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Abstract: Model calibration is essential for acceptable model performance and applications. The
Hybrid-Maize model, developed at the University of Nebraska-Lincoln, is a process-based crop
simulation model that simulates maize growth as a function of crop and field management and
environmental conditions. In this study, we calibrated and validated the Hybrid-Maize model using
soil moisture and yield data from eight commercial production fields in two years. We used a new
method for the calibration and multi-parameter optimization (MPO) based on kriging with modified
criteria for selecting the parameter combinations. The soil moisture-related parameter combination
(SM-PC3) improved simulations of soil water dynamics, but improvement in model performance
is still required. The grain yield-related parameter combination significantly improved the yield
simulation. We concluded that the calibrated model is good enough for irrigation water management
at the field scale. Future studies should focus on improving the model performance in simulating
total soil water (TSW) dynamics at different soil depths by including more soil water processes in a
more dynamic manner.

Keywords: crop modeling; crop yield; soil moisture; Hybrid-Maize; multi-parameter optimization

1. Introduction

Crop models are essential tools for understanding and predicting crop growth and
yield in response to weather variation and management [1–7]. With climate change being
one of the significant uncertainties to crop productivity [8], simulation models have been
used extensively to investigate the potential impacts of climate change on crop growth
and yield [9–11]. However, successful applications are still a challenge [12,13], because the
mathematical functions that describe crop growth and its responses to the environment are
still relatively insufficient in capturing all interactions of the processes [14].

The Hybrid-Maize model is a process-based crop model [15] developed using ex-
perimental data largely from the US Corn Belt. It has been used to simulate maize yield
responses to changes in climate and crop management at plot and field scales in different
geographic regions [15–24]. Although the Hybrid-Maize model captures corn growth
processes and yield satisfactorily in most reported studies, many of the crop physiology
parameters are calibrated based on data that are a few decades old. With farmers’ constant
adoption of newer crop cultivars [25–30], it becomes important to know how well the
Hybrid-Maize model simulates corn yield and other processes when using the default
model parameters, in production fields under current cultivar and management conditions,
and how to calibrate model parameters effectively if needed.
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Several calibration methods have been used in modeling, including least squares [13,31,32],
Bayesian parameter estimation [33,34], Markov chain Monte Carlo parameter estima-
tion [35,36], generalized likelihood uncertainty estimation (GLUE) [37–39], and manual trial-
and-error method [3,40]. While most studies calibrated their models for yield only [40–43],
some also calibrated for variables that are important to yield, including total biomass,
LAI, and soil moisture. [44–47]. Since crop yield and many model outputs often depend
on multiple model parameters [34], there is a need to calibrate all sensitive parameters,
either separately or simultaneously. A good calibration method should not only reduce
the uncertainty of parameters [14,48] but also mitigate the computational burden of the
calibration process.

The Hybrid-Maize model does not have a built-in calibration routine. As a result, it
requires a separate external process of model calibration. Because values of some model
parameters are inter-correlated, it requires efficient and effective methods for this type of
model calibration. A kriging-based multi-parameter optimization method for calibrating
the Hybrid-Maize model was recently developed [20]. Although the stepwise approach
was robust enough to cater to uncertainties in parameter estimation, the model was only
calibrated for crop yield on plot-scale experiments. In addition, the Hybrid-Maize model
was not calibrated for soil moisture, which is one of the major variables that affect crop yield
in the western US Corn Belt. The objectives of this study were the following: (1) demonstrate
a stepwise kriging approach for calibration and multi-parameter optimization (MPO) for
daily soil moisture and final grain yield in production fields, and (2) validate the model
outputs using independent datasets from the same farm.

2. Materials and Methods
2.1. The Study Fields

The field data were collected in two years from 2019 to 2020 from eight privately
owned maize production fields in Elgin, Nebraska (Figure 1). The region has a humid
temperate climate with a maize growing season from late April to late September. The long-
term average annual precipitation is 686 mm. Figure 2 shows the monthly and long-term
precipitation and grass-reference evapotranspiration (ETo) of crop growing seasons of 2019
and 2020. The predominant soil textures across all the fields are loamy sand and sandy
loam (https://websoilsurvey.nrcs.usda.gov/app/, accessed on 10 June 2019). The soil is
well-drained, with a slope of the fields ranging from 0 to 6%.
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Figure 2. (a) Monthly total precipitation in 2019, 2020, and average of 1999 to 2018 growing seasons, 
(b) cumulative precipitation and grass-reference evapotranspiration (ETo) in 2019, 2020, and aver-
age of 1999 to 2018 growing seasons. 
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Figure 2. (a) Monthly total precipitation in 2019, 2020, and average of 1999 to 2018 growing seasons,
(b) cumulative precipitation and grass-reference evapotranspiration (ETo) in 2019, 2020, and average
of 1999 to 2018 growing seasons.

2.2. Crop Management

The eight fields are referred to as Home Field (HF), East Field (EF), Links Field (LF),
Kelly Field (KF), North Koinzan Field (NKF), South Koinzan Field (SKF), Johnson Field
(JF), and North Field (NF). Due to crop rotation between maize and soybean, only six fields
were used in each of the growing seasons. The size of the fields ranges from 49 to 55 ha.
Prior to planting, all fields were tilled using a disc harrow. Two row spacings, 51 and 76 cm,
were used in all fields with a seeding depth of 6 cm. The farmer also used variable seeding
rate technology for achieving optimal profits. The seeding rates were based on normalized
yield return of the past 10 years. Table 1a summarizes the crop management for the same
four fields out of the six fields in each growing season in both years, while Table 1b contains
similar information but for other four fields, two from each year due to crop rotation.
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Table 1. (a) Crop and management practices for the four continuous maize fields in 2019 and 2020.
(b) Crop and management practices of the two maize after soybean rotation fields in 2019 and 2020.

