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Abstract: (1) Background: Effective water management in agricultural systems poses a significant
challenge, particularly in the Dengkouyangshui irrigation district. Inefficiencies and insufficient
detail in water usage across crop growth stages have resulted in suboptimal water cycling. Recent
infrastructure improvements and technological interventions necessitate a reevaluation of water
usage, especially concerning changes in irrigation and seepage dynamics. (2) Methods: This study
addresses these concerns by employing an integrated modeling approach that combines the DSSAT
with the HYDRUS-1D soil hydrology model to simulate complex interactions among soil, crop
growth, and irrigation practices within the district. Observational data were used to calibrate and
validate the integrated model, including soil moisture, LAI, and crop yields from the 2022 and
2023 agricultural seasons. (3) Results: The simulation results strongly align with the empirical data,
highlighting the ability of the model to capture the intricate dynamics of soil–water–atmosphere–
plant interactions. (4) Conclusions: The soil’s retention and moisture-holding characteristics exhibited
resilience during periods without water supplementation, with measurable declines in soil moisture
at various depths, indicating the soil’s capacity to support crops in water-limited conditions. This
study delineates water consumption by maize crops throughout their growth cycle, providing insights
into evapotranspiration partitioning and quantifying seepage losses. An in-depth analysis of water
balances at different growth stages informs irrigation strategies, suggesting optimal volumes to
enhance efficiency during critical crop development phases. This integrative modeling approach is
valuable for providing actionable data to optimize the water cycling process and improve agricultural
sustainability in the Dengkouyangshui irrigation district.

Keywords: lift irrigation district; water cycle; DSSAT model; HYDRUS-1D; water balance

1. Introduction

In China, irrigation districts, especially large-scale districts, play a crucial role in
grain and quality agricultural product production. They serve as the cornerstone and
essential safeguard for food production security [1]. The Dengkouyangshui irrigation
district in the Inner Mongolia Autonomous Region is among the significant Yellow River
irrigation projects registered with the Ministry of Water Resources. Nevertheless, a lack
of understanding of the water cycling mechanism in various sub-irrigation areas has
led to suboptimal irrigation water use efficiency. Therefore, investigating water cycling
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processes within the Dengkouyangshui irrigation district is highly important for enhancing
irrigation water use efficiency and boosting crop yields. The water cycle serves as the
crucial link connecting various terrestrial systems, such as the hydrosphere, atmosphere,
lithosphere, and biosphere [2] Hydrological models [3–6] have proven to be effective tools
for exploring the complex mechanisms of water cycling in irrigation districts and are
indispensable in research related to water resource management and the impact of human
productive activities on the water cycle [7]. Numerous scholars have carried out both
experimental and numerical simulation studies on the water cycle in irrigation areas [8–10];
however, these investigations tend to be expensive and time-consuming, and the outcomes
are often specific to each study. The advent of the hydraulic model HEC-RAS [11] and
agricultural hydrological models such as HYDRUS [12], SWAT [13], and SWAP [14] has
provided deeper insights into the dynamics of soil moisture and the behavior of water
cycles within irrigation districts [15]. For instance, Wang Guoshuai et al. used the HYDRUS-
1D model to examine the temporal dynamics of salinity in dunes, examine the interface
between dunes and wasteland, and in wasteland, identify the movement patterns of
water and salt in desert oases [16]. Yu et al. applied the Hydrus-1D model in Beijing to
investigate the boundary flux characteristics of their simulation results, illustrating that
evapotranspiration is the predominant mechanism for soil water reduction in the maize
root zone [17]. Barman et al. assessed the efficiency of the SWAT model in the Periyar
River basin in India and discovered that the model performed well in the watershed, with
a water balance study revealing that surface runoff was the major contributor to the total
effective water amount at 41%, followed by actual evapotranspiration at 28% [18]. Through
comprehensive studies, hydrological models have proven to be effective in simulating the
entire water cycling process. However, in these models, vegetation parameters such as
the leaf area index (LAI) and root depth, which are vital for plant characteristics, are often
simplified or considered constant. Ongoing dynamic changes in vegetation parameters are
frequently overlooked [19].

Consequently, researchers have developed coupled models of crop growth and water
cycling to represent the water cycling processes in irrigation districts more accurately.
For example, Hao Yuanyuan et al. created a distributed model at the irrigation district
scale using the one-dimensional agricultural hydrological model HYDRUS-EPIC to study
the current conditions of soil water and salinity, as well as crop growth under existing
irrigation practices, and to identify challenges within the study area [20]. The findings
showed that high soil salinity levels were a major constraint on crop yield in the district.
Wang Pu et al. [20] established a distributed water transformation model at the irrigation
district scale that integrated irrigation and drainage, farmland soil moisture movement, crop
growth, and groundwater flow, enabling quantitative analysis of the supply, consumption,
and discharge dynamics within the irrigation area [21]. Wang et al. used a coupled
HYDRUS-1D and EPIC model to simulate the soil water–salt dynamics and crop growth
of winter wheat at the Fengqiu National Key Agricultural Ecology Experimental Station
in the North China Plain [22]. They observed decreased evapotranspiration under saline
stress, primarily due to lower crop transpiration. Although saline–alkali stress reduced
grain yield, the trend in water use efficiency varied with precipitation level. Challenges
such as high evaporation rates and low irrigation efficiency remain in large-scale Yellow
River lift irrigation districts, and the water transformation processes during the main crops’
various growth stages are poorly understood.

