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Abstract: This study presents ‘Synthetic Wells’, a method for generating synthetic groundwater level
time series data using machine learning (ML) aimed at improving groundwater management in
contexts where real data are scarce. Utilizing data from the National Water Information System of the
US Geological Survey, this research employs the Synthetic Data Vault (SDV) framework’s Probabilistic
AutoRegressive (PAR) synthesizer model to simulate real-world groundwater fluctuations. The
synthetic data generated for approximately 100 wells align closely with the real data, achieving a
quality score of 70.94%, indicating a reasonable replication of groundwater dynamics. A Streamlit-
based web application was also developed, enabling users to generate custom synthetic datasets. A
case study in Mississippi, USA, demonstrated the utility of synthetic data in enhancing the accuracy
of time series forecasting models. This unique approach represents an innovative first-of-its-kind tool
in the realm of groundwater research, providing new avenues for data-driven decision-making and
management in hydrological studies.
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1. Introduction

Groundwater is a critical natural resource that helps sustain billions of livelihoods
across the globe. Rapid urbanization, increased population growth, and climate change
have strained several important aquifers across the world [1–3]. Moreover, effective
groundwater management is a crucial global issue that has far-reaching effects across
multiple domains.

Over the past two decades, there has been a significant increase in the application of
machine learning (ML) techniques in groundwater modeling. Researchers have utilized
ML models to forecast groundwater quality indices and water table elevations with notable
success [4,5]. A diverse array of ML algorithms, encompassing artificial neural networks
(ANNs), fuzzy logic, autoregressive models, and support vector machines, has been em-
ployed in groundwater studies [6–8]. These models demonstrate a promising capacity
for generating reasonable numerical representations of groundwater systems, facilitating
informed water management and decision-making processes.

However, comprehensive in situ groundwater level data are lacking in many regions.
Thus, the ability to implement ML models for groundwater management is limited. Conse-
quently, the development of simulation tools capable of accurately approximating realistic
groundwater levels in the absence of extensive real data could be valuable.

Synthetic time series data have proven to be an invaluable resource in various domains,
allowing researchers and practitioners to address challenges arising from limitations in data
availability, quality, or confidentiality [9]. In finance, synthetic time series data have been
used to simulate stock prices or exchange rate fluctuations, facilitating the development and
testing of trading algorithms, risk management strategies, and forecasting models without
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exposing them to real market data [10]. In hydrology, synthetic rainfall data have been
generated to assess the performance of watershed models or flood prediction systems under
a range of meteorological conditions, ensuring robustness and reliability in real-world
applications [11–13].

In meteorology, synthetic weather data generators have been applied in studies related
to climate change impact assessments, risk analysis, water resource management, agricul-
tural planning, and renewable energy forecasting [14]. These generators produce realistic
weather scenarios based on historical data, enabling researchers and decision-makers to
evaluate potential outcomes and implications under various conditions or policies. In the
energy sector, synthetic data representing electricity consumption or renewable energy
production have been used to optimize power grid management, evaluate the impact of
different demand scenarios, or assess the feasibility of integrating renewable sources into
existing infrastructure [15,16].

Furthermore, in the healthcare domain, synthetic time series data mimicking vital
signs or physiological parameters have been employed to train machine learning algorithms
for early diagnosis or anomaly detection, circumventing privacy and ethical constraints
associated with real patient data [17,18].

