Upper Yukon are
GMON3 [58] and CS275s [59], respectively, with measurement uncertainties ranging from
±15 mm (for SWE less than 300 mm) to ±15% otherwise. Figure 3a–c depict precipitation,
average air temperature, and SWE time series at the three stations. The evaluation of model
performance excluded days without SWE data.

Table 2. Weather and GMON station metadata. Data for the Necopastic watershed are from Oreiller
et al. [54]; Upper Yukon data were provided by Yukon Energy.

Station Code Period Temporal Resolution Type Basin

Necopastic Meteo_Neco
2006–2011

Daily and hourly
Auto Necopastic

GMON Neco 6 h

Lower
Fantail

Meteo_LF
2014–2017

Daily and hourly
Auto Upper Yukon

GMON LF 6 h

Wheaton
Meteo_W

2014–2017
Daily and hourly

Auto Upper Yukon
GMON W 6 h

Table 3 shows the average temperature and cumulative precipitation for each hydro-
logical year. The fifth year of the Necopastic station appears to be an aberration. However,
the dataset for that year did not account for the summer temperature or precipitation.
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Figure 3. Daily precipitation, average air temperature, and SWE at the three stations.

Table 3. Cumulative precipitations and average temperature for each hydrological year.

Station Data Y1 Y2 Y3 Y4 Y5

Lower Fantail
Years 2014/2015 2015/2016 2016/2017 - -

Precipitation (mm) 643 556 721 - -
Average temperature (◦C) 1.8 1.5 2.0 - -

Necopastic
Years 2006/2007 2007/2008 2008/2009 2009/2010 2010/2011

Precipitation (mm) 803 855 840 819 462
Average temperature (◦C) 2.2 2.3 2.3 2.2 1.7

Wheaton
Years 2014/2015 2015/2016 2016/2017 - -

Precipitation (mm) 525 352 489 - -
Average temperature (◦C) −0.2 0.6 −1.9 - -
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3. Results
3.1. Sensitivity Analyses

The sensitivity analysis was conducted for the three stations. Figure 4 depicts the
relative sensitivity index IVARi,50n for each parameter for both models.

Figure 4. Normalized sensitivity analysis of the monolayer (Mo) and multilayer (Multi) snow model.

Before comparing parameter sensitivity differences between the two models, it is
necessary to evaluate those of the three additional parameters of the Multi snow model.
Notably, St, the new snow layer precipitation threshold, displayed high sensitivity and
requires calibration, while ρmax,l and %air exhibited minimal sensitivity values and could
therefore be set to a constant value prior to calibration. Both Dahe et al. [60] and Nishimura
et al. [61] observed a maximum value of 550 kg.m−3 for ρmax,l . Considering its sensitivity
and range of values set at 250–550 kg.m−3 in the Mo model, it was set to 550 kg.m−3 for
the Multi model. As for %air, it was established as 10% of the snowpack depth in the Mo
model. In the multilayer model MASiN [42], it was set at 8% of the volume of the snowpack
not occupied by the SWE or the liquid water content, with some allowance possible for
values varying between 5 and 10%. Würzer et al. [62] set a value of 3.5% of the snow depth
in the SNOWPACK model. Taking these divergent values into account, %air was set at 10%
of the snowpack height occupied by air in the Multi model.

The most sensitive phenomenon in the Mo model was located at the boundary between
the atmosphere and snow. Two parameters, T0 (the threshold temperature for considering
melt due to radiation) and MRa−s (the degree-day rate of melt due to radiation), are
crucial in this context. SetCoe f (i.e., compression rate) and Ts (threshold temperature
for precipitation partitioning into rain and snow) are insensitive. By incorporating a
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multilayer structure into the model, the significance of Ts is given greater importance while
simultaneously minimizing the relative sensitivity of the boundary phenomenon between
the atmosphere and snow.

Figure 5 illustrates the daily relative sensitivity IVARi,50n of both models at the three
stations. The discontinuity arose from limited data over few years. The parameter factor
space did not allow the Mo model to simulate snow during the summer season, in contrast
to the Multi model.
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Figure 5. Daily relative sensitivity analysis of the monolayer and multilayer models at the (a) Lower
Fantail station, (b) Necopastic station, and (c) Wheaton station.

The seasonal phenomena are highlighted in both models. For the Mo model, the
temperature threshold for separating precipitation (Ts) was quite sensitive early in the
formation of the snowpack. The most significant phenomenon during spring was melting
caused by radiation (MRa−s). As the melting season drew to a close, melting from the soil
became increasingly important (MRs−s). The parameter SetCoe f (settling rate) was also
quite sensitive prior to the melting season, particularly at the Wheaton station.

