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Abstract: This study employed an advanced geospatial methodology using the Google Earth Engine
(GEE) platform to assess soil erosion in the Satluj Watershed thoroughly. To achieve this, the Revised
Universal Soil Loss Equation (RUSLE) model was integrated into the study, which was revealed
through several analytical tiers, each with a unique function. The study commenced with estimating
the R factor, which was carried out using annual precipitation data from the Climate Hazards Group
Infra-Red Precipitation with Station (CHIRPS). The erodibility of the soil, which the K factor describes,
was then calculated using the USDA soil texture classifications taken from the Open Land Map. The
third layer emphasizes the LS factor, which analyzes slope data and how they affect soil erosion
rates, using digital elevation models. To understand the impact of vegetation on soil conservation,
the fourth layer presents the C factor, which evaluates changes in land cover, and the Normalized
Difference Vegetation Index (NDVI) derived from Sentinel-2 data. The P factor incorporates MODIS
data to assess the types of land cover and slope conditions. Combining these layers with the RUSLE
model produces a thorough soil loss map, revealing different levels of soil erosion throughout the
Satluj Watershed. The preliminary findings indicate that 3.3% of the watershed had slight soil loss,
0.2% had moderate loss, and 1.2% had high soil erosion rates. And 92% had severe rates of soil erosion.
After a thorough investigation, the detected regions were divided into risk classifications, providing
vital information for the watershed’s land management and conservation plans. The mean soil loss
throughout the watershed was determined to be 10,740 tons/ha/year. This novel method creates a
strong foundation for evaluating soil erosion, while also highlighting the value of the cloud-based
geospatial analysis and the RUSLE model in comprehending intricate environmental processes.

Keywords: geospatial methodology; soil erosion assessment; RUSLE; remote sensing; erodibility; LS
factor; C factor; P factor; risk classification; land management
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1. Introduction

Soils are an essential component of earth system functions that facilitate the supply
of essential ecosystem services [1]. Soil erosion, a complex and dynamic environmental
process, poses a profound threat to the sustainability of agricultural landscapes and the
health of watershed ecosystems. An accurate and comprehensive assessment of soil erosion
is pivotal for implementing effective land management practices [2]. Soil erosion is a
significant issue that occurs as a result of increased agricultural activity, the deterioration
of land, and other human activities. Evaluating soil erosion is valuable for the purpose
of strategizing and implementing conservation efforts within a watershed or basin [3].
The adverse impacts of this activity include land degradation, declining water quality,
river sedimentation, and road destruction [4]. Soil erosion and surface runoff contribute to
sediment transport into streams, resulting in offsite issues such as an increased risk of floods,
reduced river capacity, compromised watershed resilience, and elevated maintenance
costs [5]. The Satluj Watershed in India is experiencing a problem of reduced storage
capacity due to increasing sediment deposition [6]. These water bodies are essential for
irrigation, water supply, power generation, flood control, and supporting surrounding
communities’ livelihoods and ecological functions [7]. Human activities in semi-arid areas
have altered natural river basins, making sustainable water and land management practices
essential [8]. Preventing soil erosion requires efficient conservation techniques and a
thorough understanding of erosion [9]. Soil erosion models are valuable instruments that
decision makers and stakeholders can utilize to address soil erosion issues and implement
soil protection measures [10]. Dargiri and Samsampour’s (2023) study addressed the impact
of modern agriculture on soil erosion, comparing qualitative, statistical, and modeling
methods for risk assessment, enhanced by GIS technology. It emphasizes the advantages of
soil erosion modeling over traditional methods, highlighting its efficiency and flexibility.
The focus then shifts towards evaluating wind erosion models to predict and manage
affected areas efficiently [11]. Hsieh et al. (2009) introduced a mesh-bag (MB) method,
which is a sensitive approach to quantify soil erosion and nutrient movement directly in
the field. This technique involves placing mesh bags on the soil surface to capture eroded
soil, while allowing for water to pass through. Its effectiveness, validated against the
runoff plot method, shows a strong correlation in measuring soil erosion on slopes. The
method is particularly accurate on plots with less steep slopes or larger areas. The MB
method, unaffected by mesh bag size, offers valuable insights into the patterns of soil
erosion and nutrient distribution, promising the improved management of agricultural and
natural landscapes [12]. Raza et al. (2021) evaluated 51 models for their effectiveness in
dynamic soil erosion assessments, focusing on applications within complex agricultural
systems such as patch and strip cropping, and agroforestry. It emphasizes the limitations
of current models in capturing multidimensional soil erosion processes and suggests the
integration of soil erosion modules within modular platforms like SIMPLACE, coupled
with GIS capabilities, for enhanced 2D/3D flux and sedimentation simulations. The review
calls for advancements in models to accurately represent horizontal matter transfers, vital
for precise sedimentation process predictions [13]. DAS et al. (2020) integrated RUSLE and
AHP with geospatial technology to model soil erosion in West Kameng, India, revealing
average erosion rates of 124.21 t/ha/yr. Their results showed that 57.71% of the area is
moderately to highly vulnerable, highlighting the urgent need for control measures [14].