Despite the widespread use of synthetic time series data in various fields, there is a
significant lack of research on generating synthetic data related to groundwater manage-
ment [19]. This research paper aims to address this gap by presenting a novel method
for generating synthetic groundwater levels using advanced ML techniques. The ability
to generate realistic synthetic well data has the potential to significantly enhance the un-
derstanding and management of groundwater resources. This approach will enable the
development of effective strategies for sustainable groundwater management and planning,
even in regions constrained by limited observational data. Moreover, this approach will
bolster the capacity of researchers to refine their current methods, improving the quan-
tification of uncertainties, model validation, and calibration, leading to more informed
decision-making in groundwater management (Figure 1).
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1.1. Overview of Existing ML Models for Generating Synthetic Time Series

The application of ML models for synthetic time series generation has gained signif-
icant attention in recent years due to the ability of these models to effectively simulate
complex patterns, relationships, and temporal dynamics. In this literature review, we
present a few popular ML models employed for synthetic time series generation, highlight-
ing their underlying principles, strengths, and limitations.
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1.1.1. Generative Adversarial Networks (GANs)

GANs consist of two neural networks, a generator and a discriminator, which compete
during training [20]. The generator creates synthetic data samples, while the discriminator
distinguishes between real and synthetic data. The strengths of GANs include their ability
to generate new data that resemble training data, their flexibility in generating data for
various applications, and their ability to learn from unstructured data [21–23]. GANs have
been applied to various environmental data generation tasks, such as creating synthetic
weather data, simulating climate change scenarios, and producing synthetic oceanographic
data. However, a few shortcomings of GANs include the difficulty in training them, the
instability of the training process, and the possibility of generating biased data [21,24–26].

1.1.2. Echo State Networks (ESNs)

ESNs are a type of recurrent neural network that use a reservoir computing algorithm
of randomly initialized hidden units [27]. ESNs have been successfully applied to tasks such
as predicting river flow [28], modeling air quality [29], and forecasting wind speed [30].
The strengths of ESNs include their ability to handle nonlinear relationships, efficient
training process, and scalability for large datasets [31,32]. However, the limitations of ESNs
include sensitivity to hyperparameter settings [33], the requirement of sufficient training
data to avoid overfitting, and potential challenges in interpreting the internal states of
the reservoir [34].

1.1.3. Variational Autoencoders (VAEs)

Variational autoencoders (VAEs) are generative models that combine deep learning
and probabilistic graphical modeling to generate synthetic time series data. By encoding
input data into a lower-dimensional latent space and subsequently decoding it back to the
original space, VAEs generate new, similar data samples [35]. VAEs have been applied
to various time series-related applications [36,37]. The strengths of VAEs include their
ability to model complex, nonlinear relationships [38]; generate diverse data samples [39];
and handle multivariate time series data [40]. Additionally, VAEs provide a probabilistic
framework, allowing for the quantification of uncertainty in the generated data. However,
the limitations include the need for substantial amounts of training data [41], sensitiv-
ity to hyperparameter settings, and challenges in capturing long-range dependencies in
the data [42].

1.1.4. Gaussian Processes (GPs)

Gaussian processes (GPs) [43] are probabilistic modeling approaches often used for
regression and classification tasks; however, they can generate synthetic time series data.
GPs model the relationships between data points using a mean function and a covariance
function, also known as a kernel. They have been employed in various environmental data
generation scenarios, such as sea surface temperature modeling [44] and simulating rainfall
patterns [45]. The strengths of GPs include their ability to model complex, nonlinear
relationships and provide uncertainty measures for predictions. They can also handle
multivariate time series data and incorporate prior knowledge about the underlying process.
However, GPs have limitations, such as computational complexity for large datasets and
the complexity of selecting suitable kernel functions and hyperparameters [46,47].

1.2. Study Objective

The application of machine learning (ML) models for generating synthetic time series
in groundwater management is nascent. This study introduces ‘Synthetic Wells’, a compre-
hensive workflow that streamlines the development, assessment, and comparison of ML
models for creating synthetic groundwater time series data. The source code for this frame-
work is available on GitHub, facilitating its reproduction and customization for various
regions. We demonstrated the efficacy of the workflow in Mississippi, USA, highlighting
its adaptability. Additionally, this study features a user-friendly Streamlit [48] application
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designed to enable researchers and practitioners to easily generate and download syn-
thetic datasets specific to their study areas. Built on reliable and well-tested open-source
packages, ‘Synthetic Wells’ provides a versatile and user-friendly blueprint for advancing
groundwater management.

