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Abstract: In this study, we aimed to verify the two relationships on large wood export, as follows:
(1) the relationship between large wood recruitment and landslides triggered by intense rainfalls and
(2) the relationship between large wood export and the long-term large wood budget on an annual
scale, based on the direct export of large wood caused by an increase in large wood recruitment
with extreme rainfall events, as well as the baseflow of large wood, which is mainly old large
wood recruitment stored at the slopes and in the stream. To reproduce these two relationships, the
model consisted of two frameworks, as follows: (1) the rainfall-induced analytical shallow landslide
model, with 30 m spatial resolution for large wood recruitment and (2) the double/triple storage
function, with the lumped hydrological method at a watershed scale for large wood entrainment.
Application of the model to 212 dam reservoir watersheds across Japan resulted in reproducibility in
the estimation of large wood export volumes in 134 of the target dam reservoir watersheds, which
contribute 63.2% of the target basins. This indicated that our results verified these two relationships
as primary relationships. To analyse the difference in large wood export systems, a frequency analysis
was conducted using correlation analysis based on large wood export volume and the cumulative
values of six patterns of large wood recruitment volumes. The results indicated that there might be
differences in large wood export systems between the watersheds represented by the double storage
function model and those represented by the triple storage function model.

Keywords: large wood budget; woody debris; landslide; slope stability analysis; storage function
model

1. Introduction
1.1. Research Background

Large wood (LW) in rivers has been of growing interest among scientists who have
recognised its importance as a functional component of fluvial ecosystems, in the same
manner as both sediment and riparian vegetation [1]. LW has a significant impact on river
morphology and sediment dynamics [2,3] and provides various positive effects on the
aquatic and forest ecosystem [4,5]. Moreover, deadwood is a significant store of carbon
and nitrogen and, therefore, plays a central role in their cycle [6–11]. LW, like sediment,
remains relatively stable, most of the time, in watersheds (Figure 1), where only small,
loose pieces of LW can move. However, during large floods, which occur infrequently, large
amounts of LW may be transported [12,13], causing potential hazards to human populations
and infrastructure [14,15]. The deposition of LW at critical locations (e.g., bridges) may
reduce the cross-sectional area of the river channel and cause a reduction in discharge
capacity [16,17], resulting in more frequent flooding (Figure 2). This may be accompanied
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by other processes such as erosion of the river bed, channel avulsion, and localised scouring.
Understanding how, where, and why wood moves is therefore fundamental to interpreting
and predicting how wood accumulates in watershed systems. The potential flood damage
caused by LW necessitates the management of LW; although, in many areas, there are
no clear guidelines on how to manage LW. Overall, there is a need for an integrated
approach for large-scale LW management along the whole riverine continuum, such as
on a watershed scale, rather than site-specific responses to local problems generated by
network-wide dynamics. Thus, quantifying the volume of LW is key to studying the role of
LW in watersheds.
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Figure 1. Field survey of landslide disaster (in both 2016 and 2023) with LW at the Omoto River Basin
due to the 2016 rainstorms. Some stored LW after seven years had decayed and re-greened, but the
stored capacity had not changed.
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Figure 2. The deposition of LW at bridges due to Typhoon Etau, which hit Hokkaido in 2003. (Source:
the website of the Ministry of Land, Infrastructure, Transport and Tourism).

In Japan, about three-quarters of the country’s area is mountainous and most of it is
covered by forests. Therefore, when landslides and flooding occur in the upper reaches
of rivers, LW is largely recruited together with sediment. In addition, heavy rainstorm
disasters have become more frequent in recent years due to climate change and it is feared
that the number of landslides will increase in the future, resulting in an increasing tendency
of LW recruitment. The average number of landslides during the 10 years from 2000 to
2009 was 1006 per year, whereas, during the 10 years from 2010 to 2019, the number of
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landslides increased 1.4 times, to 1476 per year [18]. The importance of taking appropriate
measures against landslides involving LW has increased in recent years.

1.2. Recruitment and Entrainment Processes of LW in Streams and Rivers

Numerous studies have reported that the recruitment and entrainment processes of
LW in streams and rivers, including the accumulation of LW in forests [19], are caused
by various factors such as landslides or flooding, either during or after tropical cyclones
or heavy rainstorms [1]. For example, Chen et al. (2013) investigated the LW export
downstream after Typhoon Morakot in the Gaoshan and Qijiawan Creeks, located in the
Qijiawan catchment in central Taiwan [20]. They found that about 11% of the total LW
caused by Typhoon Morakot was exported downstream. Steeb et al. (2017) reported that
more than 69,000 m3 of LW was transported by the extreme flood events that occurred
in Switzerland in August 2005 [21]. Rickli et al. (2018) reported that LW was deposited
both in-channel and on the banks at the 10 headwater rivers in Switzerland from 2004 to
2006 [22]. In Japan, when Typhoon Etau hit Hokkaido in 2003, approximately 50,000 m3 of
LW was recruited by landslides and exported into the Nibutani Dam [23]. Landslides, bank
instability, debris flows, and fluvial processes are, therefore, potential sources and major
transmitters of LW [24,25].