In summary, the water cycle in irrigation districts plays a vital role in developing and
allocating agricultural water resources. Distributed hydrological models combined with
crop models can effectively describe soil moisture movement within irrigation districts.
Following the continuation of construction support and modernization reforms in the
Dengkouyangshui irrigation district in 2022, the current irrigation and seepage volumes
remain unclear. There is a lack of studies on maize growth under water-saving irrigation
and soil moisture dynamics in the Dengkouyangshui irrigation district of the Inner Mongo-
lia Autonomous Region. Therefore, the objective of this research is to develop a coupled
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model that integrates the one-dimensional agricultural hydrological model HYDRUS-1D
with the crop model DSSAT for the controlled area of the Yuejin Canal and the Gidan
Gate within the Dengkouyangshui irrigation district in Inner Mongolia. Comprehensive
regional soil moisture content and crop growth observations will be conducted for model
calibration and validation. This study aimed to elucidate the water cycling processes at
the agricultural field scale within irrigation districts to precisely describe the water usage
processes during each growth stage of the main crops and to evaluate the water balance.
This research intends to provide a reference for enhancing the efficiency of irrigation water
use on farmlands and for the judicious distribution of agricultural water resources in the
Dengkouyangshui irrigation district.

2. Materials and Methods
2.1. Study Area Overview

The Dengkouyangshui irrigation district is situated on the Tumochuan Plain on the
northern bank of the Yellow River at the southern base of the Daqing Mountains. It extends
across the Donghe District of Baotou City, Tumote Right Banner, Tumote Left Banner, and
Tuoketuo County of Hohhot, spanning coordinates from 40◦24′00′′ N to 40◦34′15′′ N and
from 110◦08′55′′ E to 111◦48′00′′ E. The total area within the district’s irrigation range is
approximately 85.10 million mu (Figure 1). The specific study area includes the controlled
region of Yuejin Canal No. 5 and Gidan Gate, which are located at a longitude of 110◦32′ E
and a latitude of 40◦26′ N. The terrain features a gentle slope, with a gradient between
0.1% and 1%. Characterized by a continental monsoon climate, the area receives average
annual precipitation ranging from 347 mm to 392 mm, experiences an average annual
evaporation rate of 2000 mm, and maintains an average annual temperature between
6.5 ◦C and 7.3 ◦C. The frost-free period in the study area lasts approximately 134 days,
typically supporting only one cropping season annually. The primary crops grown are
maize and sunflower. Irrigation primarily relies on water from the Yellow River, with a
single irrigation event occurring in mid-July during crop growth. The annual average
volume of Yellow River water diverted for irrigation in the Dengkouyangshui district is
approximately 242 million m3. Agricultural water use efficiency for irrigation is low, with
effective utilization coefficients of 0.5032 and 0.5067 for 2022 and 2023, respectively.
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2.2. Experimental Design and Data Collection

The controlled areas of the No. 5 Yuejin Canal and Gidan Gate are located in the
branch canal of the Dengkouyangshui irrigation district, upstream from the Yuejin Canal
and near the Yellow River, under the management of Yellow River irrigation. From May
to September 2022 and 2023, field experiments were performed in this region within the
Inner Mongolia Dengkouyangshui irrigation district, including an agricultural land area
of 56,000 mu. Considering the types of crops, irrigation practices, soil, and groundwater
conditions in the study area, 12 stationary monitoring sites were set up following an ArcGIS
grid pattern (Figure 1). Various indicators, including soil moisture, the height of crop plants,
and the LAI, were monitored on a monthly basis. Irrigation was applied once each year in
mid-July, based on the regional conditions, with irrigation amounts recorded at 120 mm
in 2022 and 124 mm in 2023, alongside yield assessments at the time of harvest. The soil
moisture content was ascertained using the oven-drying technique, the height of the crop
plants was measured with a tape measure, and the leaf area of the crops was evaluated.
Before the commencement of the study, the soil texture at each monitoring site was assessed
using the soil bulk density approach (Table 1), with sampling depths aligned with those
used for measuring soil moisture. A well within the experimental field was designated
for the continuous observation of groundwater levels (monitored once every 30 days,
Figure 2); this information was obtained from the local irrigation district management
office. Daily weather data, such as precipitation, solar radiation, temperature, wind velocity,
and humidity, were acquired from the National Meteorological Information Center.

Table 1. Soil physical properties and VG parameters.

Soil
Depth/cm

Soil Physical Properties VG Parameters

0.02~2 mm 0.002~0.2 mm <0.002 mm Soil Bulk
Density/(g·cm−3) Field Capacity qr qs a/(cm−1) n/% /% /%

0–20 56.830 24.615 18.555 1.59 0.37 0.0670 0.3862 0.0321 1.4623
20–40 62.605 22.580 14.815 1.61 0.28 0.0538 0.3914 0.0415 1.4325
40–60 67.020 21.485 11.495 1.65 0.30 0.0420 0.3831 0.0323 1.4134
60–80 58.450 22.260 19.290 1.52 0.31 0.0586 0.3889 0.0251 1.3841

80–100 55.295 24.810 19.895 1.45 0.28 0.0437 0.3823 0.0220 1.4251
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2.2.1. Soil Physical Properties of the Study Area

Soil samples were obtained from the experimental site at six distinct depths: 0–10 cm,
>10–20 cm, >20–40 cm, >40–60 cm, >60–80 cm, and >80–100 cm, with each layer being
sampled three times, with each sampling interval being 10 cm. The field capacity and
soil bulk density were ascertained using the ring knife method. The soil particle size
distribution was assessed by employing a dry sieve particle size analyzer. The contents of
sand, silt, and clay particles in the various soil layers at each point are shown in Table 1.
Based on the sand, silt, clay contents, and soil bulk density, the van Genuchten (VG) soil
parameters were predicted using the Rosetta conversion function, and the results are
presented in Table 1.

2.2.2. Meteorological Data Collection

The temperature and precipitation data for the years 2022 and 2023, covering the
growing season, are presented in Figure 3. The total precipitation for 2022 and 2023 was
280.5 mm and 242.2 mm, respectively, as of 4 December, 2023, with temperature ranges
extending from −18.3 ◦C to 38.3 ◦C in 2022 and from −25 ◦C to 35.3 ◦C in 2023. The average
temperatures varied between 10.31 ◦C and 12.06 ◦C, resulting in an overall average of
11.18 ◦C. During the growing season, which spans from May 1st to September 30th of both
years, precipitation amounts were 243.9 mm in 2022 and 199.5 mm in 2023, constituting
86.95% and 82.37% of the yearly totals, respectively. The average temperatures recorded
during the growing season were 22.14 ◦C for 2022 and 22.31 ◦C for 2023. The highest
daily average temperature was 30.3 ◦C, observed in June, whereas the lowest daily average
temperature was −18.95 ◦C, noted in January.
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2.2.3. Crop Growing Season

Maize planting typically took place around May 1st, with the harvest occurring around
29 September, resulting in a growing period of approximately 152 days. The rapid growth
phase for maize occurred during June and July, lasting the longest, at approximately 65
Table 2.