2. Materials and Methods
2.1. Data

Time series of the groundwater well data for the state of Mississippi were sourced from
the United States Geological Survey’s National Water Information System (USGS NWIS),
encompassing the period from 1900 to the present. This dataset offers a comprehensive
historical perspective on groundwater levels. Wells with fewer than ten observations were
excluded to ensure reliability, as such limited data could skew trend analysis.

An exponential moving average with a weighting factor (alpha) of 0.9 was applied to
the data for smoothing, chosen to effectively reduce random fluctuations while preserving
significant trends.

The dataset was standardized to a monthly frequency, involving the aggregation
or interpolation of data points to fit this interval. To fill gaps in the time series, the
pchip interpolation method was utilized because of its ability to maintain the inherent
characteristics and trends of the data, creating a continuous and realistic dataset for in-
depth analysis.

The integrity of the model inputs directly influences the quality of the results, a
principle that holds true, especially in the realm of supervised machine learning models
where the output is as robust as the input data. In line with this, our approach requires
the inputs to be tabular in shape. The data, sourced from USGS NWIS, underwent a
rigorous refinement process to meet this requirement. Wells with minimal data records
were excluded to ensure a higher level of data integrity (Table 1). The application of
exponential moving averages further refined the data, enhancing its suitability for the
machine learning models employed in our ‘Synthetic Wells’ workflow. This dataset, which
emphasizes unique well identifiers and smoothed groundwater measurements, is tailored
for the specific purpose of meeting our predictive modeling objectives. This approach
represents a critical step in our workflow and lays a solid foundation for the innovative
methodologies and analyses that follow.

Table 1. Comparison of data metrics.

Metric Original Dataset Refined Dataset

Number of unique wells 5353 1306
Earliest date 18 April 1900 25 June 1938
Latest date 15 June 2023 15 June 2023

Number of measurements 518,773 142,124

In formulating our approach to simulate groundwater levels across Mississippi, we
were met with the challenge of sparse and unevenly distributed data. This situation neces-
sitated a strategy that could make the most of the available information, acknowledging the
state’s varied aquifer systems, from the dynamic Mississippi River Valley alluvial aquifer
(MRVAA) to the more stable, confined aquifers. Our initial analysis revealed a dataset that
was largely representative of the MRVAA. Given this skew, we chose to proceed with a
broad dataset for our model’s initial training phase.

This approach was guided by the goal of leveraging the existing data to its fullest
extent, recognizing that our model’s output would primarily reflect the characteristics
observed in the MRVAA data. This decision was strategic, aimed at laying a groundwork for
developing a robust framework capable of handling synthetic data generation. The intent
was not to capture every nuance of the aquifer systems but rather to create a versatile dataset
that would support the early stages of model development and subsequent refinements.
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The development of our method highlights the critical need for specificity and adapt-
ability in groundwater studies, especially when accounting for the distinct hydrogeological
features of different aquifers. It is designed to be flexible, allowing researchers to tailor
synthetic data generation to the unique attributes of their study areas. This approach not
only facilitates methodological refinement but also enhances the relevance and accuracy of
models used in groundwater management. By adopting this strategy, we aim to strike a
balance between the creation of a comprehensive dataset and the goal of achieving precision
in modeling the specific groundwater level fluctuations of various aquifer systems.

2.2. Model

The model for simulating groundwater levels was developed using the Synthetic
Data Vault (SDV) framework [49]. A noteworthy aspect of the SDV is its licensing under
the business source license, which is not classified as an open-source license. As per the
license, while the SDV is not initially open source, it is likely to become available under an
open-source license in the future. Despite this licensing restriction, the SDV was chosen
because it is widely recognized and used in the field of data science. Since our study is
research oriented, our use of the SDV falls within permissible limits. Its suite of tools and
functionalities make it one of the most popular frameworks for handling and generating
synthetic time series data.