Based on the results of previous studies on LW recruitment, several researchers have
proposed methods to estimate LW recruitment from fallen trees in the river channel. Sickle
and Gregory (1990) developed a model of LW recruitment to the river using stand density,
probability of a single tree falling, and direction of fall [26]. Mazzorana (2009) created
hazard index maps of LW recruitment and transport in a watershed by combining the
probability of a single tree falling with debris flows, overbank sedimentation, and land
use maps [27]. These maps allow the identification of five individual zones for LW re-
cruitment, as follows: the stream influence zone, active wood buffer, recharging wood
buffer, preferential recruitment paths, and preferential contributing area. Subsequently,
Ruiz-Villanueva and Diez-Herrero et al. (2014) proposed a method to estimate the increase
in LW due to landslides, bank erosion, and flooding based on a multi-objective assessment
tool using fuzzy logic principles based on the geographic information system [25]. More
recently, Scheip and Wegmann (2021) used relative differences in the Normalised Difference
Vegetation Index (NDVI) to identify areas on the landscape where vegetation has been
removed after natural hazards [28]. Phakdimek and Komori et al. (2023) combined both
optical and SAR images for detecting landslide scars, using a classification and regression
tree [29].

In Japan, the agencies responsible for local reservoir management are monitoring the
total annual LW exported to the reservoirs. In this data set, Seo et al. (2015) proposed
that the dynamics of LW in the stream are influenced both directly and indirectly by
precipitation patterns [30]. Moreover, Seo and Nakamura (2009) and Seo et al. (2015)
proposed that large pieces of LW are directly recruited into channels from surrounding
hillslopes in Japan via hillslope processes such as landslides [30,31]. This agrees well with
the observational data after heavy storms pass through the affected areas. Chaithong and
Komori et al. (2018), based on field studies of heavy rainfall events in the north-eastern part
of Japan, reported that landslides disturbed tree roots, causing trees to topple [32]. Fallen
trees become LW; some of this LW remains on the hillslope, while some of it is entrained
by debris flows, landslides, or flash floods that flow downstream through the watershed
(Figure 3). Subsequently, Chaithong and Komori et al. (2018) correctly estimated LW
recruitment using the global-scale tree density map [33] and an analytical shallow landslide
model, which is coupled with a hillslope hydrological model and driven only by rainfall
with 30 m resolution [34], with only approximately 9.1% underestimation [13]. Therefore,
it was confirmed that shallow landslides play an important role in LW recruitment and
supply a certain amount of LW to streams. Furthermore, debris flows play an important
role in transporting LW from upstream to downstream or from small to large river channels.
However, few studies have estimated LW recruitment using analytical landslide models.
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in the Hiji River Basin due to the 2018 West Japan rainstorms.

1.3. Quantitative Modelling of LW-Related Processes in an Integrated Approach

As mentioned above, many researchers have studied the role of LW in watersheds;
however, to date, there have been far fewer researchers to understand, quantify, and model
LW-related processes in an integrated approach. Ruiz-Villanueva et al. (2016) summarised,
based on Martin and Benda (2001) [35], that LW dynamics can be considered from the
following two perspectives: the mass balance approach and the transport mechanism
perspective (Figure 4) [1]. The first perspective can be understood as an LW cycle, similar
to the hydrological cycle and equivalent to the floodplain LW cycle [36]. In other words, it
is the linkages and feedback associated with the main processes (i.e., recruitment, transport,
and storage) that govern the dynamics and mass balance of LW in fluvial systems. The main
issues related to LW dynamics from the perspective of the mass balance approach concern
the LW balance and LW fluxes, or LW ‘export’ (i.e., how much LW would be transported
from upstream to downstream), and their complexity through space and time. The second
perspective concerns LW dynamics or the physical factors controlling LW entrainment and
transport processes. The questions to be answered in this second perspective are related to
hydraulics and fluid mechanics.

Due to the difficulties in observing changes in LW storage, far fewer studies have
addressed the temporal variability in an integrated approach. Boivin et al. (2017) estimated
a basin-wide LW budget for the Saint Jean River in Quebec, Canada, based on aerial
photographs and field surveys, and found that anthropogenic factors and climate change
have a significant impact on LW export [37]. Mazzorana et al. (2011) and Zischg et al. (2018)
estimated the amount and location of LW storage originating from riparian forests during
river flooding by modelling the physical dynamics of LW export during a single flood
event for Swiss rivers [38,39]. Benda and Sias (2003) developed a set of general quantitative
expressions based on over 20 years of research on LW that has identified the key variables
and their parameter values for the Pacific Northwest [40]. LW budgets were estimated
over 100 years, based on LW recruitment, changes in storage, and then inverse analysis
of LW export or flux. Hassan et al. (2016) also simulated LW budgets in two mountain
streams by modelling a reach-scale LW budget for 100 years using a similar approach to
Benda and Sias (2003) [41]. LW loss through decay and downstream transport and loss
through depletion was described by a single nonlinear storage function with a lumped
model at each reach. However, these studies did not directly use precipitation and fewer
studies have specifically documented how precipitation and its varying regimes control
the distribution and export pattern of LW. In addition, while post-flood distribution has
been occasionally recorded [42], there is no information about the total amount of LW that
is transported by very large storms.
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Figure 4. The dynamics of LW in a forested river watershed are illustrated as a cycle, in which LW
recruitment from wood sources might be transported and/or stored (adapted from Ruiz-Villanueva
et al. (2016)) [1]. The nonlinearity of these processes is shown as t0–t3, with steady and episodic
disturbances potentially triggering recruitment and transport. The time between the processes (t0–t3)
may vary among different watersheds and this defines the residence time of LW in the system.