For the Multi model, variations in sensitivity were less severe but still revealed the
same seasonal phenomena as in the Mo model. However, the new snow layer precipitation
threshold (St) served as a buffer during the melting period.

3.2. Modeling Performances—Validations

Figure 6 depicts the performances of the snow models for the top ten best parameter
sets for the calibration and validation periods at the three GMON stations.

For the Lower Fantail station, the Wilcoxon test indicated no significant difference
(p-value > 0.05) between the median of the models during the “Y23” combination calibration
period, where the first year of data was used for validation, which was the driest and coldest
year. For the remaining combinations, the Multi model improved median performances by
0.021 to 0.033 for the calibration period and by 0.125 to 0.223 for the validation period.

The performances of both models for the Necopastic station did not exhibit significant
differences over the calibration period for combinations “Y1235” and “Y1245”, and over the
validation period for the combinations “Y1234” and “Y1245”. However, during the calibra-
tion period, the Multi model boosted performance by 0.01 to 0.017 of KGE, and during the
validation period, it improved by 0.009 to 0.154. The Mo model improved the performance
by 0.012 for “Y2345” for the calibration period and by 0.012 for the validation period for
“Y1345”. Notably, there was no relationship with annual meteorological characteristics.

Conversely, for the Wheaton station, there was no significant difference between the
models over the validation period for combination “Y12” or “Y23”. However, the Mo model
enhanced the performance by 0.03 for combination “Y13”, which considered the driest and
warmest year for validation. During the calibration period, the Mo model improved the
performance by 0.008 to 0.04.
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Figure 6. KGE values for Mo and Multi models for (a) Lower Fantail, (b) Necopastic, and (c) Wheaton.
In red are the median performances of the top ten best parameter sets. The missing number in each
column corresponds to the year used for validation; for example, Y12 means that year 3 was used
for validation.
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Of the eleven configurations detailed above for the calibration period, there were three
cases where the snow models performed equally. It is important to note that this evaluation
is objective and based solely on performance. The Mo model performed better in four
configurations (with an average gain of 0.019 of KGE), whereas the Multi model performed
better in the remaining four configurations (with an average gain of 0.020 of KGE). The
gains were comparable across the calibration periods. Out of the configurations for the
validation period, there were four cases where the snow models showed no difference. The
Mo model performed better on two configurations (average gain: 0.021 of KGE), whereas
the Multi model performed better on the remaining five configurations (average gain: 0.146
of KGE). The Multi model demonstrated a clear improvement in result consistency over
the validation period.

3.3. Modeling Performances—All Calibrations

In the third part of this paper, calibration was performed using all years. For the
Lower Fantail and Wheaton stations, the results of the Wilcoxon tests rejected the median
equality hypothesis, yielding p-values of 9.8 × 10−3 and 2 × 10−3, respectively (with Multi
median values of 0.95 and 0.92, respectively, and Mo model median values of 0.93 and 0.95,
respectively). Conversely, for the Necopastic station, the medians (Multi: 0.95, and Mo:
0.96) are considered equal, given an 8.4 × 10−2 p-value. Regarding the root mean squared
error (RMSE) and the Nash–Sutcliffe efficiency (NSE), the Wilcoxon test failed to reject the
null hypothesis that the medians are equal. Figure 7 illustrates the calibration performances
(KGE, RMSE, and NSE values) of the top 10 sets of parameters obtained for each model at
the three stations, as well as the coefficients derived from linear regression analysis.

It is evident that the slopes obtained from the Mo model had a narrower range than
those of the Multi model during the snow accumulation (defined as the observed period
between the first day of snow on the ground and the winter peak) and the melt period
(defined as the observed period between the winter peak and the day when the snow cover
has completely melted). Furthermore, the range increased more during the melting period
compared to the accumulation period for each model.

Figure 8 depicts SWE simulations based on the top ten parameter sets for each model
at the Lower Fantail station. Results for the two other stations can be found in Appendix F.

The results show minimal disparities in the optimal performances, with KGE values
consistently exceeding 0.95 for the optimal sets of parameter values. Assessing robustness
through the minimum values of the red interval indicated a similarity for both models.
However, because of their inherent differences, SWE absolute values differed substantially
between models. Notably, the Multi model showed more pronounced seasonal variability
(red interval width), thereby enabling a more precise representation of the first winter peak
at the Lower Fantail station with certain parameter sets, whereas the Mo model failed to
represent adequately the observed SWE profiles.