Table 2. Corn growth period statistics for 2022 and 2023.

Year Crop Planting
Time

Growing Period
Days/dInitial

Period/d
Rapid Growth

Period/d
Mid-Growth

Period/d
Late Growth

Period/d

2022 Maize 29 April 32 67 35 20 154
2023 Maize 1 May 30 67 35 18 150
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2.2.4. Groundwater Depth

In the No. 5 Yuejin Canal and Gidan Gate areas of the Dengkouyangshui irrigation
district, the groundwater is predominantly deep, with an annual average depth ranging
from 3.10 to 7.67 m. The shallowest groundwater depth was observed in June, measuring
between 7.36 and 7.67 m, whereas the deepest groundwater depth was recorded in March at
3.10 to 3.15 m. Figure 4 displays the annual average groundwater depth for the years 2022
and 2023 in the specified area of the Dengkouyangshui irrigation district. The figure shows
a gradual increase in groundwater depth over recent years, attributable to the adoption of
water conservation practices. Given that the groundwater depth exceeds 3 m, its influence
on this study is considered minimal.

Bioengineering 2023, 10, 1133 4 of 20

evaluations were conducted on diverse pathological gait datasets, including a simulated
pathological gait dataset and a vestibular disorder gait dataset, both meticulously col-
lected utilizing Azure Kinect. Furthermore, rigorous comparative analyses were conducted
against state-of-the-art models specialized in skeleton-based action recognition.

2. Materials and Methods

Most studies in the field of skeleton-based pathological gait recognition have tradi-
tionally focused on two primary approaches: utilizing raw skeleton sequences directly or
extracting gait features, such as gait parameters and joint angles, from these raw sequences.
However, these studies have often treated each data type in isolation or separately. In this
study, we aim to address the potential for improved recognition performance by effectively
combining different types of input data. To achieve this, we propose a novel deep neural
network model. This model adopts a hybrid deep neural network framework, consisting of
GCN, RNN, and ANN layers. Each of these components is specifically designed to encode
skeleton sequences, joint angle sequences, and gait parameters, respectively. The extracted
features from these three distinct data types are then fused together and input into the final
classification layer. A comprehensive illustration of this network is presented in Figure 1.
By employing this innovative approach, our research aims to enhance pathological gait
recognition performance. To demonstrate the effectiveness of our proposed model, we
collected two skeleton datasets using Azure Kinect: a simulated pathological gait dataset
and a vestibular disorder gait dataset, and subsequently conducted evaluations using
these datasets.

Figure 1. Structure of the proposed multi-input hybrid deep neural network. The skeleton sequences,
joint angles, and gait parameters are input to the GCN, RNN, and ANN layers, respectively. Each
encoding layer encodes the input data into a one-dimensional feature vector. The outputs of each
encoding layer are concatenated together and fed to the final classification layer.

2.1. Data Acquisition

A depth camera-based skeleton data collection system was developed in the healthcare
robotics laboratory at the Gwangju Institute of Science and Technology, Korea. An Azure
Kinect and the corresponding body tracking software development kit (SDK) developed
by Microsoft were used to collect the skeleton data. The system collected the data while
a subject walked straight forward toward the sensor approximately 4 m away. The sen-

Figure 4. Groundwater level changes in 2022 and 2023.

2.3. DSSAT-HYDRUS-1D Coupled Model
2.3.1. DSSAT Model

Crop growth models are capable of quantitatively expressing crop growth processes,
yields, and the influence of environmental factors [23]. The Decision Support System for
Agrotechnology Transfer (DSSAT) is one of the most widely applied crop growth models
worldwide and is characterized by multifunctionality, spatialization, digitalization, and
visualization. It allows more accurate predictions of growth patterns, growth potential, and
climate effects than other methods [24].

(1) The DSSAT model’s formula for dry matter accumulation [25] is as follows:

∆TOT = 0.758 × (PARCE × 10−6 × IPAR − 0.004 × TOT)× SWDF, (1)

where ∆TOT represents the daily increase in crop dry matter (t/ha); PARCE denotes the
efficiency of converting photosynthetically active radiation (g/MJ); IPAR is the intercepted
photosynthetically active radiation (MJ/ha); TOT is the total dry matter (t/ha); and SWDF
represents the water stress factor impacting dry matter accumulation.

Within the DSSAT model, the formula for calculating the PARCE is as follows:

PARCE = PARCEmax × {1 − exp[−0.008 × (T − 8)]}, (2)

where PARCEmax denotes the maximum efficiency of photosynthetically active radiation
conversion (g/MJ) and T denotes the daily average temperature (◦C).
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(2) The basic principle of the DSSAT model for calculating water stress is to compare
the relationship between potential transpiration and potential root water uptake. When
moisture is abundant, the potential for root water uptake surpasses the potential for
transpiration. Nonetheless, as water is depleted from the soil through root water uptake and
soil evaporation, the potential for root water uptake diminishes gradually until it arrives at
a specific threshold. At this juncture, the first water stress factor, SWDF1, becomes apparent.
This stress factor primarily affects crop extensional growth, such as dry matter accumulation
and leaf expansion. When potential transpiration equals or surpasses potential root water
uptake, a second stress factor, SWDF2, appears to mainly affect crop growth and biomass
formation processes. The water stress calculation formula [25] is as follows:

SWDF1 =
WSp

RWUEP × Tp
, (3)

SWDF2 =
WSp

Tp
, (4)

where SWDF1 denotes the first water stress factor within the crop model; WSp represents
the potential root water uptake (mm); RWUEP refers to a parameter specific to the species;
Tp indicates the potential transpiration (mm); and SWDF2 is identified as the second water
stress factor in the crop model.