(a)

Field

KF HF NKF SKF

2019

Planting date 25 April 2019 4 May 2019 26 April 2019 26 April 2019
Harvest date 8 October 2019 15 October 2019 10 October 2019 11 October 2019

Hybrid
Channel 213-19stxrib;

Pioneer P1197AM
and P1197AMT

Channel 210-79stxrib
212-90stxrib,

and 213-19vt2prib

Channel 213-19vt2prib;
Pioneer P1197AM

and P1370Q

Channel 213-19vt2prib;
Pioneer P1197AM

and P1370Q
Weighted average seeding

rate (seed/ha) 81,500 80,220 90,100 87,290

Nitrogen fertilizer
(kg N/ha) 281 269 278 280

Irrigation amount (mm) 227 214 193 193
Rainfall amount (mm) 518 503 514 514

2020

Planting date 1 May 2020 1 May 2020 25 April 2020 25 April 2020
Harvest date 20 October 2020 19 October 2020 12 October 2020 13 October 2019

Seed brand
Cultivar

Channel 211-66stx and
213-93stxrib;

Pioneer P1108Q

Channel 213-19stxrib;
Pioneer P1108Q

Channel 213-19vt2 and
216-36stxrib;

Pioneer P1415Q

Channel 213-19vt2 and
216-36stxrib;

Pioneer P1415Q
Weighted average seeding

rate (seed/ha) 81,390 78,340 86,800 87,070

Nitrogen fertilizer
(Kg N/ha) 280 280 280 270

Irrigation amount (mm) 278 278 298 302
Rainfall amount (mm) 360 360 361 361

(b)

Field EF LF JF NF

2019 2020

Planting date 2 May 2019 24 April 2019 26 April 2020 26 April 2020
Harvest date 16 October 2019 8 October 2019 14 October 2020 15 October 2020

Seed brand
Cultivar

Channel 213-19stxrib
and 213-19vt2prib

Channel 213-19stxrib; and
Pioneer P1197AM

Golden Harvest 13H15
and Pioneer P1415Q

Golden Harvest 13H15
Channel 209-51VT2PRIB,

211-66stx, and
213-19VT2PRIB.

Weighted average seeding
rate (seed/ha) 79,680 80,900 78,980 82,490

Fertilizer (Kg/ha) 268 280 283 268
Irrigation amount (mm) 202 218 298 284
Rainfall amount (mm) 503 518 360 334

2.3. Measurement of Soil Moisture and Maize Yield

Acclima Time Domain Reflectometer (TDR-315 and TDR-315L, Acclima, Inc., Meridian,
ID, USA) soil moisture sensors were installed at depths of 0.25, 0.46, 0.66, and 0.86 m at
the dominant soil texture in each field. The sensors were connected to data loggers and
soil moisture data were recorded at 30 s intervals. For data analysis, however, the data
were aggregated to a daily interval. Corn grain yield for each field was determined by the
combine yield monitor and adjusted to a 15.5% grain moisture content.

2.4. Model Simulation Setup

Input data required by the Hybrid-Maize model include daily weather data (including
solar radiation, maximum and minimum temperature, precipitation, humidity, and refer-
ence evapotranspiration), planting date, hybrid brand and maturity, and plant population.
The daily weather data were obtained from the Elgin weather station, which is less than
1 km away from the farthest field used in our study. This weather station (Figure 1) is part
of the Automated Weather Data Network (AWDN) of the High Plains Regional Climate
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Center (HPRCC). For user-set irrigation, the model also requires soil texture, maximum
rooting depth, bulk density, surface residual coverage, and soil moisture at planting, and
record of irrigation date and amount were also required. The model assumes optimal
management for nutrients, and control of insects and diseases.

The input settings were the following: loam sand for soil texture, maximum soil rooting
depth of 150 cm, soil bulk density of 1.3 g/cm3, available water of 75% at planting for
topsoil and at 100% for subsoil, soil surface residue coverage of 50%. A generic seed brand
with the estimate of growing degree days (GDD) to silking and total GDD to physiological
maturity were used as inputs as recommended in the model user manual [49] for a situation
where the seed brand cultivated in the study is unavailable in the Hybrid-Maize database.
The weighted average plant population for each field was used in the model simulation.
Other agricultural management data, such as planting dates and irrigation amounts and
dates (Table 1a,b), were obtained from the farmer.

2.5. Sensitivity Analysis of Model Parameters

Seven soil moisture-related parameters and twelve growth-related parameters were
selected for both one-at-a-time sensitivity (OAT) and global sensitivity analysis (GSA)
based on expert knowledge of the model structure (Table 2).

Table 2. Hybrid-Maize model (version 2018) parameters related to soil water content (SWC) and crop
yield [49].

Parameter Abbreviation Parameter Description Unit Default
Value

SWC parameters

POR Porosity % 0.4400
GAM Texture-specific constant cm−2 0.0330

PSImax Texture-specific suction boundary cm 200
Ksat Saturated hydraulic conductivity cm/d 26.50
Alfa Texture-specific geometry constant cm−1 0.0398
Ak Texture-specific empirical constant cm−2.4 d−1 16.40
BD Bulk density g/cm3 1.3

Yield parameters

G5 Potential kernel filling rate mg kernel−1 day−1 8.70
G2 Potential number of kernels per ear kernel ear−1 675

ILUE Initial light use efficiency g CO2 MJ−1 PAR 12.5
GRG Growth respiration coefficient of grain g CH2O g−1 dry matter 0.490
GRL Growth respiration coefficient of leaf g CH2O g−1 dry matter 0.470
MPR Maximum photosynthetic rate g CO2 m−2 leaf h−1 7.0