Avand et al. (2023) combined empirical and AI models, notably the RUSLE and
machine learning algorithms like Random Forest, to predict soil erosion in Iran’s Talar
Watershed. They analyzed thirteen factors, such as slope and rainfall, finding Random
Forest to be the most accurate in identifying erosion risks. This method enhances the
identification of erosion hotspots in data-scarce areas [15].

The RUSLE model, renowned for its effectiveness in estimating soil erosion risk,
considers a suite of influential factors, including rainfall, soil characteristics, topography,
land use, and cover management practices [16]. Integrating such factors on a regional
scale requires substantial computational power and data-handling capabilities, challenges



Water 2024, 16, 1073 3 of 18

effectively addressed by cloud-based platforms like GEE. The methodology is designed
to be both comprehensive and scalable, enabling researchers to conduct efficient and
reproducible soil erosion assessments.

Moreover, this research introduces a unique dimension to soil erosion analysis by
estimating total soil loss and classifying erosion severity across the Satluj Watershed. An
erosion-severity classification scheme enhances the spatial understanding of soil erosion
dynamics, allowing for more targeted and context-specific land management strategies [17].
To improve the accessibility and applicability of the research, the article provides code
snippets for exporting RUSLE factors, soil loss maps, and erosion severity classifications
from GEE to external platforms. This transparency facilitates a deeper understanding
of the research methodology and encourages collaboration and the adoption of similar
approaches in diverse geographical regions.

Several models have been developed to assess soil loss but have limitations [18]. The
Universal Soil Loss Equation (USLE) is an empirical model often used but has difficulty
predicting large-scale or event-based soil erosion [19]. To address this, the RUSLE was
developed and has become essential for predicting soil erosion on a broader scale [19].
In water resource management, it is crucial to prioritize the computation of soil erosion
and sediment deposition in reservoirs and hydropower systems. To do this, a geospatial
approach using GEE was adopted to compute the loss of storage capacity and sedimentation
in the Yeldari reservoir. Thematic layers derived from refined and integrated data collected
from various sources are overlaid in a GIS environment. Integrating remote sensing, GIS,
and RUSLE models provides a comprehensive analysis to assess the impact on storage
capacity and sedimentation in the reservoir. The GEE platform offers a practical toolkit for
extensive environmental analyses, aligning this strategy with the growing importance of
the cloud-based geospatial analysis.

The study adeptly integrates the RUSLE model with the GEE platform to assess soil
erosion in the Satluj Watershed, showcasing the innovative use of cloud-based geospatial
analysis. However, the research gap lies in the comparative analysis with other emerg-
ing technologies and methodologies for soil erosion assessment. While it advances the
application of RUSLE within a cloud-based framework, how this integration compares
to or could be enhanced by incorporating other advanced technologies, such as machine
learning algorithms or artificial intelligence (AI) for improved prediction accuracy, remains
underexplored. Additionally, the study highlights a significant area for future research
in evaluating the effectiveness of proposed land management strategies informed by this
model, assessing their real-world applicability and sustainability over time. This gap un-
derscores the potential for developing more nuanced, technology-driven approaches to soil
erosion assessment and management, fostering a deeper understanding of their practical
implications and effectiveness in diverse geographical and environmental contexts.

This study involved an innovative and detailed exploration of soil erosion by integrat-
ing the RUSLE model with the advanced capabilities of cloud-based geospatial analysis,
explicitly leveraging the GEE platform. Focusing on the Satluj Watershed, this study in-
troduces a robust methodology that harnesses the extensive datasets and computational
resources provided by GEE for large-scale environmental analyses. This study aimed to
provide valuable insights into soil erosion patterns, quantify sedimentation rates, and
classify erosion severity in the Satluj Watershed. Utilizing cloud-based geospatial analysis,
the research contributes to sustainable water and land management practices tailored to
the Satluj Watershed’s unique characteristics.