Similarly, Figure 9 displays the range of snow height and density modeled by the
top ten sets of parameter values for each model. Analyzing the snow height time series is
relevant, as this variable is used for the SWE estimation in both models. The snow height
series was overestimated by the Mo model, whereas the Multi model underestimated them,
except for a few sets of parameters. This resulted in underestimated snow densities by the
Mo model, as opposed to the output of the Multi model. It is evident that the Multi model
overestimated the density during each phase of melting.

The modeled snow height and density time series for the Lower Fantail and Necopastic
GMON stations are presented in Appendix F. Figure 10 shows the KGE values for snow
height and density time series achieved by the top ten sets of parameter values, calibrated
on SWE for both models.



Water 2024, 16, 1089 18 of 37

Figure 7. Modeling performances (KGE, RMSE, and NSE) and average rate of change (i.e., slope)
of SWE during the snow accumulation and melt periods of the top ten sets of parameter values
obtained for the multilayer snow model (Multi) and the monolayer model (Mo) for (a) the Lower
Fantail station (LF), (b) the Necopastic station (Neco), and (c) the Wheaton GMON station (W). In
orange is the median performance. KGE, RMSE, and NSE stand for Kling–Gupta efficiency, root
mean squared error, and Nash–Sutcliffe efficiency, respectively.
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Figure 8. Modeled SWE time series at the Lower Fantail station for the (a) monolayer (Mo) and
(b) multilayer (Multi) models. The red shaded interval shows the range of values provided by the top
ten sets of parameters, with the red line for the best parameter set. The observed SWE time series is
shown in black, while the blue interval depicts the measurement uncertainty.

Although the minimum performances can be considered unsatisfactory for each model,
the median performances indicate that the Multi model more frequently generated physi-
cally accurate simulations (with a KGE around or greater than 0.5), whereas the acceptable
results provided by the Mo model were achieved only by a few sets of parameters. Con-
sequently, the Multi model can offer more parameter sets for SWE, providing satisfactory
performances for snow height, compared to the Mo model. However, it is noteworthy
that during the melting period, the densities of the snowpack layers remained high for the
Multi model, incorporating layers of ice (density of 917 kg.m−3) with thicknesses exceeding
20 cm.

Furthermore, the modeling of freezing rain was of little impact. Out of the ten best
sets of parameter values obtained for each station, only one parameter set modeled this
type of rain for Necopastic, and none for Lower Fantail and Wheaton. More importantly,
during calibration, only 9.6% of the parameter sets accounted for any freezing rain event
for the Necopastic GMON station, and none for the Lower Fantail and Wheaton stations.
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Figure 9. Modeled height and density time series at the Wheaton station for the (a) monolayer (Mo)
and (b) multilayer (Multi) models. The red shaded interval shows the range of values provided by
the top ten sets of parameters, with the red line for the best parameter set. The observed height and
density time series are shown in black.
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Figure 10. KGE values computed from the ten best parameter sets using time series of observed
and modeled snow heights (a) and densities (b) for the Mo and Multi models. In orange is the
median performance.

3.4. Modeling Snowpack Characteristics

Snowpack characteristics derived from the top ten sets of parameter values of each
model were compared in terms of the onset and end dates of the snowpack, as well as
the maximum SWE values and dates. The seasonal discrepancies between the modeled
and observed data were analyzed across the top sets of parameter values in Table 4.
This assessment provides insights into the equifinality of each feature of interest. For
instance, the top 10 parameter sets presented here for each station and model yielded global
KGE values greater than 0.9. However, snow peaks or melting periods may be modeled
differently given the set of parameter values used.

Table 4. Medians of annual differences between observations and snowpack characteristics from the
top ten best sets of parameter values of each model at the three GMON stations.

Station Lower Fantail Necopastic Wheaton

Models Mo Multi Mo Multi Mo Multi

Onset date (days) 3 4 3 3 3 4
End date (days) 8 7 4.5 4 6 1.5

Maximum SWE date (days) 5.5 7 9 11 1 8
Maximum SWE relative difference (%) 17 6.7 11 5.9 8.8 13.2

Both Mo and Multi onset dates showed consistent median deviations of 3–4 days from
the observed data. The end date deviations were similar, except for the Wheaton station,
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where the Multi model showed a 4-day improvement over the Mo model. Comparing with
the Multi model, the maximum SWE dates were better represented with the Mo model by
1.5, 2, and 7 days for the Lower Fantail, Necopastic, and Wheaton stations, respectively.
Notably, the Multi model outperformed the Mo model in representing the maximum SWE,
particularly exhibiting a halved error at the Lower Fantail and Necopastic stations, but
with a higher error at the Wheaton station.