K Light extinction coefficient - 0.55

ECT Efficiency of carbohydrate translocation from stem or leaf to
grain - 0.260

MRG Maintenance respiration coefficient for grain g CH2O g−1 dry matter d−1 0.0050
GRS Growth respiration coefficient of stem g CH2O g−1 dry matter 0.520

MFB Maximum fraction of leaf biomass at silking that can be
translocated as carbohydrate from leaf to grain - 0.15

SLW Empirical parameter determining the relative contribution of
a soil layer to water uptake - 3.0

For soil moisture OAT analysis, selected parameters were allowed to vary between the
minimum and maximum values of each parameter and across the soil texture spectrum,
as documented in the Hybrid-Maize model. For crop growth OAT, changes prescribed
at ±5%, ±10%, ±15%, and ±20% of the default values were used. Since soil moisture
outputs from Hybrid-Maize are a time series, an objective function [deviation sensitivity
(DS) in our case] comparing simulated daily soil moisture time series (based on relative
changes in one parameter at a time) to that using default parameters was used for the OAT
analysis. As an objective function is used to maximize or minimize variables when dealing
with mathematical optimization problems, the objective function is to minimize DS. If a
change in a soil moisture-related parameter does not change the simulated soil moisture
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values from the default simulation values, then the DS would be zero. For yield-related
parameters, the OAT sensitivity was determined by the slope of the relative percentage
change of simulated yield versus the percentage change of that parameter.

For both soil moisture GSA and yield GSA, forward stepwise selection (regression-
based method) and Sobol (variance-based method) similar to the approach of [20] were
used but with soil moisture time series converted to DS values. Our forward stepwise
selection method used the Akaike Information Criterion (AIC) values to rank and select the
model parameters based on their order of importance. It started with the most influential
parameter and ended with the least influential one. The Monte Carlo estimation of Sobol
indices as reported by [50,51] was used since Sobol GSA could handle nonlinear responses
and evaluate the influence of interactions in non-additive systems. The sobol2007 function
in the “sensitivity” package was developed in R with 10,000 runs to determine the total
Sobol GSA indices for Hybrid-Maize model parameters. It is important to point out
that although OAT and the more robust (forward stepwise and Sobol) SA methods were
compared, only the more robust SA methods were eventually used to select the soil moisture
and yield-related parameters.

2.6. Multi-Parameter Calibration and Validation

The model was first run using default parameter values. It produced poor results with
large discrepancies between observed and simulated yield values (Figure 3). For model
calibration, combinations of six fields per year for the two years were mixed and split
into two datasets, the calibration and validation datasets, to accommodate the climatic
variability between the wet and dry years. This prevented biased model calibration for
a specific year. The four fields present in both years (HF, KF, NKF, and SKF) were first
split into two, so that both calibration and validation datasets had two wet and two dry
fields. That is, two fields (HF and KF) in 2019 were combined with two fields (NKF and
SKF) in 2020, making a total of four field-years used for the calibration. The remaining
four fields (two per year) that were not present in both years (i.e., EF, LK, JF, and NK) were
added to the validation dataset, making a total of eight field-years. With this, the calibra-
tion and validation datasets were drawn from the same underlying “target population”
(i.e., same environmental conditions and management practices), which could be referred
to as “interpolation studies”. Table 3 shows the calibration and validation datasets used in
this study.
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Table 3. Calibration and validation dataset for wet and dry years.

2019 Fields 2020 Fields

Calibration dataset KF, HF NKF, SKF
Validation dataset NKF, SKF, EF, LF KF, HF, NF, JF

Multi-Parameter Optimization for Soil Moisture and Yield Simulations

As soil water directly affects crop yield, soil water simulation was first calibrated,
followed by yield. We adopted the MPO approach used by [20], but with modifications
such as using a standard deviation of the spatial yield variation within each field as
a criterion for selecting the best parameter combinations instead of using ±8% of the
observed yield as a constraint when calibrating yield parameters. The pairwise calibration
and MPO approach for each response (soil moisture and yield) involved selecting the top
two most sensitive parameters, calibrating, and fixing them, and then calibrating the next
two sensitive parameters until all the selected parameters had been calibrated in pairs.
Each pairwise calibration and MPO approach was able to produce ten thousand yield
simulation outputs using the ordinary kriging interpolation type in Surfer 16 software
(Golden Software, LLC, Golden, CO, USA) with the best variogram model. For better
understanding, the steps for the pairwise calibration and MPO are:

(a) The top two parameters that were most sensitive to soil moisture were selected based
on the results of OAT and GSA sensitivity analyses.

(b) A grid made of 64 two-parameter combinations (8 × 8 grid nodes) was generated
based on the parameter range of each parameter in the pair.

(c) For the 64 two-parameter combinations in (b), the Hybrid-Maize model was run
while keeping other sensitive parameters at default values. Soil moisture response
(i.e., RMSE between each simulated and observed time series) was recorded for every
parameter pair.

(d) The grid generated in (b) and the corresponding soil moisture response in (c) were
used to create a 3-dimensional response surface using ordinary kriging interpolation in
Surfer 20.1 software. Gaussian and wave components in Surfer are the two variogram
models that were used for kriging to give the best output grids with the lowest
errors and best cross-validation results. In order to deal with potential trends in the
model parameters, AutoFit tool in Surfer 20.1 software was used. This tool takes a
user-specified variogram model and an initial set of parameters and attempts to find
a better set of parameter values. The response surface generated was made up of
10,000 parameter pairs (100 × 100 nodes) and their corresponding DS values. These
are equivalent to 10,000 Hybrid-Maize model simulations.