2.3.2. HYDRUS-1D Model

The HYDRUS-1D model, developed by the U.S. Salinity Laboratory, simulates the one-
dimensional vertical movement of water, heat, and solutes in saturated-unsaturated porous
media, including root water uptake [26]. After years of development, HYDRUS-1D has
seen widespread use and can effectively model variations in soil moisture, temperature, and
solute concentrations due to agricultural irrigation and fertilization. The vertical transport of
soil moisture in both saturated and unsaturated media is governed by the modified Richards
equation and the van Genuchten model [27], as detailed in Equations (5)–(8):

∂θ

∂t
=

∂

∂z
[K(h)(

∂h
∂z

+ 1)]− S(z, t), (5)

K(h) = KsSl
e[1 − (1 − S

1
m
e )m]2, (6)

Se =
θ(h)− θr

θs − θr
, (7)

θ(h) =



θr +

θs−θr
(1+|αh|n)m h < 0

θr h > 0


, (8)

where θ represents the volumetric water content (cm3/cm3); K(h) denotes the hydraulic con-
ductivity of unsaturated soil (cm·d−1); S(z, t) is the rate of root water uptake (cm3·cm−3·d−1);
(t) signifies the time (days); (z) indicates the soil depth (cm); (h) is the pressure head (cm);
Ks is the saturated soil hydraulic conductivity (cm·d−1); Se is the effective saturation;
(l) represents the pore connectivity factor; α, m, and n are empirical parameters of the
model; and θr and θs are the residual and saturated water contents of the soil, respectively.

2.3.3. DSSAT-HYDRUS-1D Coupled Model

The DSSAT is predominantly utilized for simulating crop growth and development
processes and currently adopts a water balance method for soil hydrology and water redis-
tribution processes. In contrast, HYDRUS-1D, a hydrological model, employs the numerical
solution of the Richards equation for simulating soil water flow, although its ability to
model crop-related processes is relatively limited. Both DSSAT and HYDRUS-1D have been
extensively applied and validated within their respective fields of application. To elucidate
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the interactions between soil moisture dynamics and crop growth, this paper integrates
DSSAT crop growth simulations into the HYDRUS-1D model. Figure 5 illustrates the
integration process between the HYDRUS-1D and DSSAT models, wherein DSSAT utilizes
crop parameters and weather data to calculate crop growth. The outputs generated by the
DSSAT, such as the root depth, potential evapotranspiration, irrigation, and precipitation
parameters, are passed as inputs to HYDRUS-1D. HYDRUS-1D subsequently calculates the
soil moisture content and the actual rates of transpiration and evaporation, integrates them
daily using the variable time step of HYDRUS-1D, and subsequently sends the information
back to the DSSAT [28]. The temporal and spatial discretization of the two models are
different; thus, synchronization is needed. The models exchange information at a daily time
interval, while HYDRUS-1D performs multiple steps within this interval. Consequently,
the outputs from HYDRUS-1D must be averaged across multiple nodes before being input
into DSSAT.
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2.4. Model Establishment, Calibration, and Validation
2.4.1. Division of Simulation Units in the Study Area

As shown in Figure 6, the depth of the simulation profile for the maize field is 400 cm.
Reflecting the measured soil texture of the maize field (Table 1), the simulation profile was
established with five layers, adhering to the collective research profile divisions outlined in
Table 1. The vertical one-dimensional soil column was discretized into 401 nodes with a
node spacing of 1 cm. The observation points were placed at soil depths of 10 cm, 20 cm,
40 cm, 60 cm, 80 cm, and 100 cm. The maize field simulation period was set from May
1st to 28 September, with 150 simulation days. The initial timestep is set to 0.1 days, the
minimum timestep is set to 0.001 days, and the maximum timestep is set to 5 days.

2.4.2. Initial and Boundary Conditions

The boundary conditions for water movement in the maize field soil column are as
follows: the upper boundary is set to atmospheric conditions, while the lower boundary is
a variable head condition. Atmospheric boundary conditions necessitate the input of daily
amounts of precipitation, evaporation, and transpiration. The variable head boundary
condition employs daily values of groundwater depth to ascertain variable pressure head
values. The initial state of the soil profile is determined by the soil moisture content
measured in the field.
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2.4.3. Soil Parameters

Initial soil hydraulic parameters (θs, θr, α, n, l) are determined based on the soil bulk
density and the content of sand, silt, and clay particles (Table 1), with the bulk density,
θs, Ks, and the content of sand, silt, and clay specified based on measured values (the soil
data for DSSAT modeling are the same as those for HYDRUS-1D). The root water uptake
parameters (h1, h2, h3h, h3l, h4, hφ, and hφ50) were set using default values provided by
the software.

2.4.4. Model Calibration and Validation

The parameters were calibrated against 2022 data points for soil moisture content,
leaf area index, and yield, while 2023 data points were utilized to validate the model’s
simulation accuracy. For model calibration and evaluation, the root mean square error
(RMSE), regression coefficient (b), coefficient of determination (R2), and mean relative error
(MRE) were used [29].

RMSE =

√√√√ 1
N
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b =
∑N

i=1 Oi × Pi

∑N
i=1 Oi

2 (11)

MRE =
1
N

N

∑
i=1

(Pi − Oi)

Oi
× 100% (12)

where N represents the number of measured values, Oi represents the measured value,
Pi is the (i) simulated value, O is the mean of the observed values, and P is the mean of
the simulated values. The closer the MRE and RMSE are to 0 and the closer the regression
coefficient (b) is to 1, the greater the accuracy of the model simulation. An R2 value close to
1 signifies that the model effectively captures the trends of the measured values. Generally,
an MRE within ±10%, an RMSE-to-mean measured value ratio within 20%, and an R2

above 0.5 are considered to meet the calibration requirements.