The SDV is particularly valuable because of its array of helper tools and functions
that facilitate the efficient handling and analysis of data. These tools include but are not
limited to the SingleTableMetadata class, which is crucial for obtaining a comprehensive
understanding and effective structuring of the metadata of the input data. Such capabilities
of the SDV framework are pivotal for ensuring that the synthetic time series data that are
generated are optimally prepared for further machine learning applications.

The Probabilistic AutoRegressive (PAR) synthesizer model [50] from the sdv.sequential
module was used due to its specialized capabilities in processing sequential, time series
data. The PAR model is a neural network-based approach designed to generate new
sequences of multidimensional data. Its strength lies in conditioning on consistent, context-
specific values, enabling the creation of diverse and realistic data sequences. This feature
is particularly beneficial for simulating groundwater levels, as it adeptly handles the
multidimensional and temporal nature of the data, aligning closely with the objectives of
this study.

In the initial model training, overfitting was a notable issue. Overfitting, a common
challenge in machine learning, undermines a model’s ability to perform well on new
datasets. This happens when a model excessively learns from the specific details and noise
of the training data. To combat this, the training strategy involved limiting the number
of epochs. An epoch, a complete pass through the training dataset, influences how well
a model learns patterns. While more epochs can improve learning, they also increase the
risk of overfitting. In this case, reducing the number of epochs helped the model focus on
learning key patterns without absorbing the noise in the data.

In creating the model for groundwater level simulation, the efficiency and utility of
the Synthetic Data Vault (SDV) framework were particularly noteworthy. With just a few
lines of code, we were able to generate a synthetic time series model. This ease of use
underscores the framework’s user-friendly design, enabling the rapid development and
deployment of complex models.

Furthermore, the SDV offers an additional module specifically designed for evaluating
synthetic data. This module is invaluable for ensuring the quality and accuracy of syn-
thetic time series, providing an essential step in validating the model’s performance. The
availability of this evaluation tool within the SDV framework further highlights its compre-
hensive nature, making it a highly beneficial tool in the realm of data science, particularly
for any workflows that require a thorough analysis and validation of synthetic data.
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2.3. Web Application

A pivotal component of this research was the creation of a Streamlit-based web applica-
tion [48] designed to facilitate the generation and evaluation of synthetic groundwater data.
The choice of Streamlit as the platform for this application was driven by its ability to enable
the rapid development of user-friendly web apps using Python (v. 3.12). With Streamlit,
the entire application was developed in less than 150 lines of code; a feat that would have
required more substantial effort and complexity had another framework been used.

Streamlit’s simplicity and efficiency eliminated the need to address the intricacies
often associated with web development, such as handling frontend–backend integration,
managing multiple frameworks, or delving into JavaScript for interactivity. This approach
allowed for a direct focus on the application’s functionality, particularly on leveraging the
SDV framework and its PAR model.

Upon initialization, the application loads a pretrained PAR model and sets up neces-
sary metadata using the SingleTableMetadata class, derived from an input CSV file. This
ensures the alignment of synthetic data with real-world data structures. Users interact with
the application through an intuitive interface, uploading shapefiles to define geographical
boundaries for the generation of synthetic well data.

The generate_data function plays a crucial role in creating spatially relevant synthetic
data points within a user-defined geographical area. The app allows users to specify the
number of synthetic wells, enhancing its flexibility. After generation, the quality of the
synthetic dataset is evaluated against real data, ensuring its validity and reliability for
representing real-world groundwater dynamics.

For added utility, the application provides options for downloading synthetic data
and visualizing specific well time series data. These features, coupled with the app’s ease
of use and the efficiency of Streamlit, make this web application a highly effective tool for
researchers and practitioners in hydrology. Moreover, combining advanced data science
tools with user-centric application design is vital, as this approach offers a comprehensive
and accessible solution for analyzing synthetic time series data in groundwater studies.