(e) Cross-validation was carried out to determine the accuracy of the soil moisture DS
response surface by randomly selecting 30 nodes (n = 30) from the 10,000 kriged nodes
with the exclusion of the 64 nodes in (b). Each of the pair parameters corresponding
to the 30 selected output grid was then run using the Hybrid-Maize model and the
simulated output was compared with that of the kriged node to ascertain the accuracy
of the kriged response surface.

(f) The MPO process was carried out by selecting the parameter pair with the lowest
objective function (DS) on the response surface. The lower the DS, the more the
simulated daily soil moisture matched the observed daily soil moisture time series.

(g) The averages of the top two most sensitive soil moisture parameters from (f) were
fixed and steps (b–f) were repeated for the next two sensitive parameters until all the
sensitive parameters had been calibrated. If there was an odd number of sensitive
parameters, the least sensitive parameter was calibrated based on OAT approach.

(h) After calibrating for soil moisture, steps (a–g) were repeated for the parameters that
were most sensitive to crop yield based on the results of OAT and GSA sensitivity
analyses. However, the MPO process for crop yield was carried out by averaging
all the parameter combinations that met three constraints similar to [22], but with
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simulated yield varying between one standard deviation (±SD) of the observed yield
instead of ±8% of the observed yield. This approach was deemed appropriate, as
SD was indicative of the uncertainty from the natural/inherent yield variation across
each field.

The crop yield constraints mentioned above were used to prevent overfitting the model
parameters for each calibration field, and to also reduce the uncertainty due to equifinality
of models since many simulations using multiple combinations of parameters (i.e., equal
pathways) could give the exact observed crop yield (i.e., finality) for each calibration field.
Mathematically, the modified yield MPO is written as:

arg min
A∗ ,B∗

|Ysim − Yobs|, subjectto :

−SD(Yobs) < Ysim < SD(Yobs),

A∗ ∈ [0.85(Ade f ), 1.15(Ade f )],

B∗ ∈ [0.85(Bde f ), 1.15(Bde f )]

where the optimal input parameter argument represents the parameter pair {A∗, B∗} that
minimizes the value of the objective function |Ysim − Yobs| with the added constraints;
Ysim is the simulated yield in Mg ha−1; Yobs is the observed yield in kg ha−1; A∗ and B∗ are
the optimized model parameters; Ade f and Bde f are the default model parameters; and SD
is the standard deviation. It is important to note that the second and third yield-related
constraints were based on the premise that the re-calibrated yield-related parameters for
each field would not be too far (±15% of default values) from the default values since the
current Hybrid-Maize model had already been calibrated for the US Corn Belt region. The
stepwise MPO approach is also illustrated in Figure 4.

2.7. Model Evaluation

We used the following indices to evaluate model performance [3,21,52], including
percent deviation (PD), root-mean-square error (RMSE), normalized root-mean-square
error (NRMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), and index of
agreement (d).

PD =
(Si − Mi)

Mi
× 100 (1)

RMSE =

√
∑n

i=1(Si − Mi)
2

n
(2)

NRMSE =
RMSE

M
(3)

MAE =
1
n∑n

i=1|Si − Mi| (4)

NSE = 1 − ∑n
i=1(Mi − Si)

2

∑n
i=1

(
Si − S

)2 (5)

d = 1 − ∑n
i=n(Mi − Si)

2

∑n
i=1(|Si − M|+ |MI−M|

)2 (6)

where n is the number of paired samples, Mi and Si are the measured and simulated values of
the ith observation, respectively, and M and S are the average measured values, respectively.
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PD measures the percent deviation between observed and simulated values. RMSE
ranges from zero to positive infinity with the same unit as both observed and simulated
variables [53]. RMSE can be standardized using the mean of the measured values and
regarded as NRMSE, which is expressed as a fraction. As proposed by [54], model sim-
ulations were considered excellent, good, fair, and poor based on the NRMSE values of
<10%, 10–20%, 20–30%, and >30%, respectively. MAE measures the average magnitude of
errors in a set of predictions, without considering their direction. Both MAE and RMSE
express average model prediction errors in the units of the variables of interest and range
from zero to positive infinity. Neither is affected by the direction of errors. NSE describes
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the relative magnitude of the residual variance in comparison with the measured data
variance. Its values range from negative infinity to 1, where NSE = 1 represents perfect
correlation between simulations and observations or perfect model fit, and NSE < 0 implies
that the model is a weaker predictor than the mean of the observations [55]. The index of
agreement (d) represents the ratio of the mean square error and the potential error because
it determines the additive and proportional differences in the measured and simulated
means and variance. However, d is overly sensitive to extreme values owing to the squared
differences. d varies between 0 and 1, where d = 1 indicates a perfect match, and d = 0
implies no agreement [56].

3. Results and Discussion
3.1. Weather Conditions of the Experimental Years

The 2019 growing season (May to September) was wetter and cooler than 2020 and
the long-term average (Figure 2a,b). The 2019 growth season had a total of 466 mm
rainfall, which was 63 and 106 mm more than the long-term average and 2020, respectively
(Figure 2a,b). The cumulative ETo of the 2020 growing season was 209 mm higher than 2019
but 67 mm lower than the long-term average. The average daily maximum temperature of
the 2020 growing season was higher than 2019, while the daily minimum temperature for
2020 was lower than 2019.