As previously introduced, the Multi model uses a different approach to estimate snow
albedo compared to the Mo model. Mo assumes that the albedo decays with time as a
function of snowpack liquid water content, whereas Multi estimates albedo as a linear
function based on the proportion of ice and air in the top snow layer. Figure 11 illustrates
the albedo values of the top ten best parameter sets for both models for the Wheaton station
(the albedos for the Lower Fantail and Necopastic stations are depicted in Appendix F).
It can be observed that the estimated albedo for the Mo remained consistent across each
parameter set, whereas more variations were observed for Multi. Although both approaches
demonstrate a decreasing albedo over winter, Multi’s behavior was consistent throughout
the winter, except following a snowfall, which could have temporarily increased the albedo
after the new snow blended in the uppermost layer or after adding a new layer. The
decreasing albedo of Mo fluctuated within a certain range during winter until the spring
melt, when it strongly decreased. Finally, the albedo of Multi was greater than that of
Mo because it is calculated for the uppermost snow layer only, whereas Mo considers an
equivalent albedo for the entire snow cover.

Figure 11. Albedo time series modeled by the top ten best sets of parameter values for the Mo model
(pink envelope) and the Multi model (green envelope) for the Wheaton GMON station. The best
parameter sets are depicted by the red and green lines for the Mo and Multi models, respectively.

4. Discussion

This paper has proposed a set of modifications to the monolayer snow model of
HYDROTEL, including the integration of a multilayer structure, estimation of snowpack
properties based on the proportion of ice and air, freezing rain modeling, and changes in
compression and maximum water retention capacity. The modeling was assessed with
respect to SWE modeling and other snow characteristics, such as snow height and density.

The sensitivity analysis indicated that amongst the changes implemented in the Mo
model, the precipitation threshold for adding a snow layer (St) was highly sensitive,
whereas the ratio of the volume of air that can be filled in by water (%air) and the settling
maximum snow-layer density (ρmax,l) were less sensitive. The addition of these parameters
changed the hierarchy of sensitivity of the other parameters. For instance, whereas the melt-
ing temperature threshold at the air–snow interface became less sensitive (To), the melting
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rate sensitivity at this interface (MRa−s) increased. Similarly, the temperature precipitation
threshold temperature (Ts) becoming more sensitive was deemed significant. In addition,
the melting rate at the ground–snow interface (MRs−s) became less sensitive, except for
a slight increase in sensitivity for the Necopastic GMON station. These modifications
rendered the Multi model more sensitive to phenomena at the snow–atmosphere interface.
Furthermore, the melt rate at the snow–ground interface (MRs−s) became generally less
sensitive, emphasizing the influence of the atmosphere on snow melt rather than at the
snow–ground interface. This change in behavior is consistent with observations made by
Lackner et al. [63], who showed that temperature variations within the snowpack exhibit
amplitudes more akin to those in the atmosphere than those at the ground level.

The calibration/validation strategies were based on 22 combinations when examining
their respective periods separately. Among these, seven combinations showed no signifi-
cant difference in performance between models. During the calibration period, increases
in performance did not exceed 0.04. Thus, both models demonstrated similar levels of
performance over this period. However, during the validation period, the Mo model’s
performance did not surpass 0.03, whereas the range of increased performance for the Multi
model varied between 0.046 and 0.223. Notably, there was a subset of four combinations
that exhibited an increase in performance of more than 0.1. Overall, the Multi snow model
demonstrated greater robustness during the validation period compared to the Mo model.
When both models were calibrated using the full datasets, with respect to their relative
performances in reproducing SWE, the results highlighted some very good performances,
with KGE values consistently greater than 0.9. Thus, neither model gained a clear advan-
tage over the other. The reconstruction of precipitation records for the Lower Fantail and
Wheaton stations may have contributed to these performances, providing the appropriate
amount of water to the snowpack on the correct days until the melting period. However,
for the Necopastic station, performances were still good even though precipitation records
were not reconstructed. This suggests that the reconstruction of precipitation does not
necessarily affect the conclusions of this paper. The modifications introduced in the Multi
model made it possible to maintain a level of performance similar to that of the Mo model
while also providing more flexibility for the computation of energy transfer within the
snowpack, as suggested by the sensitivity of the additional parameter (St) on modeled
SWEs. Furthermore, from a hydrological modeling perspective, snowpack melt rates are
crucial for estimating streamflow, especially the maximum SWE, with snowpack heights
being a somewhat secondary objective.