2. Materials and Methods
2.1. Study Area

The Satluj Watershed, shaped by the Satluj River, is an essential geographical feature
in Northern India. It is a crucial component of the more extensive Indus River system and
spans multiple states, including Punjab and Himachal Pradesh. The region is known for
its varied topography: high plateaus, vast plains, and mountainous areas. The Himalayan
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Mountain range dominates the higher portions of the Satluj Watershed, causing notable
height variations in the region [20]. This geographical diversity results in a wide range of
climatic conditions, from subtropical climates in the lower plains to alpine temperatures
in the higher elevations. The complex network of tributaries and sub-basins within the
watershed influences the hydrological dynamics and contributes to the overall ecolog-
ical richness of the area. The Satluj Watershed is significant because it is an important
agricultural region with significant hydrological significance [21]. The rich plains around
the Satluj River support much agriculture, significantly boosting the economy. However,
environmental factors such as precipitation patterns, soil properties, and land-use practices
can lead to problems such as soil erosion, which can negatively impact ecosystem health
and agricultural output. Growing human activity, such as urbanization, deforestation, and
agricultural expansion, may significantly impact the hydrology and biological balance of
the Satluj Watershed. Therefore, comprehensive research utilizing a cloud-based geospatial
analysis and the RUSLE model becomes essential. Sustainable land-use practices must be
implemented to manage the Satluj Watershed effectively and preserve this crucial natural
resource. Understanding soil erosion dynamics is critical for achieving this goal. The study
area’s geographic map is shown in Figure 1, providing an idea of the study’s comprehensive
coverage in Himachal Pradesh in Northern India.
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2.2. Materials and Methods

The study employed a Google Earth Engine (GEE)-based approach to estimate Average
Annual Soil Loss (A) using the RUSLE. Various factors, including rainfall–runoff erosivity
(R), soil erodibility (K), slope length (L), slope steepness (S), cropping management (C),
and supporting conservation practices (P), were integrated using thematic layers derived
from satellite imagery and environmental datasets. Rainfall erosivity (R) was determined
based on long-term precipitation data. Soil erodibility (K) was estimated through GEE, con-
sidering specific soil types for the Satluj Watershed. The LS factor, cropping Management
(C), and supporting conservation practices (P) were computed using GEE and satellite
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data. The study also incorporated the Normalized Difference Vegetation Index (NDVI)
into the cover and management (C) factor calculation, accounting for seasonal variations
in vegetation cover. The slope of the terrain was considered a key factor. The GEE-based
methodology provided a spatially explicit understanding of soil erosion potential across the
Satluj Watershed, emphasizing scalability, efficiency, and accuracy in handling large-scale
geospatial data for soil erosion modeling. The results contribute insights for sustainable
land management practices in the region, considering diverse factors influencing soil
erosion susceptibility—methodology. The flowchart is shown in Figure 2.
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2.2.1. RUSLE Thematic Maps Computation

To estimate the average annual soil loss per unit area (A) in the context of our
Google Earth Engine (GEE)-based study, we utilize the RUSLE, represented by the primary
Equation (1):

A = R × K × L × S × C × P (1)

A: Average annual soil loss per unit area (ton ha−1 yr−1).
R: Rainfall–runoff erosivity factor (MJ mm ha−1 h−1 yr−1).
K: Soil erodibility factor (ton ha hr MJ−1 ha−1 mm−1).
L: Slope length factor (dimensionless).
S: Slope gradient factor (dimensionless).
C: Cropping management factor (dimensionless, ranging between 0 and 0.5).
P: Supporting conservation practice factor (dimensionless, ranging between 0 and 1).
This GEE-based methodology integrates geospatial layers derived from satellite im-

agery and environmental datasets. The factors R, K, L, S, C, and P are each represented
by corresponding thematic layers and processed and analyzed using the Google Earth
Engine platform. The outcome provides a spatially explicit understanding of soil ero-
sion potential across the study area, contributing valuable insights for sustainable land
management practices.

2.2.2. Rainfall Erosivity (R) Factor

In our GEE-based study, the rainfall erosivity (R) factor plays a crucial role in influenc-
ing the soil erosion potential. Rainfall intensity is a key determinant of soil erosion [22].
Sheet and rill erosion, often induced by high runoff flow, is intensified by increased rainfall
rates and larger drop sizes, accelerating soil particle dissolution [23]. Monthly rainfall
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data spanning 20 years (2001–2021) were employed to quantify R. The adopted equation is
widely used by researchers globally [24].