3.2. Sensitivity Analysis

The results of the sensitivity analysis are shown in Table 4. PSImax and G5 were the
most sensitive parameters for soil water content and grain yield, respectively. Of all the soil
moisture-related parameters considered in the OAT sensitivity approach, PSImax, GAM,
and BD were the only parameters sensitive to simulated soil moisture with PSImax, GAM,
and BD having sensitive indexes of 15.00, 28.00, and 0.27, respectively. Except for MFB and
SLW, the yield was sensitive to changes to all other parameters considered in this study
based on OAT alone. G5 had the highest OAT slope of 0.69, while GRL had the lowest OAT
slope of 0.02. Previous OAT sensitivity studies also observed that G5, G2, and ILUE are the
most sensitive parameters related to yield. Refs. [17,42] reported that, in a decreasing order,
G5, G2, and ILUE were the three most sensitive yield-related parameters. Ref. [22], on the
other hand, reported a different order of importance with ILUE being the most sensitive
parameter, then followed by both G5 and G2 with an equal sensitivity index.

Table 4. One-at-a-time (OAT) and global sensitivity analysis (GSA) of parameters related to soil
moisture and yield.

Response Parameter OAT Slope Stepwise GSA AIC Sobol GSA Total Index

Soil moisture

GAM 15.00 −438 0.90
PSImax 28.00 −479 0.07

BD 0.27 −507 0.03
Ksat 0.00 - 0.00
AK 0.00 - 0.00
Alfa 0.00 - 0.00

Porosity 0.00 - 0.00

Yield

G5 0.69 94 0.45
G2 0.66 57 0.41

ILUE 0.65 9 0.12
MPR 0.13 2 0.01
GRG 0.22 - 0.01

K 0.09 - -
ECT 0.09 - -
MRG 0.04 - -
GRS 0.03 - -
GRL 0.02 - -
MFB 0.00 - -
SLW 0.00 - -

Notes: Model performance increases as the AIC value decreases. Parameters whose AIC values were not in the
table were not chosen in the stepwise regression.
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For the stepwise GSA, soil moisture was again sensitive to changes in only three
parameters (GAM, PSImax, and BD), with GAM also being the most sensitive one. This
is contrary to what was observed for the OAT approach, where PSImax was the most
sensitive parameter and ranked above GAM. The stepwise GSA picked just three soil
moisture parameters before terminating, starting with GAM and ending with BD, with each
consecutive parameter selection improving the model as shown by the reducing AIC values
in Table 4. Adding extra parameters beyond that did not improve the model’s performance.
However, a similar order of importance when compared to OAT was observed for the
yield-related parameters. The stepwise GSA picked just four model parameters before
terminating, starting with G5 and ending with MPR, with each subsequent parameter
selection improving the model as shown by the reducing AIC values in Table 4. Since the
lower the AIC value, the better the model performance, the stepwise GSA for yield showed
that a combination of the top four most sensitive yield parameters resulted in a lower AIC
value of 2.64 when compared to that with three sensitive parameters (AIC = 9.04). However,
adding extra parameters after MPR did not improve the model’s performance.

Results from Sobol GSA for soil moisture-related parameters depicted a similar order
of parameter importance when compared to OAT, while yield-related parameters depicted
a similar order of parameter importance to both OAT and stepwise GSA. The only difference
was that, whilst the Sobol GSA method selected five sensitive yield parameters, stepwise
GSA and OAT selected four and ten parameters, respectively. For soil moisture parameters,
GAM, PSImax, and BD had total indices of 0.90, 0.07, and 0.03, respectively, while for yield
parameters, G5, G2, ILUE, MPR, and GRG had total indices of 0.45, 0.41, 0.12, 0.01, and
0.01, respectively. It is important to note that a parameter may be highly sensitive during
OAT but may not be significant when in combination with other parameters in a GSA.
This is due to possible interactions among parameters in a GSA. Based on the result of
the sensitivity analysis, GAM and PSImax were selected for the calibration of soil water
content while G5, G2, ILUE, and GRG were chosen for the calibration of grain yield.

3.3. Soil Water Content Calibration and MPO

The kriged DS surfaces (with 10,000 nodes or simulations) created with the top pa-
rameter pair {GAM, PSImax} were used for calibrating the model for soil moisture at the
calibration fields based on the multi-parameter optimization steps discussed earlier. As
previously stated, the MPO process for the {GAM, PSImax} pair was carried out by min-
imizing the DS between the observed and simulated daily soil moisture, and selecting
the parameter pair with the lowest value on the 3-D DS surfaces. Only three fields were
selected from the soil water content calibration and multi-parameter optimization. This is
because these are the only fields with measured soil water content across the two growing
seasons. The optimized {GAM, PSImax} pair produced the lowest soil moisture DS nodes
with values of 0.02 mm, 0.03 mm, and 0.04 mm for the FK, NKF, and SKF fields, respectively.
Since the {GAM, PSImax} pair accounted for about 97% of the Sobol GSA total indices
(Table 4), a further calibration for soil moisture using the third most sensitive parameter
(BD) resulted in insignificant changes in the daily soil water content dynamics.

On each DS response surface in Figure 5, the red dot shows the DS value using the de-
fault {GAM, PSImax} pair, while the white square shows the lowest DS value corresponding
to the best {GAM, PSImax} pair. Although each response surface has distinctive attributes
peculiar to the calibration field under consideration, there seem to be similarities in the
shapes of the response surfaces for KF 2019 (wet year) and for SFK 2020 and NFK 2020
(dry year). According to each of these three response surfaces in Figure 5, there was a shift
between the red and white dots, such that GAM reduced while PSImax increased for the
MPO-calibrated pair.
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GAM is an empirical soil texture-specific constant, while PSImax is soil texture-specific
maximum water potential at the field capacity. The default values of GAM and PSImax
for loamy sand in the Hybrid-Maize model are 0.0330 cm−2 and 200 cm, respectively. The
GAM is derived from an empirical function with little to no very good physical meaning
and is impossible to measure. PSImax, on the other hand, can be measured independently.
Regardless of the field and across the two growing seasons, the default GAM shifted to a
new optimized value lower than the default value (Figure 5). The optimized GAM values
for the three calibration fields have a close range of values (0.0193–0.0280 cm−2) as shown
in Table 5. For the same soil texture across different fields, the GAM value should be
constant. However, there is a possibility of having a narrow GAM value as shown in
Table 5 for the sample soil textural class, considering that there is a range of particle size
distributions of silt, sand, and clay for the same soil texture class as well as different levels
of compaction across the various fields for the same particle size distribution of the same
soil texture. In addition, GAM may be closely related to pore space tortuosity, which is
a geometric parameter that describes interconnected pore spaces. A lower GAM value
implies a decrease in the ratio of the actual flow path length to the straight distance between
the ends of the flow path. This ratio could be reduced by a reduced total pore fraction, and
the total pore fraction for the topsoil (loamy sand) found in our study area could have been
reduced by tillage, the use of heavy equipment, and heavy irrigation [57,58].