Against these research backgrounds, the authors proposed a quantitative model for
analysing the mass balance of LW and its export on an annual scale, at a watershed scale
(LW-Budget) [43]. LW-Budget consists of the following two frameworks: (1) the rainfall-
induced analytical shallow landslide model, with 30 m spatial resolution [34] for the LW
recruitment and (2) the double storage function, with the lumped hydrological method at
a watershed scale for the LW entrainment (Figure 5). LW-Budget was used to re-analyse
20 years of actual LW export at five dam reservoir watersheds of the Kitakami River
catchment, located in the north-eastern part of Japan, and demonstrated that landslide
or slope failures are significant procedures of LW export and that the characteristics of
LW export can be defined by two relationships; these are the direct export of LW caused
by an increase in LW recruitment with the extreme rainfall event, and the baseflow of
LW, which is mainly old LW recruitment stored at the slopes and in the stream. To date,
such an integrated approach to understanding, quantifying, and modelling LW processes
considering the direct impact of precipitation has not been studied and understanding
the volume and dynamics of LW can help to predict and prevent the hazards posed by
such debris. However, the failure to reproduce the model in one of the five dam reservoir
watersheds suggested that there may be different characteristics of LW export from those
reproduced by the model at that watershed.
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1.4. Approach of This Study

In this study, we aim to verify the generality of hypotheses proposed by the authors
on the relationship between LW recruitment and landslides triggered by intense rainfalls,
as well as LW export and the long-term LW budget on an annual scale [43], applying
LW-Budget to 212 dam reservoir watersheds across Japan. Furthermore, we improve the
LW-Budget, which is combined with double and triple storage functions with the lumped
hydrological method at a watershed scale for the LW entrainment, to examine the several
characteristics of LW exports. The objective is to produce a new, integrated approach to
large-scale LW management based on the long-term LW balance and the characteristics of
LW export at the watershed scale.

2. Materials and Methods
2.1. Study Sites

In Japan, there are 297 dam reservoir watersheds where agencies responsible for
local reservoir management have been monitoring the total annual LW transported to
the reservoir. The study sites are 212 dam reservoir watersheds across Japan (Figure 6
and Table 1) selected from among the 297 dam reservoir watersheds according to the
following requirements:

1. Where the total annual LW transported to the reservoir has been monitored over
10 years.

2. Where a substantial total annual LW was observed more than once during the moni-
toring period.
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Table 1. The number of dam reservoir watersheds with observed values and dam reservoir water-
sheds extracted by regions.

Regions Number of Dam Reservoir Watersheds
with Observed Values

Number of Dam Reservoir
Watersheds Selected

Hokkaido 33 16
Tohoku 46 32
Kanto 25 23

Hokuriku 52 32
Chubu 17 13
Kinki 21 15

Chugoku 32 26
Shikoku 16 12
Kyushu 55 43

Total 297 212
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The interquartile range method of identifying outliers was utilized to determine the
presence or absence of a substantial total annual volume of LW. Firstly, the interquartile
range is calculated using the runoff volume data for each dam reservoir watershed. Sec-
ondly, as a calculation of the threshold of a substantial total annual LW, it is calculated as
the third quartile plus the interquartile range multiplied by 1.5. Finally, only dam reservoir
watersheds with observed runoff volumes above the threshold in each were selected.

2.2. Estimation of LW Recruitment

The LW-Budget utilized the analytical shallow landslide model [34] to estimate annual
LW recruitment into the stream channel with the volume per piece of downed LW, tree
density, and the width of the active stream channel [43]. In this study, we enhanced
this model by incorporating groundwater and infiltration depth parameters based on
Phakdimek et al. (2022) [44]. This model operates as a distributed model, simulating the
physical process of slope destabilization induced by an increase in groundwater.

2.2.1. Groundwater and Infiltration Depth in Surface Soil Analysis

Phakdimek et al. (2022) adopted the calculation of groundwater depth (h) proposed
by Rosso’s approach [45] into the analytical shallow landslide model [34]. This calculation
is calculated under the assumption that evapotranspiration and deep drainage into the
bedrock are neglected.

ap − q =
dS
dt

= a
e

1 + e
(1 − Sr)

dh
dt

(h ≤ D) (1)

ap − q − r = 0 (h > D) (2)

where a is the upslope contributing area, p is precipitation, q is groundwater flow rate, S is
the volume of water storage, and e is the void ratio of soil. Sr is the saturation of soil, h is
groundwater table, t is time, D is soil depth, and r is overland flow discharge occurring
when the soil is saturated.