Although SWE modeling performances were comparable, model behaviors for snow
heights were not. The Mo model tended to overestimate snow heights, whereas the Multi
model tended to be consistent with observed heights or even slightly underestimate them.
For the Mo model, the height is used solely to estimate compression while affecting thermal
diffusivity; it can also be adjusted using the calibrated maximum density. In contrast, for
the Multi model, although the height is used for compression, it is also used to compute
snowpack density, which is required for computations of thermal diffusivity, albedo, and
maximum water retention. Since energy transfer by radiation governs snowmelt, a low
albedo increases this transfer. During spring snowmelt, minimizing snowpack height
implies high densities—which is not surprising given that SWE is also equivalent to the
product of snow height and relative snow density—which in return reduces albedo. An
additional indication that simulated densities are larger than what may be observed in
general can be inferred through a comparison reported by Keenan et al. [64] between
simulated and observed density profiles using the SNOWPACK model. The densities they
observed reached values of about 475 kg.m−3 at ground level, whereas the Multi model
formed snow layers limited to 550 kg.m−3, or 917 kg.m−3 for ice layers during the spring
melt, with thicknesses exceeding 20 cm, which is unrealistic. Indeed, these densities are
more akin to those observed for glaciers [65].

The attempt to model freezing rain indicated that this phenomenon seldom occurred
for all the tested parameter sets. Indeed, the required condition that the atmospheric
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temperature near the ground be negative may be too restrictive, and it is emphasized
that atmospheric phenomena must be considered to model this type of precipitation as
effectively as possible. However, it was decided to keep this phenomenon in the model, as
it is a mean of creating snow layers under conditions of temperatures close to 0 ◦C.

The results of this study showed that transforming the Mo model into a Multi model
improves the simulation of the end date of the snowpack as well as the seasonal maximum
SWE, albeit at the expense of the occurrence date. Oreiller et al. [54] considered wind-
induced snow transport as a plausible explanation for SWE discrepancies for the Necopastic
station. This could also be a plausible hypothesis for discrepancies at the other GMON
stations, but that remains to be validated. The different approaches used by the Multi
and Mo models to estimate snow albedo can be interpreted in terms of the location where
phenomena are assessed. For the Mo model, the albedo mimics the distribution of the
radiative heat flux throughout the snow cover. In contrast, the approach used by the Multi
model emphasizes the distribution of this flux throughout the top layer. Furthermore, the
albedo of the Mo model varies within a certain range during winter before decreasing
during the spring melt, whereas that of the Multi model decreases throughout the winter.
Based on observations made by Gray et al. [66] and Stroeve et al. [67], the behavior of the Mo
model albedo is more accurate, but the range of values of the Multi model remains coherent
(albedo > 0.65 during winter). In other words, (i) the Mo albedo is for the whole snow cover;
(ii) the observed albedo is based on upgoing and outgoing radiation measurements, which
depends on the depth of snow penetrated by shortwave radiation; and (iii) the albedo of the
Multi model is assumed to be that of the top snow layer only, regardless of the thickness.

5. Conclusions

The snow model of HYDROTEL is a daily monolayer (Mo) model combining degree-
day and physics-based equations. This paper proposed a multilayer (Multi) alternative,
modifying some of the fundamental equations while preserving the overall computational
structure and limiting the addition of new calibration parameters. These modifications
increased the sensitivity of processes occurring at the atmosphere–snow interface and
the subsequent energy balance of each snow layer, improving the realism of the model.
Although snow heights were overestimated by the Mo model, the Multi model more accu-
rately depicted them, although some underestimation persisted. These underestimations
resulted from the development of excessively dense, thick, and persistent snow layers dur-
ing melting periods. Nonetheless, the vertical density profiles became consistent, with the
densest layers located at ground level. Also, SWE modeling performances were very good
(KGE consistently above 0.9) for both models, with the Multi snow model demonstrating
more robustness during the validation period. By focusing on snowpack characteristics,
the Multi model improved estimations of snowpack end dates and maximum SWE but
compromised the modeled dates of the latter occurrence. These behavioral changes point
towards the potential for improving snowmelt runoff and consequently spring peak flows,
which are ultimately linked to the maximum SWE. As the frequency of the freezing rain
events will, in all likelihood, increase in Eastern Canada given global warming [68], it
would be relevant to find a parsimonious way to model these events. However, given that
it is primarily an atmospheric phenomenon, the challenge remains. As the hydrological
science community is becoming increasingly interested in rain-on-snow events [69–73], the
suggested modifications can be viewed as a first step toward modeling them using the
Multi version of the HYDROTEL snow model. From a structural standpoint, it may be
beneficial to include a basal snow layer to emphasize the thermal discontinuity at ground
level. Moreover, future work will involve integration of the multilayer snow model into
HYDROTEL to evaluate the effect on stream flow modeling.
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Appendix A. Snow Model Characteristics

Table A1. Snow model characteristics.