In addition, regardless of the field and across the two growing seasons, the default
PSImax value shifted to a new optimized value of 300 cm, which is the upper limit for
PSImax in the calibration space. This upper limit for PSImax was based on the maximum
value for all soil textures in the Hybrid-Maize model. The higher calibrated PSImax value
(300 cm) relative to the default value (200 cm) indicates an increase in the suction boundary,
which could consequently reduce the total water readily available in the topsoil. Similar to
a lower GAM value, a higher PSImax could also be due to the effect of topsoil compaction
processes related to tillage, heavy irrigation, or compaction due to the traffic of heavy
equipment during field operations [59].
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Table 5. Default and calibrated parameter scenarios.

Variable Parameter

Field Calibrated Parameter

SM/GY-PC1

SM/GY-PC2

SM/GY-PC32019 Wet Year 2020 Dry Year
HF KF NKF SKFHF KF NKF SKF

Soil
GAM 0.0280 0.0263 0.0193 0.0330 0.0280 0.0263 0.0193 0.0245

PSImax 300 300 300 200 300 300 300 300

Yield

G5 7.8 7.7 8.1 8.0 8.7 7.8 7.7 8.1 8.0 7.9
G2 603 592 625 621 675 603 592 625 621 611

ILUE 12.2 12.0 12.2 12.4 12.5 12.2 12.0 12.2 12.4 12.2
GRG 0.495 0.494 0.490 0.495 0.490 0.495 0.494 0.490 0.495 0.494

Notes: SM/GY-PC1: Soil moisture/grain yield-related parameter combination based on default value; SM/GY-
PC2: Soil moisture/grain yield-related parameter combination for each field-year calibrated values; SM/GY-PC3:
Soil moisture/grain yield-related parameter combination based on overall pooled average calibrated values;
GAM: Texture-specific constant (cm−2); PSImax: Maximum water potential at field capacity (cm); G5: Potential
kernel filling rate (mg kernel−1 day−1); G2: Potential number of kernels per ear (kernel ear−1); ILUE: Initial light
use efficiency (g CO2 MJ−1 PAR); GRG: Growth respiration coefficient of grain (g CH2O g−1 dry matter).

It is important to note that the default values of soil parameters in Hybrid-Maize are
merely approximations or representative values. Firstly, the soil texture triangle represents
a range of particle size distributions of sand, silt, and clay. Since a range of combinations of
sand, silt, and clay could end up in the same texture class, soils within the same texture
class can have different particle combinations and, hence, different parameter values.

Secondly, soil organic matter (SOM) content has a strong influence on the water-
holding capacity of any soil texture, especially for coarse textures such as sandy soils [60,61].
The Hybrid-Maize model, however, does not consider the effect of SOM on soil moisture.
This implies that two soils with the same soil texture but different SOM content could
have different water-holding properties in reality, whereas the model would not make a
distinction. In addition, water retention, porosity, and saturated hydraulic conductivity are
very sensitive to compaction and thus are spatially sensitive. Therefore, two fields with the
same soil texture but different compactions may have different soil properties. Lastly, as
stated earlier, different soil layers or horizons could affect the net or equivalent parameter
values in the root zone on the field when compared to values from the laboratory analysis
of soil samples.

3.4. Yield Calibration and Multi-Parameter Optimization

The MPO results based on the kriged yield surfaces for both the {G5, G2} and {ILUE, GRG}
pairs are shown in Figure 6a,b. The most sensitive yield parameter pairs were calibrated
in a sequential order after calibrating {GAM, PSImax} for soil water, as discussed in the
previous section. The red contour line in each yield surface in Figure 6 represents the
average crop yield observed in each calibration field, while the two black lines depict
one standard deviation (±SD) about the average observed crop yield based on the spatial
variation of crop yield measured by the combine harvester. The red dot shows the model-
simulated yield using the default parameter values, while the white square shows the
model-simulated yield using the calibrated parameters via the MPO approach.