R = 79 + 0.363 × P (2)

where R represents the rainfall erosivity factor (MJ mm ha−1 h−1/y), and P is the annual
rainfall (mm). The spatial distribution of the rainfall erosivity factor was derived using
the Kriging interpolation method within the GEE environment. We utilized diverse data
sources, including satellite-based precipitation data, and employed the Google Earth Engine
platform for spatial analysis and interpolation. The dataset incorporated information
from 17 rain gauge stations within and around the study area, enabling a comprehensive
representation of the regional rainfall erosivity pattern.

2.2.3. Soil Erodibility (K) Factor

The “soil erosion factor” (K) plays a crucial role in evaluating the inherent vulnerability
of soil to erosion caused by rainwater and runoff [25]. This factor relies on various soil
characteristics encompassing mineralogical, physical, chemical, and morphological features.
K quantifies soil loss per unit of erosive energy from rainfall, with the reference condition
being a standardized plot of clean bare soil with a 9% slope and a length of 22 m. In
this study of the Satluj Watershed, we employed Cloud-Based Geospatial Analysis using
the Google Earth Engine (GEE) platform to estimate the K factor. We utilized soil types
and texture maps specific to the Satluj Watershed. The assignment of K-factor values was
informed by soil-type data and insights from relevant studies, including [25]. Within the
Satluj Watershed, we identified four distinct soil classes, each associated with specific
K-factor values. These numerical values range from 0 to 1, with higher values indicating a
greater susceptibility to soil erosion. Leveraging the capabilities of Google Earth Engine
enables us to conduct geospatial analyses efficiently, providing a robust and scalable
approach to estimate the K factor tailored to the Satluj Watershed. This approach considers
local variations and characteristics, accurately representing soil erosion factors within our
specific study area.

2.2.4. Topographic (LS) Factor

The LS factor, a crucial component in assessing soil erosion rates, integrates slope
length (L) and slope steepness (S) into a unified index [26]. While the L factor accounts for
the impact of slope length on erosion by considering the distance from the runoff initiation
point to the deposition area, the S factor reflects the influence of steepness on soil erosion,
standardized at a length of 22.1 m and a steepness of 9%. To compute the LS factor, ASTER
(GDEM) satellite data with a spatial resolution of 30 m are utilized to generate a digital
elevation model (DEM). The calculation of the LS factor involves filling sinks in the DEM
and applying Equation (3):

LS = (Flow accumulation × Cell Size/0.0896)0.4 × (sinSlope/0.0896)1.3 (3)

where LS represents the combined slope steepness factor and slope length, the grid or DEM
resolution is denoted as Cell Size, and the slope angle is referred to as sinSlope [27]. Flow
accumulation, integral to the LS factor computation, quantifies the total upstream area
draining into each DEM grid cell, indicating the potential for water flow and erosion within
specific regions. Higher flow accumulation values correspond to increased runoff potential
and greater susceptibility to erosion, providing essential insights for prioritizing erosion
control measures within the watershed or similar regions.

2.2.5. Land Cover (C) Factor

The land cover (C) factor is contingent on land use and is notably susceptible to
human influence to mitigate erosion [28]. Calculating the land cover factor across a large-
scale watershed can be challenging due to spatial variation and complexities in land
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cover patterns. Satellite-based data, specifically 10m resolution land use and land cover
(LULC) data from Google Earth Engine (GEE), were employed to address this. The LULC
classification for the study area was executed using a supervised image classification
approach based on the maximum likelihood algorithm within the GEE platform. This
method necessitates ground truth verification for each LULC class. The entire study area
was classified into five major LULC classes: agricultural land, barren land, built-up area,
vegetation, and water bodies. The overall accuracy assessment achieved an accuracy of
approximately 87.39%. Each LULC class was assigned C values ranging from 0 to 1, where a
lower C suggests minimal soil loss and a value approaching 1 indicates higher susceptibility
to soil loss. This approach leverages the geospatial analysis capabilities of Google Earth
Engine, offering a more efficient and scalable method for land cover classification and factor
assignment in the Satluj Watershed.