Water 2024, 16, 1049 10 of 19

3. Results
3.1. Model Calibration

The model was calibrated using soil moisture, leaf area index (LAI), and yield data
collected in 2022. The simulated soil moisture values closely matched the measured values,
and the simulation results accurately reflected the dynamic changes in soil moisture. The
accuracy of the parameters met the requirements, indicating the high simulation precision
of the model. The calibrated soil hydraulic parameters are detailed in Table 3. The values of
the calibrated root water uptake parameters are provided in Table 4. As shown in Table 5,
the average soil moisture from 0 to 100 cm had an MRE of 5.77%, an RMSE of 0.02, a
coefficient of determination (R2) of 0.90, and a regression coefficient (b) of 1.02. The LAI had
an MRE of 8.28%, an RMSE of 0.16, an R2 of 0.92, and a b value of 0.98. The yield had an
MRE of 2.34%, an RMSE of 1.30, an R2 of 0.84, and a b value of 0.93. The genetic parameters
for the Dssat-Forages-Alfalfa model, consisting of six parameters, were adjusted based on
experimental data from 2022 to 2023 and the DSSAT-GLUE model parameter estimation
tool, with the revised genetic parameters [30] displayed in Table 6.

Table 3. The soil water characteristic parameters were determined.

Land Types Soil Layer/cm θr θs α n Ks/(cm·d−1) l

Maize

0~20 0.0670 0.3862 0.0264 1.3782 36.82 0.5
20~40 0.0538 0.3914 0.0232 1.426 58.35 0.5
40~60 0.0420 0.3831 0.0323 1.4134 43.62 0.5
60~80 0.0586 0.3889 0.0237 1.3652 38.72 0.5
80~100 0.0437 0.3823 0.0208 1.4156 60.25 0.5

Table 4. The parameter of root uptake was calibrated.

Function Function/cm Description Calibration Values/cm

Water stress
function

h1 No water extraction at higher pressure heads −12
h2 h below which optimal water starts −35

h3h
h below which water uptake reduction starts at high

atmospheric demand −325

h3l
h below which water uptake reduction starts at low

atmospheric demand −600

h4 h below which water uptake is zero −8000
r2H Threshold level of high atmospheric demand/(cmd−1) 0.5
r2L Threshold level of low atmospheric demand/(cmd−1) 0.1

Table 5. Model simulation accuracy index evaluation.

Statistical Index RMSE R2 b MRE/%

Model calibration
(2022)

Soil moisture content (cm3/cm3) 0.02 0.90 1.02 5.77
LAI 0.16 0.92 0.98 8.28

Yield (kg/hm2) 1.30 0.84 0.93 2.34

Model validation
(2023)

Soil moisture content (cm3/cm3) 0.04 0.89 0.92 6.03
LAI 0.20 0.91 1.12 6.57

Yield (kg/hm2) 1.24 0.88 0.90 1.58
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Table 6. Genetic parameters of maize.

Parameter P1 P2 P5 G2 G3 PHINT

Range 100~400 0~4 600~1000 500~1000 5~12 30~75
Optimal value 385.4 0.496 814.5 985.0 11.5 75.0

P1: Days from emergence to the end of the juvenile phase (◦C d); P2: photoperiod sensitivity coefficient;
P5: days from silking to phenological maturity (◦C d); G2: potential kernel number; G3: potential kernel growth
rate (mg/(grain·d)); PHINT: days required for a leaf tip to emerge (◦C d).

3.2. Model Validation

The model was validated against soil moisture and temperature data measured begin-
ning in 2023, with all the parameters set to the values obtained after model calibration. The
validation results are displayed in Figure 7, with the evaluation indicators for soil moisture
(MRE: 6.03%, RMSE: 0.04, R2: 0.89, b: 0.92), LAI (MRE: 6.57%, RMSE: 0.20, R2: 0.91, b: 1.12),
and yield (MRE: 1.58%, RMSE: 1.24, R2: 0.88, b: 0.90) meeting the required precision and
closely aligning with the calibration results, as shown in Table 3.
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Figure 2. Data acquisition environment: (a) simulated pathological gait dataset and (b) vestibular
disorder gait dataset.

2.2. Graph Convolutional Network for Skeleton Data

CNNs are renowned for their effectiveness in tasks involving visual data analysis,
primarily due to their ability to capture intricate spatial relationships between pixels within
an image, a feature that sets them apart [34]. In contrast, a GCN is particularly well
suited for tasks such as node classification and link prediction within data structured as
graphs [35]. Examples of such data encompass social networks, chemical molecules, and
skeletal datasets. A GCN is known as the most powerful structure for skeleton-based action
recognition. Yan et al. [36] first introduced a method to apply a spatial–temporal graph
convolutional network (ST-GCN) for skeleton-based action recognition. They suggested a
way to efficiently process skeleton sequences by simultaneously understanding the spatial
and temporal characteristics of the skeleton data. Subsequently, many modified GCN
structures have been introduced, and the performance of skeleton-based action recognition
continues to improve [37–43]. In this study, we adopt the ideas and formulations of the
ST-GCN proposed in [36] to encode skeleton data.

The skeleton sequences are denoted as a spatial–temporal graph G = (V, E). The node
set V = {vti|t = 1, ..., T, i = 1, ..., N} contains all the joints in the skeleton sequences, where
T and N denote the number of sequences and the number of joints, respectively. Every
node includes three channels vti = (xti, yti, zti) since we use the 3-dimensional position
information of each joint. The edge set E is divided into two subsets, the edge set of
naturally connected human joints (intraskeleton edges) and the edge set of consecutive
frames on the same joint (interframe edges), which are denoted by ES =

{
vtivtj

∣∣(i, j) ∈ H
}

and EF =
{

vtiv(t+1)i

}
, respectively, where H is the set of naturally connected joints.