As shown on the yield surfaces in Figure 6a, multiple parameter combinations {G5, G2}
could result in yield simulations within ±SD boundaries (black contour lines) of the average
crop yield in each field. In fact, there are multiple {G5, G2} combinations that could result
in yield simulations with the exact average crop yield (red contour lines) in each calibration
field. This is also true for the yield surfaces in Figure 6b with respect to {ILUE, GRG}
pairs. Owing to this issue of equifinality (i.e., equal pathways), the average of all the
parameter pair combinations (i.e., nodes on the kriged yield surfaces) that met the three
yield MPO constraints were used to determine the calibrated parameter pair values for each
calibration field as shown by the white squares. It is important to note that aggregating
only the parameter pairs that are on the red contour line is the same as calibrating the
model parameters such that the simulated yield matches the observed average yield exactly.
This would amount to overfitting the model while not capturing the spatial variation of
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crop yield within the ±SD boundaries (black contour lines) of the average crop yield in
each calibrating field. With every pairwise step of the yield MPO (i.e., {G5, G2} first and
then {ILUE, GRG} later), the simulated yield value, based on the calibrated parameter pair
(white square), moves closer to the average observed yield (Figure 6a,b). This is based on
the contribution of each parameter pair to the overall yield simulation.
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Although each yield surface in Figure 6a or Figure 6b is unique to the calibration field
under consideration, the shape of all the yield surfaces for each parameter pair ({G5, G2} or
{ILUE, GRG}) appears to be comparable across the different fields and years. As observed for
each yield surface in Figure 5a, the position of simulated yield using the default parameter
values (red dot) fell outside the black contour lines (±SD yield constraint) on the yield
surfaces for all the calibration fields, while the white square falls within the two black
contour lines. On the other hand, for each yield surface in Figure 6b, the positions of
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simulated yields using both the default (red dot) and the calibrated (white dot) parameter
values fell within the black contour lines (±SD yield constraint) on the yield surfaces for all
the calibration fields. When compared to the shift from the red dot to the white square in
each yield surface in Figure 6a, the shift in Figure 6b is relatively smaller, because each red
dot in Figure 6b is a simulation based on the combination of the default {ILUE, GRG} values
and the previously calibrated {G5, G2} values from the preceding step. In other words,
the white squares in the {G5, G2} parameter space shown in Figure 5a are the same as the
red dots in the {ILUE, GRG} parameter space shown in Figure 6b. This is expected since
{G5, G2} is a more sensitive parameter pair than {ILUE, GRG} as shown in Table 4.

As indicated in Table 5, G2, with a default of 675 kernels per plant, indicates the
potential number of kernels per plant; G5, with a default value of 8.7 mg d−1, represents a
potential daily grain filling rate (mg d−1 kernel−1); ILUE, a conservative parameter with a
default value of 12.5 g CO2 MJ−1 PAR (photosynthetically active radiation), denotes the
photosynthetic rate at the very low level of radiation; and GRG, which is set at a default
value of 0.49, signifies the efficiency when converting carbohydrate to grain biomass.
Although these default values are used for high-yielding maize hybrids at plant densities
ranging from 60,000 to 85,000 plants/ha prevalent in the US Corn Belt, they were mostly
derived or calibrated using data from two decades ago. Advancements in crop breeding
and crop management would call for new examinations of those parameters in the model.

Lower calibrated values of G2 across the fields and years than the default values were
observed in Table 5. This could be related to the fact that the currently higher-yielding
maize hybrids cultivated at currently higher plant densities have a tendency of bearing
smaller cobs with potentially fewer kernels per plant. Recent plant breeding is more tailored
towards improving yield on a per ground area basis instead of individual plants, because
the best individual plant performance may not result in the best yield based on per ground
area [62]. Again, as opposed to the G5 default value of 8.7 mg d−1 kernel−1 in the current
Hybrid-Maize model, lower calibrated values of G5 were observed across the different
fields and years (Table 5). This could be a result of higher plant density and thus stronger
competition for resources among individual plants.

ILUE describes the CO2 assimilation (carbon fixation) at a very low light intensity and
is regarded as a conservative parameter [63]. Table 5 shows that a narrow range of lower
calibrated values of ILUE was observed across the different fields and years. Note that
ILUE is different from radiation use efficiency (RUE) used in some crop models. RUE is the
average net biomass production per unit of light intercepted over the entire season, with
a value ranging from 3.3 to 3.8 g CH2 MJ−1 PAR [64], while ILUE is the maximum CO2
assimilation efficiency without accounting for respiration losses. Like ILUE, the default
value of 0.49 of GRG was adapted from [65]. This value is related to the composition of
grains, especially the protein content. From the calibration results, the values of GRG
obtained for the different fields across the growing seasons were closer to the default value
of 0.490.

Since the farmer cultivated more than one hybrid brand but with comparable genetic
properties in the same fields, it is worth noting that the new yield-related parameters are not
associated in absolute terms with any of the hybrids. However, it may reflect a close sense
of the biological attributes of most recent hybrids because hybrids within the same seed
company (i.e., the parent company owes several subsidiaries) may share a lot of the same
genetic materials and have comparable biological characteristics. This is important because
sensitivity analysis or model calibration does not have to be very specific to cultivars in
order not to limit the potential applications of the model. In addition, emphasis should not
be placed on the true meaning of the calibrated parameters but on the need for the model
to first reproduce as much of the field observations as possible in order to use the model
for crop management, such as irrigation scheduling. This is important because no matter
how good a model theory is, it has to be able to simulate close to reality before it can be
applied effectively.



Water 2024, 16, 788 16 of 27

3.5. Simulation of Soil Water Content

Typical pivot irrigation, as used in this study, takes three to four days to cover a regular
field. The model, however, assumes that the irrigation is completed in one day on the
specified date of irrigation. This creates a potential mismatch between model-simulated
and measured soil moisture. In order to harmonize this inherent difference in response
between the simulated and measured soil moisture, we used a three-day moving average
of measured soil moisture. To ensure that the Hybrid-Maize model was well calibrated for
irrigation management in the study area, it is important to evaluate the effectiveness of the
calibrated model in simulating soil water dynamics in the major rooting depth [0–0.3 m
(SD1) and 0.3–0.6 m (SD2)] as well as in the entire 1 m [i.e., 0–1.0 m (SD3)].

Figures 7–10 show the comparisons between the measured and simulated three-day
moving average 1 m depth total soil water (TSW) using calibrated soil moisture parameter
combination (SM-PC2) and overall pooled soil moisture calibrated parameter combination
values (SM-PC3). The red lines depict simulated daily TSW using SM-PC2, while the purple
lines show the simulated daily TSW using SM-PC3 for the calibrating fields (Figure 7).
Table 6a,b shows the goodness-of-fit statistics of the model calibration and validation.
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seasons. DAP = days after planting.