The calculation of groundwater flow rate (q) was proposed by Darcy’s law. It is
expressed in the following equation:

q = (bhcosβ)Ktanβ (3)

where b is the width, β is the slope angle, and K is soil permeability. From integrating (1)
and (2), derived to (3), the initial condition of stable piezometric at a depth of hi(0) = hi and
initial groundwater depth is 0. The cumulative groundwater depth was calculated based
on precipitation during rainfall events, with t representing the time elapsed since the start
of the rainfall event. Therefore, groundwater accumulates over time and the cumulative
groundwater after these events is utilized in the slope stability model. This is expressed in
the following equation:

h =
qpD

Tbsinβ

[
1 − exp

(
− 1 + e

e − eSr

Tbsinβ

aD
t
)]

+ hiexp
(
− 1 + e

e − eSr

Tbsinβ

aD

)(
ap

Tbsin β
> 1

)
(4)

where T = KD denotes the hydraulic transmissivity and D is the soil depth.

2.2.2. Slope Stability Analysis

The stability of shallow landslides was incorporated into the physically based model,
deriving from the infinite slope model. In this model, the failure plane is parallel to the
surface of the slope, and the depth of the failure plane is relatively shallow, typically
ranging from 0.5 to 3.0 m. Slope stability is commonly described in terms of the factor
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of safety (FS), defined as the ratio of the resisting force to the driving force on the failure
plane, as expressed below:

FS =
c′ + [hγsat + (D − h)γt − γwh]cos2βtan∅

[hγsub + (D − h)γt + γwh]sinβcosβ
(5)

where c′ is the effective cohesion of the soil, γsat is the saturated soil density, γt is the total
soil density, γw is water density, γsub is soil buoyant density, h is the groundwater depth
above the failure plane, and ∅ is the effective friction angle. For unstable stability, FS is
less than 1.0, which causes landslides, whereas FS is higher than 1.0 for slope stability.

2.2.3. Estimation of the Annual Volume of LW Recruitment

For the shallow landslide model, elevation data were sourced from the Fundamental
Geospatial Data of Japan. Slope angles were computed using the Spatial Analyst Tool
in ArcGIS, based on the elevation data. The effective cohesion of soil and the effective
friction angle were acquired from the literature review [46] for each soil classification USDA.
Other soil parameters were calculated from the distribution data of γt and γw. The soil
classification USDA data and the distribution data of γt and γw were obtained from the
International Soil Reference and Information Centre. The rainfall data set was used from
the Radar-AMeDAS rainfall records.

For determining the volume of trees in each unstable area where FS < 1, in the same
manner as the work of the authors of [43], the volume per piece of downed LW was
determined as 0.76 m3, based on the work of the authors of [13], while the tree density
was used from the work of Crowther et al. (2015) [33]. In estimating LW recruitment, the
volume of LW in the area of overlap between the unstable area and the active channel area
was calculated, assuming that only LW within the active channel zone could be transported
into the stream channel. The area was empirically assumed as 0.2 km.

2.3. Modelling of LW Export

LW-Budget utilized the double storage function model, incorporating the volume of
LW recruitment as an input to estimate the annual LW entrainment and LW export [43]. This
lumped hydrological model operates by simulating the direct LW export at the first vessel
and the baseflow of LW at the second vessel on an annual scale, as depicted in Figure 7a. In
this study, we additionally employed triple storage function models to explore a potential
third discharge of LW as the intermediate flow. The model simulates the direct LW export
at the first vessel, the intermediate LW flow at the second vessel, and the baseflow of LW at
the third vessel on an annual scale, illustrated in Figure 7b.
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2.3.1. Triple Storage Function Model

For equations related to the double storage tank model case, refer to Komori et al.
(2021) [43]. The details of the triple storage function model are described below.

The first vessel utilized in this study comprises three components. One part simulates
the direct export of LW as overflow from the first vessel (q1), while another part simulates
LW storage at the stream channel as storage at the first vessel (S1) and its subsequent
exportation into the second vessel (Pin f 1). In the modelling framework, S1 is recharged
by annual LW recruitment (P) and q1 occurs once the capacity of the first vessel (Z1) is
exceeded. The first vessel can be represented as follows:

q1 = S1(n)− Z1 (S1(n) ≥ Z1) (6)

q1(n) = 0 (S1(n) < Z1) (7)

Pin f 1 = b1·S1(n) (8)

S1(n + 1) = S1(n) + P − Pin f 1(n) (9)

where b is a parameter and n is time (in years).
The second vessel used in this study consists of three parts. One part simulates the

direct export of LW as overflow from the first vessel (q2) and the other part simulates
LW storage at the stream channel as storage at the first vessel (S2) and its exportation
into the second vessel (Pin f 2). In the modelling framework, S2 is recharged by annual LW
recruitment (Pin f 1) and q2 occurs once the capacity of the first vessel (Z2) is exceeded. The
first vessel can be written as follows:

q2 = S2(n)− Z2 (S2(n) ≥ Z2) (10)

q2(n) = 0 (S2(n) < Z2) (11)