The current iteration (version 1.0) of the ‘Synthetic Wells’ web application allows
users to generate synthetic groundwater datasets tailored to specified geographic regions
(Figures 2 and 3). However, it is currently limited in its ability to discern and segregate
data from multiple aquifers within these regions. To ensure the integrity and specificity
of the synthetic datasets, users are encouraged to upload data corresponding to a single
aquifer at a time. This practice will help avoid the potential dilution of dataset precision
that may occur when data from different aquifers are inadvertently mixed.

Understanding the importance of generating aquifer-specific datasets, there is an
ongoing consideration for enhancing the application with a feature that can automati-
cally identify multiple aquifers within the uploaded data. Once identified, the applica-
tion could then offer users the option to subset the data based on aquifer distinctions.
This proposed functionality would significantly refine the application’s ability to produce
highly targeted synthetic datasets, thereby enhancing the relevance and applicability of the
research outputs.

Implementing such a feature would represent a significant advancement in the appli-
cation’s capabilities, enabling a more nuanced approach to synthetic dataset generation. It
would facilitate a more precise simulation of groundwater levels across diverse hydrologi-
cal environments, thus supporting the hydrology research community with tools that are
not only sophisticated but also highly adaptable to specific research needs.
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3. Results

Following the successful compilation of the model, synthetic time series data were
generated for approximately 100 wells, each encompassing approximately 35 timesteps.
This section presents the findings regarding the model’s performance, focusing on specific
metrics and output results derived from the synthetic data. To evaluate the quality and
accuracy of the synthesized time series, tools such as evaluate_quality from the Synthetic
Data Vault (SDV) and DiagnosticReport from SDMetrics were used. These tools provided
insights into the fidelity and statistical properties of synthetic data compared to those of the
original datasets. The ensuing analysis offers a critical assessment of the model’s capability
to replicate realistic groundwater level dynamics, highlighting the effectiveness of the
synthetic data generation process.

3.1. Model Metrics

After generating synthetic time series data for approximately 100 wells, each with
approximately 35 timesteps, the performance of the models was evaluated using Diagnosti-
cReport from SDMetrics and evaluate_quality from the SDV. This evaluation focused on the
adherence of the synthetic data to the real data’s min/max boundaries and its uniqueness.

The synthetic data adhered to more than 90% of the real data’s min/max boundaries,
indicating a high level of fidelity in capturing the range of values. However, more than
10% of the numerical data were missing in the real data, suggesting room for improvement
in terms of representing the full variability. A critical observation was that more than 50%
of the synthetic rows were identical to the real data, highlighting the need for enhancement
of the model’s ability to generate unique data points.

The overall quality score was calculated to be 70.94%. The average of the column shape
score and the column pair trend score was 53.97%, indicating only moderate similarity in
distribution shapes between the synthetic and real data. The score for column pair trends
was more promising at 87.91%, reflecting a strong alignment in trends and relationships
between column pairs.

The results occasionally varied, sometimes yielding data with no danger warnings, sug-
gesting a degree of randomness in the model’s output. This variability indicates that, while
the model can achieve high-quality outputs, consistency remains an area for improvement.

Future enhancements to the model could involve increasing the size and diversity of
the training dataset to enrich the learning process. Additionally, fine-tuning the model
parameters and exploring advanced neural network architectures may further improve the
model’s ability to generate more diverse and realistic synthetic data. These improvements
aim to reduce the occurrence of direct data replication, thereby increasing the overall quality
and utility of the synthetic dataset for comprehensive hydrological analysis.

3.2. Effective Use of the Web Application in Data Synthesis

The Streamlit web application was instrumental in this research, particularly because
of its ability to generate synthetic groundwater data tailored to user-defined parameters. A
standout feature of the application is its flexibility in allowing users to specify the number
of wells and select their geographic region of interest. This adaptability ensures that the
generated datasets are region specific and can also vary in size based on the user’s needs.