The spatial convolution operation for a joint node vti can be formulated as the follow-
ing equation:

Fout(vti) = ∑
vtj∈B(vti)

1
Zti(vtj)

Fin(p(vti, vtj)) · w(Mti(vtj)) (1)

where Fout and Fin denote the output and input features of the GCN, respectively. Zti
(
vtj
)

denotes a normalization term to balance the contribution of each subset. A sampling
function p

(
vti, vtj

)
is defined on the neighbor set B(vti) =

{
vtj
∣∣d
(
vtj, vti

)
≤ D

}
, where

d
(
vtj, vti

)
denotes the minimum length of the path from vtj to vti. A weight function w is

defined by partitioning the neighbor set into subsets with a numeric label based on a
mapping function Mti

(
vtj
)

that maps the neighbor nodes into their subset labels.
Yan et al. [36] extended the concept of a neighborhood to cover temporally consecutive

joints by modifying the neighbor set B(vti) and defining a spatial–temporal mapping
function MST as follows:

B(vti) =
{

vqj
∣∣d
(
vtj, vti

)
≤ K, |q − t| ≤ ⌊Γ/2⌋

}
(2)

Figure 7. The validation plot of the soil moisture content, LAI, and yield in 2023.

3.3. Soil Moisture Dynamics

The DSSAT-HYDRUS-1D coupled model simulation results from 2022 and 2023 were
used to analyze the dynamic changes in soil moisture in maize fields. The detailed changes
are illustrated in Figure 8. Figure 8a shows that during the period from May 1st to
9 July, precipitation was sparse, accounting for only 22.6% of the total precipitation during
the growing season. On many days, the accumulated precipitation did not exceed 5 mm.
Consequently, between the beginning of the study and 9 July, only the surface soil moisture
(0–40 cm) exhibited minor fluctuations, while the moisture content in the 40–100 cm soil
layer remained largely unchanged. Following concentrated precipitation from 10 July to
4 September, as indicated in Figure 3, with daily precipitation peaking at 98.2 mm, signifi-
cant changes were observed in the surface soil layer (0–40 cm), and the moisture content in
the 40–100 cm soil layer progressively increased due to infiltration. The soil exhibited a high
water retention capacity, leading to slow moisture depletion in the absence of additional
water sources; between June 22nd and 9 July, the moisture content at soil depths of 10 cm,
20 cm, and 40 cm decreased by 47.68%, 30.24%, and 22.81%, respectively. During the
period of concentrated precipitation, the moisture content at soil depths of 10 cm, 20 cm,
40 cm, 60 cm, 80 cm, and 100 cm increased by 58.62%, 40.17%, 34.46%, 27.95%, 13.28%, and
5.40%, respectively.
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(a). Soil moisture content in 2022

(b). Soil moisture content in 2023

Figure 1. Structure of the proposed multi-input hybrid deep neural network. The skeleton sequences,
joint angles, and gait parameters are input to the GCN, RNN, and ANN layers, respectively. Each
encoding layer encodes the input data into a one-dimensional feature vector. The outputs of each
encoding layer are concatenated together and fed to the final classification layer.
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Figure 1. Structure of the proposed multi-input hybrid deep neural network. The skeleton sequences,
joint angles, and gait parameters are input to the GCN, RNN, and ANN layers, respectively. Each
encoding layer encodes the input data into a one-dimensional feature vector. The outputs of each
encoding layer are concatenated together and fed to the final classification layer.

Figure 8. Comparison of the simulated and measured values of soil moisture content at the model
calibration test site in 2022 (a) and 2023 (b).

The soil moisture changes in 2023 are depicted in Figure 8b. The experimental site
received irrigation once on 10 July 2023, in accordance with local irrigation practices. Pre-
cipitation in 2023 primarily occurred from mid-June to early September, comprising 66.51%
of the total precipitation during the growing season (as shown in Figure 2). Consequently,
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the soil moisture content exhibited significant fluctuations during this period, with average
values at soil depths of 10 cm, 20 cm, 40 cm, 60 cm, 80 cm, and 100 cm of 0.24 cm3/cm3,
0.25 cm3/cm3, 0.24 cm3/cm3, 0.21 cm3/cm3, 0.22 cm3/cm3, and 0.21 cm3/cm3, respectively.
The percentages of the increase in soil moisture content before and after irrigation at depths
of 10 cm, 20 cm, 40 cm, 60 cm, 80 cm, and 100 cm were 94.41%, 89.58%, 87.82%, 79.47%,
66.85%, and 62.98%, respectively.

3.4. Impact of Soil Moisture Variation on Crop Growth

The LAIs of maize plants in 2022 and 2023 are depicted in Figure 9. The LAI expe-
rienced considerable variations in line with the growth stages of the crop, displaying a
characteristically unimodal pattern that was consistent across both years. Growth com-
menced in mid-May, rapidly accelerating through the fast growth period to a peak, followed
by a gradual decline during the middle to late growth stages as the maize began to senesce
and the leaves eventually yellowed and withered. In 2022, the peak maize LAI occurred on
August 2nd, preceded by a noticeable downward trend in the soil moisture content. This
result suggested a greater water demand during periods of increased LAI. As the maize
continued to grow and the LAI started to decline, the rate of soil moisture reduction began
to slow. In 2023, the peak LAI reached 4.79 on 4 August.

Bioengineering 2023, 10, 1133 4 of 21

evaluations were conducted on diverse pathological gait datasets, including a simulated
pathological gait dataset and a vestibular disorder gait dataset, both meticulously col-
lected utilizing Azure Kinect. Furthermore, rigorous comparative analyses were conducted
against state-of-the-art models specialized in skeleton-based action recognition.

2. Materials and Methods

Most studies in the field of skeleton-based pathological gait recognition have tradi-
tionally focused on two primary approaches: utilizing raw skeleton sequences directly or
extracting gait features, such as gait parameters and joint angles, from these raw sequences.
However, these studies have often treated each data type in isolation or separately. In this
study, we aim to address the potential for improved recognition performance by effectively
combining different types of input data. To achieve this, we propose a novel deep neural
network model. This model adopts a hybrid deep neural network framework, consisting of
GCN, RNN, and ANN layers. Each of these components is specifically designed to encode
skeleton sequences, joint angle sequences, and gait parameters, respectively. The extracted
features from these three distinct data types are then fused together and input into the final
classification layer. A comprehensive illustration of this network is presented in Figure 1.
By employing this innovative approach, our research aims to enhance pathological gait
recognition performance. To demonstrate the effectiveness of our proposed model, we
collected two skeleton datasets using Azure Kinect: a simulated pathological gait dataset
and a vestibular disorder gait dataset, and subsequently conducted evaluations using
these datasets.