Pin f 2 = b2·S2(n) (12)

S2(n + 1) = S2(n) + Pin f 1(n)− Pin f 2(n) (13)

The third vessel used in this study consists of two parts. One part simulates past LW
storage at the stream channel, represented as storage in the second vessel (S3), while the
other part simulates the continuous LW export from the second vessel as the base flow (q3).
Within the modelling framework, S3 is recharged by Pin f 2 and q3 is nonlinearly influenced
by an increase in S3. The secondary vessel can be represented using a nonlinear storage
function model, as outlined below:

dS3

dt
= Pin f 2 − q3(n) (14)

S3 = k·qp
3 (15)

where k and p are parameters.
For the initial condition of the storage of LW in the model, Komori et al. (2021) [43]

examined the spin-up of S1 using the value of S1 obtained from the model run inputting a
series of annual LW recruitment during the target period from zero to three times repeatedly.
As a result, the reproductivity of the model was the best in the case of a spin-up of S1 zero
times and, therefore, we applied this spin-up for the double storage function model. On
the other hand, we tentatively set S1 and S2 for the triple storage function model as 30%,
because of elevated computational costs for spin-up.

2.3.2. Optimisation of Parameters and Evaluation of Reproducibility of the Volume of
LW Export

Parameters in the model are determined by the iterative approximation of the model
with all combinations of parameters (Tables 2 and 3), with the combination that maximises
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the following Nash–Sutcliffe efficiency (NSE) [47] between the total amount of simulated
LW exports (qsim(n) = q1(n) + q2(n) or qsim(n) = q1(n) + q2(n) + q3(n)) and qobs:

NSE = 1 − ∑N
m=1(qobs(m)− qsim(m))2

∑N
m=1(qobs(m)− qave(m))2 (16)

where N is the analysis period (in years), i is a year, and qave is the period average of qobs (in
m3). NSE is used as an index to evaluate the suitability of a flow hydrograph considering
the magnitude of flow rate variability. Furthermore, NSE indicated the closer the value is to
1, the better the accuracy of the model and indicated a value higher than 0.4 for satisfactory
results, with reproducibility of the simulation.

Table 2. Initial, end, and incremental values of parameters in the double storage function model.

Parameter Initial Value End Value Incremental Value

b 0.005 0.5 0.025
Z 1000 100,000 1000
k 0.00001 0.15 0.0003
p 0.01 1.5 0.15

Table 3. Initial, end, and incremental values of parameters in the triple storage function model.

Parameter Initial Value End Value Incremental Value

b1 0.005 0.5 0.025
b2 0.005 0.5 0.025
Z1 1000 50,000 1000
Z2 1000 50,000 1000
k 0.00001 0.15 0.0003
p 0.01 1.5 0.15

Figure 8 shows the NSE for a combination of parameters Z and b when the parameters
k and p were 0.0151 and 0.51, respectively, as an example of a parameter recognised at
a dam reservoir watershed. Here, the names of the dams cannot be revealed because of
the restrictions on data use. The red circle was the parameter combinations for which the
NSE is highest in this condition. The recognition of these parameters was successively
calculated according to Table 2 for the double storage function model, or Table 3 for the
triple storage function model, and the parameter combination with the highest NSE was
adopted as the recognised parameter.

This parameter recognition was implemented at each of the 212 dam reservoir water-
sheds in both the double and triple storage function models, aiming to determine the most
suitable model that corresponds to the distinct characteristics of the watershed.
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2.4. Frequency Analysis

To verify the characteristics of LW export examined by double and triple storage
function models, frequency analysis was performed to compare the cumulative values of
the estimated annual volume for LW recruitment across dam reservoir watersheds over
periods ranging from 1 to 6 years with the annual volume of LW export. The outcomes were
summarized by the determination of the count of cumulative years exhibiting correlation
coefficients surpassing the threshold of 0.3 (see Section 3). Spearman’s rank correlation
analysis was utilized to compute the correlation coefficients, while p-values were derived
using the Wilcoxon signed-rank test. These statistical analyses were executed through
Python 3.10.9, employing the “spearman” function from the SciPy library.

3. Results and Discussions

The model was applied to 212 dam reservoir watersheds across Japan and the results
of the model application are presented in Tables 4 and 5. Table 4 shows the number of
watersheds in each region where the volume of LW export was successfully reproduced
(NSE > 0.4) using the double or triple storage function models (hereinafter, referred to as
Group 1 and Group 2). Table 5 shows the number of watersheds in each region where the
volume of LW export was successfully reproduced (NSE > 0.4) by both of them (hereinafter,
referred to as Group 3) and the number of watersheds where the higher NSE was obtained
using either of them (hereinafter, referred to as Group 4). In Table 4, the number of dam
reservoir watersheds for which reproducibility was obtained for Group 1 was 30, indicating
that the LW export characteristics could be explained by two export characteristics, as
follows: direct export and baseflow, as described by Komori et al. (2021) [43]. On the
other hand, in the Chubu, Kinki, and Shikoku regions, all of the dam reservoir water-
sheds could not be reproduced in terms of LW export volume. It was estimated that the
LW export in the dam reservoir watersheds in these regions cannot be explained by the
two export characteristics.
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Table 4. The number of watersheds in each region where the volume of LW export was successfully
reproduced (NSE > 0.4) using the double (Group 1) or triple (Group 2) storage function models.