Model Design Input Data Considered Phenomena Structure/Time
Step Reference

CEMANEIGE Conceptual
- Atmospheric temperature
- Precipitation

- Accumulation
- Melt

Monolayer/
day [74]

HBV Physics-based
Degree-day

- Atmospheric temperature
- Precipitation

- Accumulation
- Degree-day melt
- Latent heat flux

Monolayer/
day [75–77]

SWAT Physics-based
Degree-day

- Atmospheric temperature
(min and max)

- Precipitation

- Accumulation
- Degree-day melt
- Sublimation

Monolayer/
day [78,79]

HYDROTEL Physics-based
Degree-day

- Atmospheric temperature
(min and max)

- Precipitation

- Accumulation
- Compression
- Mixed (radiation and

degree-day melt)
- Precipitation heat
- Soil heat
- Sensible heat flux
- Water retention

Monolayer/
day [28]

VIC Physics-based
Complex

- Atmospheric temperature
- Precipitation
- Relative humidity (may

be estimated)
- Short- to long-wave

radiations (may be
estimated)

- Wind speed

- Accumulation
- Compression
- Precipitation heat
- Turbulent heat flux

(Sensible and latent)
- Radiation
- Water retention

Bilayer/
hourly to daily [80]

CROCUS Physics- based
complex

- Atmospheric temperature
- Precipitation
- Relative humidity
- Short- and long-wave

radiations
- Wind speed

- Accumulation
- Compression
- Heat conduction
- Metamorphism
- Precipitation heat
- Radiations
- Runoff and intra-snow

cooling
- Soil heat
- Sublimation
- Turbulent heat flux

(sensible and latent)
- Wind transport

Multilayer/
hour [81,82]
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Table A1. Cont.

Model Design Input Data Considered Phenomena Structure/Time
Step Reference

MASiN Physics-based
Complex

- Atmospheric temperature
- Precipitation
- Relative humidity
- Wind speed

- Accumulation
- Soil heat
- Cloud cover
- Compression
- Conduction
- Radiation (estimation)
- Turbulent heat flux

(sensible and latent)
- Water retention

Multilayer/
hour [42]

SnowPack Physics-based
Complex

- Atmospheric temperature
- Precipitation
- Relative humidity
- Wind speed and direction

- Accumulation
- Compression
- Conduction
- Turbulent heat flux

(sensible and latent)
- Radiation (estimation)
- Water retention

Multilayer/
10 min to day [83,84]

SNOWPACK Physics-based
Complex

- Atmospheric temperature
- Precipitation
- Relative humidity
- Short- and long-wave

radiations
- Wind speed

- Accumulation
- Compression
- Microstructure
- Precipitation heat
- Radiation
- Runoff
- Subsurface melt
- Surface haze
- Surface melt
- Turbulent heat flux

(sensible and latent)
- Wind erosion
- Wind transport

Multilayer/
hour [31,85,86]

Appendix B. Energy Balance Terms of the HYDROTEL Monolayer Snow Model

The different terms of the energy balance equation of HYDROTEL’s monolayer snow
model are described below.

The heat input from rain, ur, is computed as follows:

ur = ρw

(
C f + Cw

Tmax + Tmin
2

)
R (A1)

where ρw is the density of water (1000 kg.m−3); C f is the latent heat of fusion of water
(335,000 J.kg−1); Cw is the specific heat capacity of water (4184 J.kg−1.◦C−1); Tmin and Tmax
are the minimum and maximum air temperatures (◦C), respectively; and R is the daily
rainfall rate (m.s−1).

The heat input from the ground, us−s, is computed as follows:

us−s = ρwC f
MRs−s

86400
(A2)

where MRs−s is the melting rate at the snow–ground interface (m.day−1), and 86,400 is the
conversion from day to seconds.

The snow heat deficit, us, is computed as follows:

us = ρwCs
Tmax + Tmin

2
S (A3)

where Cs is the specific heat capacity of snow (2093.4 J.kg−1.◦C−1), and S is the daily
snowfall rate (m.s−1).
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Heat loss by conduction and heat gain by radiation are enabled depending on the tem-
perature threshold for radiation heat gain T0. Indeed, if the daily average air temperature is
lower than T0, the conduction heat losses are estimated; otherwise, the heat gain estimation
by radiation is enabled. Heat loss by conduction is estimated using the solution for heat
transfer in a semi-infinite material with air temperature as a Dirichlet boundary condition.
Thermal diffusivity is computed using estimations of the conductivity and depth of snow.
The heat deficit is then updated using the snow temperature resulting from the conductive
heat loss.

The radiation heat input, ua−s, is computed as follows:

ua−s = ρwC f
Mpot

86400
(A4)

where Mpot is the potential melting rate due to radiation (m.day−1), computed as follows:

Mpot = I MRa−s

(
Tmax + Tmin

2
− T0

)
(1 − α) (A5)

where I is a radiation index, MRa−s is the melting rate at the air–snow interface
(m.day−1.◦C−1), and α is the snow albedo.