Figure 1. Structure of the proposed multi-input hybrid deep neural network. The skeleton sequences,
joint angles, and gait parameters are input to the GCN, RNN, and ANN layers, respectively. Each
encoding layer encodes the input data into a one-dimensional feature vector. The outputs of each
encoding layer are concatenated together and fed to the final classification layer.

Figure 9. Comparison of the simulated and measured leaf area indices and dry matter accumulation
in the experimental plots in 2022 and 2023.

The yield of summer maize is intricately linked to the production and accumulation of
dry matter, with the primary strategy for yield enhancement being an increase in dry matter
quantity. The accumulation of dry matter commenced at a slow pace from the rapid growth
stage, accelerated from the mid-growth to late-growth stages, and then decelerated after
the late-growth stage. In 2022, an exponential increase in dry matter accumulation, which
requires significant water resources, was observed during the mid-growth period. The
precipitation in this period resulted in elevated soil moisture levels, which then declined
swiftly. This phase was followed by a period of steady growth, with an average daily yield
growth rate of 56.00 kg/hm2 across the entire growth cycle. In 2023, a phase of slow growth
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was noted in early September, aligning with a gradual reduction in soil moisture levels.
Throughout the entire growth cycle, the average daily yield growth rate was 60.42 kg/hm2.

3.5. Analysis of Water Dynamics during Crop Growth Stages

Using outputs from the DSSAT-HYDRUS-1D coupled model for soil moisture, evap-
otranspiration, and groundwater recharge in maize during 2022 and 2023 and based on
water balance principles, an analysis of water variation within the 0–100 cm soil profile
across different growth stages was conducted. The results are depicted in Figure 10.
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In 2022, irrigation in the experimental field was concentrated during the rapid growth
period (from 10 July to 16 July), increasing soil moisture content and resulting in 0.18 cm
of water percolation in the 0–100 cm soil layer. On 14 August, 98.2 mm of precipitation
during the mid-growth period caused the greatest percolation of the period at 4.11 cm. The
total percolation during the growing season amounted to 4.47 cm, representing 91.9% of
the season’s total percolation. The rapid and mid-growth periods had the highest rates of
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evapotranspiration, recorded at 14.80 cm and 26.32 cm, constituting 29.95% and 53.26%
of the total evapotranspiration, respectively. Evaporation and transpiration accounted
for 52.25% and 83.54% of the water input (precipitation + irrigation), respectively, with
percolation accounting for 4.47 cm or 12.28% of the total input water.

In 2023, percolation in the experimental field was about 4.07 cm, mainly during the
rapid growth and post-growth periods, at 1.71 cm and 1.32 cm, respectively, accounting
for 74.47% of the total percolation. This amount correlated with 73.7 mm and 105.8 mm
of precipitation in these periods, constituting 66.51% of the total precipitation, alongside
one irrigation event during the rapid growth period. The highest evapotranspiration,
at 24.47 cm, occurred during the mid-growth period, accounting for 48.23% of the total
evapotranspiration. Evaporation and transpiration represented 52.85% and 75.96% of
the water input (precipitation + irrigation), respectively. Evaporation at the beginning of
growth ranged from 38.80 mm to 40.60 mm, with an average rate of 1.29 to 1.35 mm/d.
During the rapid growth period, it ranged from 57.60 mm to 60.40 mm, with an average
rate of 0.86 to 0.90 mm/d. During the mid-growth period, the evaporation ranged from
76.80 mm to 84 mm, with an average rate of 2.19 to 2.40 mm/d. During the post-growth
period, it ranged from 17.00 mm to 23.2 mm, with an average rate of 0.94 to 1.29 mm/d.
The evaporation rate exhibited a pattern of starting and ending increase, with a dip in
the middle. The average transpiration rates during the early growth, rapid growth, mid-
growth, and post-growth periods were 0.06 to 0.12 mm/d, 1.35 to 1.50 mm/d, 4.59 to
5.33 mm/d, and 1.41 to 1.93 mm/d, respectively, showing an initial increase followed
by a decrease. The total water consumption of the crop throughout the growing season
was between 494.2 mm and 507.4 mm, following a pattern of initial increase followed by
a decrease.