Regions
The Number of Watersheds Using

the Double Storage Function
Model (Group 1)

The Number of Watersheds Using
the Triple Storage Function

Model (Group 2)

Hokkaido 3 (18.8%) 8 (50.0%)
Tohoku 8 (25.0%) 18 (56.3%)
Kanto 4 (17.4%) 9 (39.1%)

Hokuriku 4 (12.5%) 22 (68.8%)
Chubu 0 (0.0%) 7 (53.8%)
Kinki 0 (0.0%) 8 (53.3%)

Chugoku 4 (15.4%) 13 (50.0%)
Shikoku 0 (0.0%) 7 (58.3%)
Kyushu 7 (16.3%) 24 (55.8%)

Total 30 (14.2%) 116 (54.7%)

Table 5. The number of watersheds in each region where the volume of LW export was successfully
reproduced (NSE > 0.4) by both of the double and triple storage function models (Group 3), and the
number of watersheds where the higher NSE was obtained using either of them (Group 4).

Regions
The Number of Watersheds Using

both the Double and Triple Storage
Function Models (Group 3)

The Better-Performing Result
Was Selected (Group 4)

Hokkaido 2 (12.5%) 9 (56.3%)
Tohoku 2 (6.3%) 24 (75.0%)
Kanto 1 (4.3%) 12 (52.1%)

Hokuriku 2 (6.3%) 24 (75.0%)
Chubu 0 (0.0%) 7 (53.8%)
Kinki 0 (0.0%) 8 (53.3%)

Chugoku 2 (7.7%) 15 (57.7%)
Shikoku 0 (0.0%) 7 (58.3%)
Kyushu 3 (7.0%) 28 (65.1%)

Total 12 (5.7%) 134 (63.2%)

The number of dam reservoir watersheds for which reproducibility was obtained for
Group 2 was 116. More than 50% of all target dam reservoir watersheds across Japan, with
the exception of the Kanto region, were able to reproduce LW export volumes using the
triple storage function model, suggesting that many watersheds across Japan have three
LW export characteristics.

In Table 5, the number of dam reservoir watersheds for which reproducibility was
obtained for the best choice was 134, which means that reproducibility was obtained in the
LW-Budget model in more than 50% of the target dam reservoir watersheds. This confirmed
the hypotheses regarding the relationship between LW recruitment and landslides triggered
by intense rainfalls, as well as the connection between LW export and the long-term LW
budget on an annual scale in Japan [43]. In each region, reproducibility of LW export
volumes was obtained in 75.0% of the target dam reservoir watersheds in the Tohoku
and Hokuriku regions, the highest proportion. In all regions, the LW export volume was
reproduced in more than 50.0% of the target dam reservoir watersheds, confirming the
generality of the LW-Budget across Japan.

As cases of satisfactory and unsatisfactory results are present in each of Groups 1, 2,
and 3, Figures 9–11 show plots of qobs, P, and qsim, which were simulated using the LW-
Budget model, using the double (Figures 9a, 10a and 11a) and triple (Figures 9b, 10b and 11b)
storage function models at dam reservoir watersheds. Here, the names of the dams cannot
be revealed because of the restrictions of data use, so we used pseudonyms instead of the
actual dam names. In Figure 9, the maximum qobs was recorded in 2005 at the A dam, when
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the maximum P was recorded. On the other hand, qobs was almost constant after 2005,
although a larger P was recorded in 2014, 2016, 2018, and 2020, every 2 years. The increase
in qsim could be reproduced in 2005 by the double storage function model (Figure 9a). On
the other hand, the constant qsim after 2005 could not be reproduced by the triple storage
function model (Figure 9b). Therefore, it was considered that the LW export characteristics
at the A dam could be explained by the following two export characteristics: direct export
and baseflow, as described by Komori et al. (2021) [43].
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Figure 10. Plots of qobs, P, qsim, and the NSE for annual LW export simulation using the double (a)
and triple (b) storage function models at a dam reservoir watershed as a case of satisfactory and
unsatisfactory results in Group 2.

In Figure 10, the maximum qobs was recorded in 1999 at the B dam, although P was
recorded in 1998, 2007, 2015, and 2018, larger than in 1999. The increase in qsim could be
reproduced in 1999 by the triple storage function model (Figure 10b), but not the double
storage function model (Figure 10a). This would suggest that the LW export characteristics
at the B dam could be explained by the following three export characteristics: direct export,
baseflow, and one other export. In addition, the reproduction of the increase in qsim in 1999
by P for three years showed the significance of the setting of the initial condition of the
storage of LW in the model.
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Figure 11. Plots of qobs, P, qsim, and the NSE for annual LW export simulation using the double (a)
and triple (b) storage function models at a dam reservoir watershed as a case of satisfactory results in
Group 3.