The radiation index is the ratio of the index for a sloped surface to that of a flat
surface [87]. The snow albedo is computed using the snowpack and fresh snowfall albedos,
accounting for the exponential decay of radiation penetration within the snowpack [28].
The equations are presented in Appendices B and C.

When the snowpack melts, water is retained within the medium and is considered
frozen at the next computational time step. The phase change then warms up the snowpack
as follows:

uac = ρwC f
AR

86400
(A6)

where AR is the water retained within the snowpack of the previous day (m.day−1). It is
computed using Equation (7) from the maximum water retention capacity estimated in
Equation (6).

Appendix C. Radiation Index Equations of the Monolayer Snow Model

θ is the GMON station latitude in radians:

θ =
lat

rad1
(A7)

where lat is the GMON station latitude (◦), and rad1 is the conversion factor from radians
to degrees (≈57.295779513◦.rad−1 = (180◦)/π.rad−1).

k is the slope angle (rad):
k = arctan(slope) (A8)

where slope is the ground slope (rad).
h is the surface azimuth angle (rad):

h =
(495 − 45ori)360

rad1
(A9)

where ori is the ground orientation (1 for east, 2 for north/east, 3 for north, . . ., and 8 for
south/east). Detailed information is available in Rousseau et al. [88].

θ1 is the equivalent slope latitude (rad):

θ1 = arcsin(sin(k) cos(h) cos(θ) + cos(k) sin(θ)) (A10)
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α is the longitude variation between the slope and its horizontal surface:

α = arctan
(

sin(k) sin(h)
cos(k) cos(θ)− cos(h) sin(k) sin(θ)

)
(A11)

e2 is the Sun’s/Earth’s distance to its average on a specific day:

e2 =

(
1 − exc cos

(
day − 4

deg1

))2
(A12)

where exc is the Earth’s orbit eccentricity (=0.01673), day is the Julian day, and deg1
(≈58.1313429644 day.rad−1 = 2π/365.25), 4 January, is the Earth at its perihelion.

ie2 is the solar constant as a function of the Earth–Sun distance (W.m−2):

ie2 =
i0
e2

(A13)

where i0 is the solar constant (=1361 W.m−2).
decli is the solar declination (rad), which is the angle between solar rays and the plane

of the equator:

decli = 0.410152374218sin
(

day − 80.25
deg1

)
(A14)

tampon and tampon1 are the angles (rad) that correspond to the sunshine duration on
a flat surface and on a sloped surface, respectively:

tampon = −tan(θ) tan(decli) (A15)

tampon1 = −tan(θ1) tan(decli) (A16)

durhor is the sunshine duration on a flat surface:

durhor = 0 i f tampom > 1 (A17a)

durhor = 12 i f tampon < −1 (A17b)

durhor =
arccos(tampon)

w
otherwise (A17c)

where w is the Earth’s angular speed (15◦.h−1 =15/rad1 rad.h−1).
durslp is the sunshine duration on a sloped surface:

durslp = 0 i f tampon1 > 1 (A18a)

durslp = 0 i f tampon1 < −1 (A18b)

durslp =
arccos(tampon1)

w
otherwise (A18c)

t1slp and t2slp are the irradiation starting and end times on a sloped ground,
respectively.

t1slp = −durslp −
α

w
(A19a)

t1slp = −durhor i f t1pte < −durhor (A19b)

t2slp = durslp −
α

w
(A20a)

t2slp = durhor i f t2slp > durhor (A20b)

t1hor and t2hor are the irradiation starting and end times on flat ground, respectively.

t1hor = −durhor (A21a)
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t2hor = durhor (A21b)

ij1 and ij2 are the radiation for a flat and a sloped surface, respectively.

ij1 = 0 if t1hor > t2hor (A22a)

ij1 = 3600 ie2

(
(t2hor − t1hor)sin(θ)sin(decli) +

cos(θ)cos(decli)(sin(w t2hor)− sin(w t1hor))

w

)
otherwise (A22b)

ij2 = 0 if t1sip > t2sip (A23a)

ij2 = 3600 ie2

(t2slp − t1slp

)
sin(θ1)sin(decli) +

cos(θ1)cos(decli)
(

sin
(

w t2slp + α
)
− sin

(
w t1slp + α

))
w

 otherwise (A23b)

I is the radiation index.