2.2.6. Conservation Practice (P) Factor

The conservation practice (P) factor shows both the effectiveness of management
practices in reducing soil erosion through elements like vegetation, biomass on the soil, and
runoff control, as well as the rate of soil loss, as determined by conservation practices. The
RUSLE incorporates the P factor, representing the combined influence of land cover, support
practices, land use, slope length, and custom adjustments on soil erosion. We use GEE’s
capabilities for scalable and remote sensing-driven analyses to adapt this methodology to a
Google Earth Engine (GEE)-based approach. In GEE, we calculate the P factor by defining
a function that extracts relevant bands or properties for cover (C), support practices (M),
land use (L), slope length (S), and custom adjustments. Applying the RUSLE formula
pixel-wise, we combine image collections for each factor and generate a P-factor image.
This image is then visualized on the map using GEE. The scalability and remote sensing
capabilities of GEE enhance the efficiency of processing large-scale geospatial data, allowing
for a comprehensive assessment of soil erosion susceptibility. Ensuring that the GEE
environment includes the necessary image collections and bands for accurate P-factor
calculations is crucial. The ultimate goal is to leverage this GEE-based approach for
informed decision-making in land management, minimizing the P factor and promoting
sustainable practices to reduce soil loss.

2.2.7. Normalized Difference Vegetation Index (NDVI)

The Normalized Difference Vegetation Index (NDVI) is a widely used vegetation index
that quantifies the amount and health of vegetation based on the contrast between near-
infrared (NIR) and red-light reflectance [29]. In estimating soil loss, NDVI is a valuable
indicator of vegetation cover, influencing the cover and management (C) factor in the
USLE [30]. Here is the individual methodology for integrating NDVI into the soil loss
estimation process using Google Earth Engine (GEE). Analyze the NDVI values over
multiple periods to capture seasonal variations in vegetation cover using Equation (4).

NDVI = (NIR − Red)/(NIR + Red) (4)

Different seasons may exhibit distinct NDVI patterns, influencing the overall C fac-
tor. Incorporate NDVI into the C-factor calculation of the RUSLE. A higher NDVI value
corresponds to denser and healthier vegetation, resulting in a lower C factor. Modify the
C-factor calculation as Equation (5):

CNDVI = Cbase × (1 − NDVI) (5)

Here, Cbase represents the base C factor without considering the NDVI.
Combine the NDVI-based C factor with other factors (M, L, S, and custom adjustments)

in the USLE equation for comprehensive soil loss estimation:

P = (CNDVI × M × L × S × PCustom/100) (6)
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In this Equation (6), PCustom stands for custom adjustments made to particular
circumstances or factors that affect soil loss in addition to the conventional parameters
(C, M, L, and S). The USLE equation acquires flexibility to take into account additional
site-specific variables, such land management techniques, soil conservation measures,
or localized environmental circumstances, that may effect soil erosion. This flexibility
is achieved by integrating PCustom into the model in addition to the NDVI-based C
component. Com-prehensive soil loss assessment is made possible by integrating PCustom
and the NDVI-based C factor with other variables (M, L, and S) in the USLE equation.
Apply the approach in GEE by choosing and sifting through satellite photos, figuring
out the NDVI, and incorporating the NDVI-based C component into the total P-factor
computation. Make use of GEE’s scalability to manage massive amounts of geographical
data and gradually automate the procedure. The model is made more sensitive to variations
in plant cover by adding NDVI to the soil-erosion calculation methodology. This gives
important insights into how vegetation reduces soil loss and promotes sustainable land
management techniques.

2.2.8. Slope

The slope of the terrain plays a fundamental role in estimating soil loss, serving as a
critical factor in the RUSLE. The steepness of the land surface directly influences the erosive
potential of water runoff, as steeper slopes enhance the force of rainfall, accelerating surface
runoff and contributing to soil detachment and transport. The slope length–slope steepness
(LS) factor in the RUSLE accounts explicitly for the combined influence of slope length and
steepness on soil erosion, providing a quantitative measure of erosion susceptibility. The
visualization and classification of slope maps aid in identifying areas with varying degrees
of steepness, guiding in identifying regions at higher risk of erosion. Integrated with factors
such as rainfall erosivity (R factor) [31], soil erodibility (K factor), land cover (C factor),
and land use and management practices (P factor) in the RUSLE framework, the slope
ensures a comprehensive assessment of soil loss. Understanding slope dynamics is crucial
for implementing targeted conservation and land management practices, especially for
steep slopes, and facilitates sustainable land use planning. Validation of slope calculations
ensures the accuracy of its contribution to soil erosion modeling, supporting reliable
estimations of erosion susceptibility across the study area.