In Figure 11, the maximum qobs was recorded in 2005 at the C dam, although P was
recorded only 5 years in 2005, 2011, 2017, 2018, and 2019. The increase in qsim could be
reproduced in 2005 by both the double and triple storage function models (Figure 11a,b).
This would suggest that the LW export characteristics at the C dam could be explained by
either two or three export characteristics. Furthermore, the reproduction of the increase
in qsim in 2005 by only P in 2005 also showed the significance of the setting of the initial
condition of the storage of LW in the model, in the same manner as in Figure 10.

As cases of unsatisfactory results are present for both double and triple storage function
models, Figures 12 and 13 show plots of qobs, P, and qsim, which were simulated using the
LW-Budget model, using the double (Figures 12a and 13a) and triple (Figures 12b and 13b)
storage function models at dam reservoir watersheds. Here, the names of the dams cannot
be revealed because of the restrictions of data use, so we used pseudonyms instead of
the actual dam names. In Figure 12, although the maximum qobs was recorded in 2007
and 2012 at the D dam, the increase in qsim could not be reproduced in 2007 and 2012
by both the double and triple storage function models (Figure 12a,b). Therefore, it was
considered that the LW export characteristics at the D dam could not be explained by two
or three export characteristics.
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In Figure 13, the larger qobs were recorded in 1999, 2005, and 2016 at the E dam, al-
though P was remarkably smaller than other dams and was almost constant. The increase
in qsim could not be reproduced in the larger qobs by both the double and triple storage
function models (Figure 13a,b). Therefore, it was considered that the LW export characteris-
tics at the E dam could not be explained by LW recruitment with landslides triggered by
intense rainfalls, as described by Komori et al. (2021) [43].

Water 2024, 16, x FOR PEER REVIEW 15 of 20 
 

 

and 13b) storage function models at dam reservoir watersheds. Here, the names of the 
dams cannot be revealed because of the restrictions of data use, so we used pseudonyms 
instead of the actual dam names. In Figure 12, although the maximum 𝑞  was recorded 
in 2007 and 2012 at the D dam, the increase in  𝑞  could not be reproduced in 2007 and 
2012 by both the double and triple storage function models (Figure 12a,b). Therefore, it 
was considered that the LW export characteristics at the D dam could not be explained by 
two or three export characteristics. 

In Figure 13, the larger 𝑞  were recorded in 1999, 2005, and 2016 at the E dam, 
although 𝑃 was remarkably smaller than other dams and was almost constant. The in-
crease in  𝑞  could not be reproduced in the larger 𝑞  by both the double and triple 
storage function models (Figure 13a,b). Therefore, it was considered that the LW export 
characteristics at the E dam could not be explained by LW recruitment with landslides 
triggered by intense rainfalls, as described by Komori et al. (2021) [43]. 

  

(a) (b) 

Figure 12. Plots of 𝑞 , 𝑃,  𝑞 , and the 𝑁𝑆𝐸 for annual LW export simulation using the double 
(a) and triple (b) storage function models at a dam reservoir watershed as a case of unsatisfactory 
results. 

  

(a) (b) 

Figure 13. Plots of 𝑞 , 𝑃,  𝑞 , and the 𝑁𝑆𝐸 for annual LW export simulation using the double 
(a) and triple (b) storage function models at a dam reservoir watershed as a case of unsatisfactory 
results. 

To examine the statistical differences in the variables in the watershed where LW 
characteristics were reproduced on the application of the double and triple storage func-
tion models, the Mann–Whitney U test was performed. Note that this is one of the non-
parametric statistical tests and is based on the null hypothesis that two populations are 

Figure 13. Plots of qobs, P, qsim, and the NSE for annual LW export simulation using the double (a)
and triple (b) storage function models at a dam reservoir watershed as a case of unsatisfactory results.

To examine the statistical differences in the variables in the watershed where LW
characteristics were reproduced on the application of the double and triple storage function
models, the Mann–Whitney U test was performed. Note that this is one of the non-
parametric statistical tests and is based on the null hypothesis that two populations are the
same, if a particular population tends to have a larger value than the other. The results are
shown in Table 6. Here, the significance level was set at 5% and the watershed variables
were selected based on Seo et al. (2009) [48], analysing LW characteristics for dam reservoir
watersheds across Japan. The watershed variable that satisfied the 5% significance level
was only the watershed area. Namely, a statistical difference in the watershed area was
recognised between the double and triple storage function models. This indicated that the
double storage function model tended to fit larger watershed areas, while the triple storage
function model tended to fit smaller watershed areas. In addition, no statistical differences
were shown for the other watershed variables other than the watershed area, making it
difficult to explain the differences in LW export characteristics between the double and
triple storage function models.

Table 6. Results of the Mann–Whitney U-tests of variables in watersheds where LW characteristics
were reproduced on the application of the double and triple storage function models.