Users have the advantage of inputting their geographic data into the app, leading
to the creation of synthetic time series data that align closely with the chosen areas. This
level of customization in data generation represents a significant advancement in creating
relevant and practical synthetic datasets.

In addition to data generation, the integration of quality assessment tools from the
SDV played a crucial role in the prompt validation of synthetic data. This feature provided
immediate and actionable feedback, enhancing the trustworthiness and precision of the
datasets created. Additionally, the app’s data visualization functionalities allowed for an
in-depth exploration of groundwater level trends and patterns in selected wells.
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This web application stands as an asset not only for this study but also for the hy-
drology research community at large. This study highlights the seamless application of
sophisticated data science techniques in hydrological research, offering a user-friendly
platform for the generation and analysis of customized synthetic data. The tool can be
found at the following URL: https://github.com/igwm/synthetic_wells (accessed on 20
March 2024) [51].

3.3. Case Study: Enhancing Groundwater Level Forecasts Using Synthetic Data

While the previous sections of this research have emphasized the generation and initial
evaluation of synthetic groundwater level data, the following section aims to demonstrate
the effectiveness of synthetic data in improving the accuracy of time series forecasting mod-
els. Given the challenges of obtaining sparse and irregular real-world data, the integration
of synthetic data is a promising solution.

3.3.1. Methodology

The case study employed two datasets: historical groundwater measurements of 1306
wells across the State of Mississippi and synthetic groundwater level data for 100 wells
across the MRVAA. The synthetic dataset was generated using the SDV as described in
the methods section, thus ensuring realistic and contextually relevant data. To assess the
impact of synthetic data, we focused on the time series forecasting model ARIMA.

The ARIMA model was selected due to its established effectiveness in time series anal-
ysis, especially in hydrological studies. Its ability to model the temporal dynamics, trends
and seasonality of groundwater levels aligns well with this study’s goals. ARIMA’s broad
acceptance in hydrology offers a solid foundation for quantifying the improvements syn-
thetic data bring to forecasting accuracy, highlighting the benefits of integrating advanced
machine learning techniques in water resource management [52,53].

The analysis was conducted in two primary stages:

1. Data preparation: This stage involved merging the historical and synthetic datasets, with
a focus on key columns essential for time series analysis, namely, GW_measurement
and Date. To align the data across different wells, the data were aggregated monthly,
creating a standardized and uniform temporal framework for subsequent analysis.
When a well had multiple measurements in a month, the mean of these values was
calculated to standardize the dataset to a monthly frequency. This ensured each well
was consistently represented by a single, average measurement per month.

2. Model training and evaluation: In this stage, two separate ARIMA models were
developed and assessed. The first model utilized the merged dataset comprising
both real and synthetic data, while the second model was trained exclusively on real
data. These models were evaluated based on their root mean squared error (RMSE)
performance, which provides a quantitative measure of forecasting accuracy.

3.3.2. Results

Incorporating a combination of real and synthetic data into the ARIMA model yielded
a significant improvement in model performance, as evidenced by the marked reduction
in the root mean squared error (RMSE) from approximately 12.36 ft when relying solely
on real data to approximately 9.13 ft (Figure 4). This result underscores the potential of
synthetic data to enhance the precision of time series forecasting models, a particularly
valuable advantage in regions with limited data availability. The synthetic data effectively
serve as a bridge, bolstering the overall reliability of the dataset.

Including synthetic data has broadened the model’s capacity to detect and analyze
a diverse array of temporal patterns, thereby elevating its predictive accuracy in ground-
water management. This improvement in analytical capabilities holds significant promise,
especially in regions where data scarcity has historically hindered robust decision-making
processes. Furthermore, this advancement not only refines strategies for groundwater

https://github.com/igwm/synthetic_wells
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conservation and utilization but also marks the beginning of an innovative approach to
advance predictive analytics in the field.
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4. Discussion

The integration of synthetic time series data into machine learning workflows for
groundwater modeling, as presented in this study, represents a significant advance in the
utilization of data science techniques within the realm of hydrology. This discussion aims
to contextualize our findings within the broader scope of existing methods, highlight the
challenges encountered, and outline potential future research directions.