I =

∣∣∣∣∣ ij2ij1

∣∣∣∣∣ if ij1 ̸= 0 (A24a)

I = 1 otherwise (A24b)

Appendix D. Albedo Equations of the Monolayer Snow Model

wet stands for a wet snowpack:

wet = 1 if R > 0 or T > 0 (A25a)

wet = 0 otherwise (A25b)

where R is rainfall, and T is the snow temperature (relative to the heat deficit).
With snow on the ground:
A maximum snowpack albedo albt+1 is computed relative to the snowfall’s or snow-

pack’s state of humidity.

albt+1 = (1 − exp(−0.5 eqsnow))0.8 + (1 − (1 − exp(−0.5 eqsnow)))

(
0.5 + (alb − 0.5)exp

(
−0.2

pdth
24

(1 + wet)
))

(A26)

where eqsnow is the snowfall water equivalent (mm), alb is the snowpack albedo of the
previous time step, and pdth is the time step’s number of hours.

beta2 is the snowpack radiation penetration exponential decay coefficient.

beta2 = 0.2 if alb < 0.5 (A27a)

beta2 = 0.2 + (alb − 0.5)otherwise (A27b)

alb = (1 − exp(−beta2 stsnow))albt+1 + (1 − (1 − exp(−beta2 stsnow)))0.15 (A28)

where stsnow is the snowpack water equivalent (mm).
Without snow on the ground:

alb = (1 − exp(−0.5 eqsnow))0.8 + (1 − (1 − exp(−0.5 eqsnow)))0.15 (A29)

Appendix E. Relationships between the Densities of Snow, Ice, and Air

The mass of a composite material is that of its constituent elements. The mass of snow
as a mixture of ice and air is computed as follows:

Ws = Wi + Wa (A30)

where Ws, Wi, and Wa are the snow, ice, and air weights (kg), respectively.
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The snow density is estimated for a snow volume that is the sum of the ice and
air volumes.

ρs =
Ws

Vi + Va
=

Wi
Vi + Va

+
Wa

Vi + Va
(A31)

where ρs is the snow density (kg.m−3), and Vi and Va are the ice and air volumes (m3),
respectively.

Per the definition of density, Wi = Viρi and Wa = Vaρa:

ρs =
Vi

Vi + Va
ρi +

Va

Vi + Va
ρa (A32)

where ρi and ρa are the ice and air densities (kg.m−3), respectively.
This equation then shows that by considering snow a composite material, its density

can be related to the densities of ice and air, with coefficients corresponding to the respective
proportions. In general, this amounts to considering that there is the following relationship:

ρs = Aρi + Bρa (avec A + B = 1) (A33)

Since the volumes of ice and air are not explicitly estimated in the snow models
proposed in this paper, and knowledge of the volumetric proportions A and B is necessary,
an alternative method must be used:

ρs = Aρi + (1 − A)ρa (A34)

Thus, the volumetric proportion of ice A in the snow can be estimated from equation
A + B = 1 as follows:

A =
ρs − ρa

ρi − ρa
(A35)

Thus, the volumetric proportion of air B in the snow can be estimated from equation
A + B = 1; that is:

B =
ρi − ρs

ρi − ρa
(A36)

Thus, the knowledge or estimation of the densities of ice, air, and snow enables
the derivation of the volumetric proportions of ice and air within the snow from
Equations (A35) and (A36), respectively.

Appendix F. Results

Figure A1. Cont.
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Figure A1. Modeled SWE series at the Wheaton station (W) for the (a) monolayer (Mo) and (b) mul-
tilayer (Multi) models. The red shaded interval shows the range of values provided by the top ten
sets of parameters values. The observed SWE time series is shown in black, while the blue interval
depicts the measurement uncertainty.

Figure A2. Modeled SWE series at the Necopastic station for the (a) monolayer (Mo) and (b) multilayer
(Multi) models. The red shaded interval shows the range of values provided by the top ten sets of
parameters values. The observed SWE time series is shown in black, while the blue interval depicts
the measurement uncertainty.
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Figure A3. Modeled height and density series at the Lower Fantail station (LF) for the (a) monolayer
(Mo) and (b) multilayer (Multi) models. The red shaded interval shows the range of values provided
by the top ten sets of parameters values. The observed height and density time series is shown
in black.
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Figure A4. Modeled height and density series at the Necopastic station for the (a) monolayer (Mo)
and (b) multilayer (Multi) models. The red shaded interval shows the range of values provided by
the top ten sets of parameters values. The observed height time and density series is shown in black.
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Figure A5. Albedo time series modeled by the top ten best sets of parameter values for the Mo model
(pink envelop) and the Multi model (green envelop) for the (a) Lower Fantail and (b) Necopastic
GMON stations. The best parameter sets are depicted by the red and green lines for the Mo and Multi
models, respectively.
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