3. Results
3.1. Topographic (LS) Factor

The LS factor, an integral component of the soil erosion assessment, combines the
effects of slope length and steepness to influence the overall soil erosion rate. The computa-
tion of the LS factor, as per Equation (3), reveals a notable spatial heterogeneity within the
Satluj Watershed, mirroring the region’s diverse topography. Elevated LS values pinpoint
areas with steeper slopes and extended flow lengths, indicating heightened susceptibility
to soil erosion. The LS factor map in Figure 3 is a valuable tool that delineates specific
regions warranting focused attention for erosion control and conservation initiatives. The
pronounced spatial variability emphasizes the need for tailored soil management strategies,
considering the distinct LS factor values, to address soil erosion concerns effectively and
promote sustainable land use practices across the Satluj Watershed.
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3.2. Land Cover (C) Factor

The Sentinel 2 imagery analysis identified eight major land-use classes in the study
area, each contributing to the overall land cover (C) factor that ranges from 0 to 1, signifying
the potential for soil erosion. Table 1 below outlines the specific areas corresponding to
each land-use class:

Table 1. Land use and land cover area.

Class Name Area in Hectare

Shrubland 5487.32
Grassland 266,070.68
Cropland 25,520.39
Built-up 6037.37

Bare/sparse vegetation 244,650.11
Snow and ice 55,688.06

Permanent water bodies 15,695.61
Herbaceous wetland 299.98

Different land-use classes within the analyzed area have different potential degrees of
soil erosion, according to the analysis. Remarkably, the classes of bare/sparse vegetation,
grassland, and cropland exhibit the greatest erosion susceptibility. On the other hand,
built-up regions and scrublands provide relatively lesser hazards of erosion. A thorough
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understanding of land-use classes and the risk for erosion they represent is essential for
both planning land use and implementing sustainable agriculture techniques that reduce
soil erosion. A useful tool for determining locations with different potentials for erosion
is the C-factor map, which is shown in Figure 4. This makes it easier to establish focused
strategies for soil conservation. This increases the efficacy of erosion control methods and
promotes long-term environmental sustainability by ensuring that soil conservation efforts
are effectively focused on places where they are most needed.
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3.3. Conservation Practice (P) Factor

The conservation practice (P) factor was estimated using the empirical equation pro-
posed by resulting in values between 0 and 1 [32]. Lower P values, representing more
effective conservation practices, were generally found in areas with gentler slopes and
well-managed agricultural land. However, areas with steep slopes and less effective con-
servation practices showed higher P values, indicating an increased risk of soil erosion.
The spatial distribution of the P factor in Figure 5 can guide the implementation of erosion
control measures and the enhancement of existing conservation practices.
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3.4. Soil Erodibility (K) Factor

The soil erodibility (K) factor represents the susceptibility of soil particles to detach-
ment and transport by rainfall and runoff. Several soil properties, including texture,
structure, organic matter content, and permeability, determine it. Using the RUSLE model,
GIS tools, and satellite imagery, our analysis allowed us to compute the K factor for the
entire Satluj Watershed. The K factor demonstrated spatial variability, indicating the het-
erogeneous nature of soil properties across the watershed. Areas with high K values
represented soils with high erodibility, typically associated with poor structure, low organic
matter content, and high silt or acceptable sand content. Conversely, areas with low K
values indicated soils more resistant to erosion, often characterized by high organic matter
content; a good soil structure; and higher proportions of coarse sand, silt, and clay. The
K-factor map in Figure 6 highlights the spatial distribution of soil erodibility across the
watershed, showing regions that are more prone to erosion and would require priority
attention for soil conservation efforts. By integrating the K factor into the RUSLE model, we
obtained a more comprehensive picture of soil erosion rates and their distribution within
the watershed. This knowledge is crucial in designing and implementing effective erosion
control measures that consider the specific characteristics and credibility of the local soils.



Water 2024, 16, 1073 12 of 18

Water 2024, 16, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 6. Soil erodibility (K) factor map. 

3.5. Analysis of NDVI 
Significant insights into vegetation dynamics can be gained from the quantitative ex-

amination of the Satluj Watershed’s NDVI (Normalized Difference Vegetation Index). The 
NDVI, a measure of vegetation greenness, indicates the health and density of the vegeta-
tion cover. Denser and healthier vegetation was represented by higher values in the NDVI 
range from 0 to 0.85. Different vegetation densities were found throughout the watershed, 
according to the research. Richly vegetated areas are indicated by greater NDVI values, 
while areas closer to 0 are considered sparse or barren land. Water bodies, woods, and 
agricultural regions all have different NDVI signatures, and the distribution of NDVI val-
ues can be linked to land cover patterns and land use. It is possible to follow the health of 
the vegetation, identify regions that are vulnerable to deterioration, and evaluate the ef-
fects of land management techniques by tracking changes in the NDVI over time. The 
Satluj Watershed’s sustainable land use planning and conservation activities are greatly 
aided by the quantitative NDVI study, which provides valuable insights into the spatial 
distribution of vegetation. Figure 7 shows the Normalized Difference Vegetation Index 
(NDVI). 