Our approach to generating synthetic time series data represents a response to the per-
vasive challenge of data scarcity in groundwater studies. The success of this methodology
in simulating realistic groundwater level variations demonstrates its potential as a valuable
tool in hydrological modeling. This study extends the application of synthetic data, which
are traditionally used in fields such as finance and healthcare, to address specific challenges
in groundwater management, thereby enriching the dataset and enhancing model accuracy
in scenarios where real data are limited or nonexistent.

One of the primary limitations of this study is its focus on existing time series data,
without incorporating additional environmental variables such as precipitation, tempera-
ture, and land use changes. This approach, while foundational, limits the model’s ability to
fully encapsulate the complex interactions affecting groundwater levels.

Furthermore, the generalizability of the findings may be constrained by the specific
characteristics of the dataset employed. The dynamics of groundwater can vary widely
across different geographical areas and aquifer systems, influenced by diverse geological
formations and hydrological cycles. This study’s model, primarily trained on data from
Mississippi, USA, may not capture these variations accurately when applied to other
regions without further adaptation.

Another critical limitation is this study’s temporal resolution and coverage. The
dataset’s span and granularity might not adequately represent long-term groundwater
trends or the intricacies of seasonal variations, especially in areas subject to significant
climatic variability. This limitation could potentially impact the model’s predictive accuracy
for future groundwater levels under scenarios of changing climate conditions.

The development and application of the ‘Synthetic Wells’ workflow highlights the
need for methodological refinement in the generation of synthetic data. Achieving a balance
between replicating the fidelity of real-world data and ensuring the diversity of synthetic
outputs was a key challenge. Future efforts should focus on enhancing the algorithms to
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more accurately capture the intricate patterns of groundwater level variability while also
generating data points that are distinct yet representative of real-world scenarios.

The potential applications of this approach are not confined to groundwater modeling
alone. The method can be adapted to other environmental and geospatial studies where
data limitations are prevalent. Looking forward, exploring the use of synthetic time series
data in conjunction with other types of environmental data, such as satellite imagery or
sensor readings, could provide a more comprehensive understanding of various natural
processes. Future research should focus on enhancing the dataset with additional envi-
ronmental variables to capture the multifaceted influences on groundwater levels more
comprehensively. There is also a critical need to test and refine the model across different
geographical areas and aquifer systems to improve its generalizability. Expanding the
dataset to include longer time series with higher resolution, alongside incorporating future
climate scenarios, will significantly enhance the model’s predictive accuracy. These steps
will ensure that the synthetic data generated are more robust and applicable for advanced
groundwater management and planning efforts in the face of climate change.

The practical implications of employing synthetic time series data in groundwa-
ter studies include enhanced decision-making and policy formulation in water resource
management. By providing a more robust and comprehensive dataset, this approach
supports the development of more accurate models, which are crucial for effective water
resource planning and management, especially in the face of climate change and increasing
water demand. The integration of advanced data synthesis techniques in hydrological
models holds promise for informing policy decisions and ensuring sustainable water
resource management.

This study highlights the significant potential of incorporating synthetic time series
data to profoundly enhance algorithms and model development in groundwater mod-
eling. Tackling the prevalent issue of data scarcity in hydrology, this method markedly
improves the predictive accuracy of groundwater level models, representing a key in-
novation in the field. This approach expands the scope of analytical tools available for
groundwater research and aids in driving more data-informed decisions in water resource
management and policy. This study sets the groundwork for future exploration, signaling
further progress in applying machine learning techniques in environmental studies. This
advancement is pivotal for deepening our understanding and effective management of
water resources, leading to more efficient and sustainable methods.
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