Watershed Variables

NSE > 0.4 Using the Double Storage
Function Model (30)

NSE > 0.4 Using the Triple Storage
Function Model (116) p

Average Standard Deviation Average Standard Deviation

Latitude [degree] 36.81 3.153 36.16 2.824 0.300
Area [km2] 217.5 274.2 118.7 159.4 0.032

Average slope [degree] 18.25 4.650 18.18 5.618 0.971
Average tree density [piece/km2] 50,191 8191 49838 11,472 0.967

River density [km/km2] 1.480 1.847 1.336 1.944 0.990

In Seo et al. (2009), watershed area and latitude were employed as explanatory
variables in the statistical analysis of LW exports observed in dam reservoir watersheds
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across Japan [48]. This was confirmed by the authors’ previous studies and it was inferred
that latitude was employed as a parameter that could explain differences in precipitation
characteristics across Japan [49]. In this study, it is assumed that only the watershed area
was adopted, because differences in precipitation characteristics across Japan have already
been taken into account in LW-Budget, where precipitation was used as an input value.

Table 7 shows the number and proportion of cumulative years that recorded corre-
lation coefficients above the threshold of 0.3, through correlation analysis between six
patterns of cumulative accumulated recruitment LW and runoff LW. In the all-target water-
sheds, 101 watersheds out of 212 watersheds have over 0.3 correlation coefficients. In the
watersheds successfully reproduced using the triple storage function model, the results
of six patterns are 16, 8, 13, 4, 3, and 6 watersheds, respectively. These values differ sig-
nificantly in number compared to the watersheds for which reproducibility was obtained
in the double storage function model, for values of three or more patterns to be gained.
Finally, the double storage function model was 59% of the total for the sum of one and two
(10 watersheds) and the three storage function model was 74% of the total for the sum of
one, two, and three (37 watersheds). This would suggest that the double storage function
model is more likely to be applied to cases with 1–2 runoff characteristics and the triple
storage function model to cases with 1–3 runoff characteristics.

Table 7. The number and proportion of cumulative years that recorded correlation coefficients above
the threshold of 0.3, through correlation analysis between six patterns of cumulative accumulated
recruitment LW and runoff LW.

Six Patterns of Cumulative
Accumulated Recruitment LW

Total Number of Cumulative Years that Recorded Correlation Coefficients above the
Threshold of 0.3.

All-Target Watersheds (212) NSE > 0.4 Using the Double
Storage Function Model (30)

NSE > 0.4 Using the Triple
Storage Function Model (116)

one 30 5 16
two 17 5 8

three 19 2 13
four 10 2 4
five 9 2 3
six 16 1 6

Total 101 17 (56.7%) 50 (43.1%)

4. Conclusions

In this study, we aimed to verify the hypotheses proposed by the authors on the
relationship between LW recruitment and landslides triggered by intense rainfalls, as well
as LW export and the long-term LW budget on an annual scale [43], applying LW-Budget
to 212 dam reservoir watersheds across Japan. We used LW-Budget with not only double
but also triple storage function with the lumped hydrological method at a watershed
scale for the LW entrainment to examine the hypotheses. The objective is to produce new,
testable hypotheses on the characteristics of LW export and the long-term LW budget, on
an annual scale.

Application of the model to target watersheds across the country resulted in repro-
ducibility in the estimation of runoff volume in 134 of the targeted dam reservoir water-
sheds, which were 63.2% of the target basins. This indicated that our results verified these
two relationships as primary relationships and slope failure, which is caused by large wood
recruitment, and long-term budget of large wood are responsible for large wood exports
on an annual scale.

On the other hand, in 36.8% of the target dam reservoir watersheds, LW-Budget could
not reproduce the volume of LW export. In LW recruitment, factors other than slope
failure, such as LW recruitment from riparian forests by floods, have been reported in
Japan. In addition, the authors have already found, in previous studies, that the estimation
of the amount of LW recruitment could not be attributed to the annual maximum 24 h
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precipitation in one case. It will, therefore, be important to develop new approaches for
estimating LW recruitment from sources other than slope failure and to upgrade LW-Budget
from annual to shorter time scales. In LW entrainment, the estimated LW export volume
could only be explained by the watershed area. This suggests that the micro-scale LW
dynamics were not well captured by LW-Budget at the dam reservoir watershed scale.
Therefore, it will be important to upgrade the LW-Budget for applications at smaller
catchment scales. It is also important to understand the differences between the double
and triple storage function models, to better understand the differences in runoff systems
and other aspects of LW export.

Finally, for effective LW management that balances natural hazard mitigation and
ecosystem conservation in the era of global warming, it is essential to understand the
characteristics of LW export at the watershed scale. To this end, it is essential to advance
the understanding of a series of dynamics of LW export and to quantitatively elucidate the
combined effects of biological, physical, and anthropogenic factors. In this respect, it was a
very significant achievement that the generality of LW export characteristics based on a
series of dynamics of LW export in Japan was demonstrated in this study. Furthermore,
the LW-Budget is a model that can estimate the potential LW export volume including
the volume of stored LW in the watershed using only precipitation as input data. We
are convinced that LW-Budget can help to design the LW management on river and dam
reservoirs, as it can predict potential LW export volumes by using predicted precipitation
in the future or probable precipitation.
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