Figure 6. Soil erodibility (K) factor map.

3.5. Analysis of NDVI

Significant insights into vegetation dynamics can be gained from the quantitative
examination of the Satluj Watershed’s NDVI (Normalized Difference Vegetation Index).
The NDVI, a measure of vegetation greenness, indicates the health and density of the
vegetation cover. Denser and healthier vegetation was represented by higher values in
the NDVI range from 0 to 0.85. Different vegetation densities were found throughout the
watershed, according to the research. Richly vegetated areas are indicated by greater NDVI
values, while areas closer to 0 are considered sparse or barren land. Water bodies, woods,
and agricultural regions all have different NDVI signatures, and the distribution of NDVI
values can be linked to land cover patterns and land use. It is possible to follow the health of
the vegetation, identify regions that are vulnerable to deterioration, and evaluate the effects
of land management techniques by tracking changes in the NDVI over time. The Satluj
Watershed’s sustainable land use planning and conservation activities are greatly aided by
the quantitative NDVI study, which provides valuable insights into the spatial distribution
of vegetation. Figure 7 shows the Normalized Difference Vegetation Index (NDVI).
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3.6. Soil Loss

The Satluj Watershed’s assessment of soil loss indicates different classes with differing
degrees of susceptibility: slight, moderate, high, very high, and severe. Very little erosion
in the 1980 hectares makes up the watershed’s 3.3% of regions with slight soil loss. Ap-
proximately 0.2% of the watershed, or 120 hectares, falls into the moderate class, which
indicates somewhat elevated soil loss and calls for focused conservation efforts. While
very high soil loss locations (3% of the watershed, or 1800 hectares) demand immediate
attention, high soil loss areas (1.4% of the watershed, or 840 hectares) call for extensive
erosion control methods. In total, 92% of the watershed (55,200 hectares) is in the severe
class, which dominates the landscape and shows significant soil loss (Table 2). This high-
lights the urgent need for timely and well-planned erosion control activities. The results
offer insightful information that will help land managers and policymakers prioritize and
customize conservation activities according to the unique features of each soil loss class,
guaranteeing sustainable land use and environmental preservation in the Satluj Watershed.
The findings of the study are presented in the table and maps. The result showed that the
annual soil loss rate of the watershed ranged from 0 to 1, with a mean soil loss per year.
The result indicates that the entire watershed was lost within the last 50 years, with about
0135 tons of soil annually from the total catchment area. Based on the results, the watershed
was categorized into five classes of erosion: slight, moderate, high, very high, and severe,
as shown in Figures 8 and 9, indicating the area covered by each severity class.
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Table 2. Area covered by each severity class.

Sr. No. Class Area (ha) Area (%)

1 Slight 1980 3.3
2 Moderate 120 0.2
3 High 840 1.4
4 Very high 1800 3
5 Severe 55,200 92

4. Discussion

The Satluj Watershed stands as a critical focal point for the examination of soil erosion
dynamics, necessitating an integrated approach to land-use planning and the formulation
of conservation policies. The foundation of informed decision-making for soil erosion
control and the promotion of sustainable land use within this vital region is predicated
on a comprehensive analysis of several key determinants. Paramount among these is
the topographic (LS) factor, which elucidates the erosion vulnerability of specific locales
through an amalgamation of slope length and steepness data. This essential information
steers conservation efforts towards the most imperiled areas, underscoring the importance
of slope analysis (LS) in the strategic design of erosion management interventions. Specifi-
cally, regions characterized by steeper inclines or elongated slopes are identified as having
heightened susceptibility to erosion, necessitating prioritized attention.

The analytical process is further refined by examining the land cover (C) factor, which
segregates the watershed into distinct primary land-use categories. This segmentation
reveals that areas with minimal or sparse vegetation bear the brunt of erosion risks. Such
delineation enables the implementation of targeted conservation strategies, allowing for
focused efforts on land-use categories that are most vulnerable. The evaluation of the
effectiveness of existing conservation strategies through the conservation practice (P)
factor plays a pivotal role in guiding the enhancement and optimization of erosion control
measures [33].