4. Discussion

Field experiments and numerical simulations were conducted in the Dengkouyangshui
irrigation district of Inner Mongolia at the Wuhe and Gaiden sluice research sites in 2022 and
2023. A coupled model was constructed by integrating the one-dimensional agricultural
hydrological model HYDRUS-1D with the crop model DSSAT. This DSSAT-HYDRUS-1D
coupled model underwent calibration and validation with 2022 and 2023 data (including
soil moisture content, leaf area index, and crop yield) [31]. The calibration matched the
simulated and measured values [32], effectively representing the soil moisture cycle within
the Wuhe and Gaiden sluice research areas. In the coupled model, the root mean square
error (RMSE) for the soil moisture content ranged from 0.02 to 0.04, while the RMSE for
the leaf area index varied from 0.16 to 0.20. These results are comparable to those obtained
by Li Lei [33], who integrated remote sensing data on soil moisture in the maize root zone
and developed a coupled model combining the crop growth model (WOFOST) and the
hydrological model (HYDRUS-1D), achieving soil moisture RMSE values between 0.073
and 0.101 and leaf area index RMSE values between 0.45 and 1.05. The precision of the
RMSE in our model surpassed that of Li Lei’s study, possibly due to the latter’s method
of dividing the 0–100 cm soil profile into just two layers, which might have reduced the
accuracy. Using the DSSAT-HYDRUS-1D coupled model, the soil moisture content was
simulated for the entire maize-growing period. The study revealed that from the start
of the period to early July, when precipitation was minimal, only surface soil moisture
(0–40 cm) showed minor variations, whereas the moisture content in the 40–100 cm soil
layer remained mostly constant. With concentrated precipitation from mid-July to early
September, significant moisture content changes occurred in the 0–40 cm surface soil
layer, and the moisture content in the 40–100 cm soil layer gradually increased due to
infiltration. Various soil depths reached peak moisture contents in August or September,
consistent with the findings of researchers such as Cheng et al. [34] and Wang et al. [16].
According to 2022 and 2023, the leaf area index (LAI) changed notably across the crop
growth stages, following a similar unimodal pattern in both years and reaching its peak in
early August (4.23 to 4.79), which falls within the LAImax value range for the northwestern
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region (4.2 to 6.2) [35]. During this time, the soil moisture content significantly decreased,
supporting the observations of Li Donghao [36]. Over the two years, the data showed
that dry matter accumulation experienced exponential growth during the mid-growth
period, coinciding with a high demand for water. Following precipitation, the soil moisture
increases and then rapidly decreases, peaking at harvest [37]. The average daily yield
growth rate throughout the entire growing season was between 56.00 and 60.42 kg/hm2.
Feng et al. [38], using a combination of the HYDRUS model and the EPIC module, assessed
the impact of saline water irrigation on grain yield under subsurface drainage conditions.
The findings indicated that, at a salinity level of 4.4 dS m−1, the average daily grain yield
growth rate was approximately 50.67 kg/hm2. The yield in this study was greater than that
reported by Feng et al. [38], possibly because the impact of salinity on crop growth was not
considered in this research.

The investigation showed that the evaporation amounts for maize during the early
growth, rapid growth, mid-growth, and post-growth stages ranged from 38.80 mm to
40.60 mm, 57.60 mm to 60.40 mm, 76.80 mm to 84.00 mm, and 17.00 mm to 23.20 mm,
respectively; the average evaporation rates were 1.29 to 1.35 mm/d, 0.86 to 0.90 mm/d,
2.19 to 2.40 mm/d, and 0.94 to 1.29 mm/d, respectively. During the maize growing period,
the evaporation rate peaked at the beginning and end, with a decrease in the middle,
echoing the findings of Zhang et al. [39] in the Yellow River Irrigation District. The average
transpiration rates of the plants during the early growth, rapid growth, mid-growth, and
post-growth stages were 0.06 to 0.12 mm/d, 1.35 to 1.50 mm/d, 4.59 to 5.33 mm/d, and 1.41
to 1.93 mm/d, respectively, demonstrating an increase followed by a decrease. The total
water consumption of the crop throughout the growing season was between 494.2 mm and
507.4 mm. These results align with those of Fu et al. [40], who simulated the water balance
during the summer maize growing period using the HYDRUS-2D model. Research by
Ren et al. [41] on a typical irrigation-drainage unit in the Hetao Irrigation District showed
that crop water consumption during the growing season ranged from 495 mm to 567 mm,
which is greater than the findings of this study because of the greater net irrigation depth
and more frequent irrigation events. The total deep percolation of the soil throughout the
growing season ranged from 44.70 mm to 60.70 mm, making up 12.28% to 15.42% of the
input water (irrigation + precipitation), in agreement with the studies of Chen [42], Zhao
and Zhao [43], and Yang [44]. According to Chen Junwu, soil percolation is influenced not
by irrigation intensity but by the soil moisture content before irrigation [42]. The lower
percolation rate in this study could be due to the reduced initial soil moisture content
measured. In the post-growth stage of 2022, owing to decreased precipitation, all the
input water was used for crop growth, leading to no percolation, which is consistent with
Yang’s [44] observations.

This study focused on water movement in crops but did not examine solute transport,
limiting itself to the water cycle process on a small agricultural scale. Future efforts will
include the use of the DSSAT-HYDRUS-1D coupled model and the ArcGIS platform, along
with regional soil water and salinity data as well as crop growth data, to quantitatively
evaluate the spatiotemporal status of soil water, salinity, and crop growth across the entire
Dengkouyangshui irrigation district.

5. Conclusions

This paper integrates the HYDRUS-1D model with the DSSAT crop model through the
DSSAT-HYDRUS-1D coupled model to investigate the agricultural water cycle process in
maize fields within the Wuhe and Gaiden sluice areas of the Dengkouyangshui irrigation
district in Inner Mongolia. The principal findings are summarized as follows:

(1) The DSSAT-HYDRUS-1D coupled model underwent calibration and validation
with data collected in 2022 and 2023. The root mean square error (RMSE) relative to the
average measured values ranged from 5.03% to 15.74%, the mean relative error (MRE)
ranged from 4.00% to 7.79%, the coefficient of determination (R2) ranged from 0.77 to 0.94,
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and the regression coefficient (b) ranged from 0.89 to 1.06. The accuracy of the parameters
was within acceptable limits, indicating that the model achieved high simulation precision.

(2) The soil at the study site was characterized by relatively high water retention
and holding capacities. Without water replenishment, soil moisture depletion gradually
decreased from late June to early July, with moisture decreases of 47.68%, 30.24%, and
22.81% in the 10 cm, 20 cm, and 40 cm soil layers, respectively. The moisture content in
the shallow (0–40 cm) and deeper (40–100 cm) soil layers increased by 78.62% to 94.41%
and 60.33% to 79.47%, respectively, before and after irrigation. The leaf area index varied
significantly across different crop growth stages, showing a consistent unimodal pattern
over two years, with an average daily yield increase of 56.00 to 60.42 kg/hm2 throughout
the growing season.

(3) The total water consumption for maize at the site during the growing season
was between 494.2 mm and 507.4 mm. Soil evaporation and transpiration represented
52.25% to 52.85% and 75.96% to 83.54% of the total input water (precipitation + irrigation),
respectively. The percolation ranged from 4.47 cm to 6.07 cm, accounting for 10.15% to
13.09% of the total input water. The analysis of the water balance during different crop
growth stages suggested that the optimal irrigation volume during the rapid growth period
should be between 104 mm and 120 mm.
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