Adding another layer to this multifaceted analysis, the soil erodibility (K) factor sheds
light on the heterogeneity of soil attributes across the watershed. A nuanced understanding
of the diverse erosion susceptibilities of soils is critical for the prioritization and customiza-
tion of conservation measures, ensuring that interventions are appropriately tailored to
address the specific vulnerabilities of various soil types.

Moreover, the integration of NDVI data into the study provides invaluable insights
into the health of vegetation within the watershed, underscoring the protective role of
dense vegetation against soil erosion [34]. This inclusion facilitates the advancement of
sustainable land-use planning strategies, informed by the robust analysis of vegetative
cover’s resilience and the terrain’s physical characteristics.

The ramifications of soil erosion extend far beyond the immediate degradation of soil
quality, impacting agricultural productivity, food security, aquatic ecosystems, and water
quality through sedimentation processes [35,36]. The adverse effects of soil erosion are man-
ifold, encompassing the diminution of topsoil quality, detrimental impacts on agricultural
yield, disruptions to aquatic life and habitats, and exacerbated global warming effects due
to reduced soil carbon sequestration capacities [37]. Additionally, the infrastructure within
human communities, particularly in areas prone to landslides and mudflows triggered by
soil erosion, faces significant risks, underscoring the broader societal and environmental
stakes involved [38].

Given the extensive implications of soil erosion within the Satluj Watershed, there
emerges an unequivocal need for meticulously conceived erosion control measures and
bespoke conservation initiatives. The watershed and its environs necessitate compre-
hensive and sustainable land-use planning endeavors aimed at securing the long-term
vitality and resilience of ecosystems, human settlements, agriculture, and water resources.
This academically rigorous discourse accentuates the imperative for a holistic consider-
ation of soil erosion’s far-reaching consequences, advocating for a concerted approach
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that synergizes environmental stewardship with community resilience and sustainable
development objectives.

5. Conclusions

The Satluj Watershed has been extensively analyzed to provide a holistic understand-
ing of soil erosion dynamics. The analysis considers influential factors, including LS, C,
P, and K factors; NDVI analysis; and soil loss assessment. The LS factor reveals spatial
heterogeneity in topography, which can guide conservation initiatives in specific areas. The
C factor identifies land-use classes and erosion potentials, emphasizing the need for tar-
geted strategies in areas with higher erosion risks, such as bare/sparse vegetation regions.
The P factor highlights the need for effective conservation practices, especially for steeper
slopes. The soil erodibility (K) factor provides insights into soil properties, which can guide
priority attention for conservation efforts. Integrating K into the RUSLE model enhances
understanding and targeted measures. An NDVI analysis provides crucial information for
sustainable land-use planning, monitoring vegetation health, and identifying vulnerable
areas. The soil loss assessment categorizes susceptibility, aiding prioritized erosion control.
With 92% in the severe class, urgent and well-planned measures are essential. Overall, this
comprehensive study offers a robust foundation for watershed management, informing
decision-makers and stakeholders. The insights contribute to sustainable land-use plan-
ning, effective conservation strategies, and addressing evolving environmental challenges
in the Satluj Watershed, ensuring a balanced approach to human needs and ecological
sustainability in the region.

This research, by Mahesh Singh et al. (2023) [39], quantified soil loss across diverse
watersheds, demonstrating the applicability and effectiveness of RUSLE modelling for
soil erosion assessment. The congruence between their findings and ours underscores the
reliability and accuracy of our methodology, further validating our soil erosion estimates
and reinforcing the significance of our results for guiding conservation strategies in the
Satluj Watershed.

The study conducted in the Satluj Watershed has shown that GEE plays a crucial
role in transforming the evaluation of soil erosion factors. By utilizing GEE’s powerful
computational framework, the study was able to identify and measure significant variables,
such as R, K, LS, and NDVI. This demonstrates GEE’s ability to manage intricate geospatial
analyses on a large scale effectively. The use of GEE in the study simplified the methodology
and greatly improved the accuracy and dependability of soil erosion estimations. This
highlights the essential usefulness of GEE in environmental research.

This study emphasizes the practicality and applicability of our methodology using
Google Earth Engine (GEE) for soil erosion assessment with the Revised Universal Soil
Loss Equation (RUSLE) model. It highlights the innovation, efficiency, and effectiveness
of integrating cloud-based geospatial analysis for soil conservation efforts. Specifically,
it outlines how practicing engineers and soil conservation professionals can adopt these
advanced techniques in real-world scenarios to assess soil erosion risks and implement
targeted conservation measures accurately. This addition is intended to bridge the gap
between academic research and field application, providing a clear and concise guide for
professionals in the field.
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