Prior to calibration, the simulations were run using default model parameters (SM-PC1)
for the calibration fields. For SD1, results of using SM-PC1 showed poor simulations with
high RMSEs ranging from 6.7 mm to 23.9 mm, NRMSEs in the range of 11.8% to 33.9%,
and MAEs in the range of 5.1 mm to 21.0 mm as well as low NSEs ranging from −25.3 to
−9.1, and d values varying from 0.02 to 0.22. For SD2, high RMSEs ranged from 12.7 mm
to 27.6 mm, NRMSEs in the range of 21.0% to 39.8%, and MAEs in the range of 12.1 mm
to 25.5 mm, as well as low NSEs ranging from −38.3 to −10.7, and d values varying from
0.01 to 0.13. In addition, for SD3, the model-simulated TSW had very low accuracy as
indicated by the high RMSEs ranging from 30.6 mm to 74.1 mm, NRMSEs in the range
of 15.6% to 32.8%, and MAEs in the range of 28.0 mm to 69.7 mm, as well as low NSEs
ranging from −21.5 to −7.2, and d varying from 0.00 to 0.08. The large errors observed
in the 1 m rooting depth were due to the additive nature of errors from the different soil
depths of SD1 and SD2, as well as the remaining soil depths between 0.6 m and 1 m across
the various calibrating fields.
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Results of TSW simulations slightly improved when SM-PC2 and SM-PC3 were used
with both simulated daily TSW having similar daily fluctuations across the two years
compared to measured TSW for the calibrating fields throughout the growing seasons.
When the SM-PC2 was used, the performance metrics for the SD1 resulted in moderate
values ranging from 6.3 mm to 11.4 mm, 11.0% to 18.2%, 4.8 mm to 9.5 mm, −8.9 to −5.0,
and 0.07 to 0.26 for RMSEs, NRMSEs, MAEs, NSEs, and d, respectively, while for SD2, the
values ranged 11.0 mm to 12.8 mm, 15.9% to 20.7%, 6.7 mm to 11.3 mm, −13.4 to −4.2,
and 0.08 to 0.19, correspondingly (Table 6a). For SD3, the performance metrics improved
with a moderate accuracy of RMSEs ranging from 23.7 mm to 28.0 mm, NRMSEs in the
range of 10.5% to 14.2%, MAEs in the of 19.2 mm to 25.1 mm, NSEs ranging from −5.8 to
−1.3, and d varying from 0.16 to 0.17. In addition, when the SM-PC3 was used, the model
simulation of TSW slightly improved for SD1, resulting in values varying from 8.5 mm
to 13.3 mm, 14.9% to 18.8%,7.4 mm to 9.3 mm, −15.0 to −7.1, and 0.02 to 0.29 for RMSEs,
NRMSEs, MAEs, NSEs, and d, in that order, while for SD2, the values ranged 6.2 mm to
12.7 mm, 10.3% to 20.4%, 5.5 mm to 8.2 mm, −13.0 to −1.8, and 0.07 to 0.39 for RMSEs,
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NRMSEs, MAEs, NSEs, and d, respectively. For SD3 also, performance metrics improved
with RMSEs ranging from 13.0 mm to 27.6 mm, NRMSEs in the range of 7.0% to 12.2%,
MAEs in the range of 10.8 mm to 20.1 mm, NSEs ranging from −2.8 to −0.5, and d varying
from 0.17 to 0.46.
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Except for SKF 2020, in most cases for the various soil depths across the calibrating
fields, the simulated TSW using SM-PC3 performed better than using SM-PC2. This could
be the result of a lower GAM value of 0.0245 for SM-PC3 as opposed to the values of
0.0280 and 0.0263 for SM-PC2 for KF and NKF, respectively, as the same soil texture, loamy
sand, was used for the model input. It is worth noting that the irrigation amount and
distribution in terms of their order of magnitude across the two calibrating fields (NKF
and SKF) in the 2020 growing season were almost comparable but the sensors at the same
soil depths across the two fields were responding in a different order of magnitude, either
partly because of differences in their calibration and sensitivity of the sensors or variation
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in soil texture at the locations where the sensors were installed. However, considering that
we cannot transfer each unique field calibrated parameter combination values (SM-PC2)
to another field during validation and in line with our intention to have a single set of
calibrated parameter combinations to be used by the farmer across the various climatic
conditions in the study area, only the SM-PC3 was used for comparing the field-measured
TSW during validation.
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During validation, however, the statistical indicators also depict a slightly improved
model performance, as indicated by relatively low RMSEs ranging from 8.5 mm to 16.4 mm
and NRMSEs in the range of 15.3% to 34.3%, MAEs ranging from 7.53 mm to 15.45 mm,
as well as relatively high NSEs varying from −20.8 to −3.1, and d in the range of 0.10 to
0.40 for SD1 (Table 6b). In addition, for SD2, the statistical indicators resulted in values
ranging from 3.8 mm to 17.1 mm, 6.7% to 42.7%, 2.92 mm to 16.36 mm, −39.9 to −0.39, and
0.07 to 0.60 for RMSEs, NRMSEs, MAEs, and d, respectively. On the other hand, for SD3,
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the statistical indicators show a poor agreement between measured and simulated TSW
with RMSEs ranging from 12.6 mm to 53.6 mm, NRMSEs in the range of 6.8% to 38.0%,
MAEs ranging from 3.5 mm to 52.8 mm, NSE varying from −44.9 to −0.1, and d in the
range of 0.05 to 0.59. The model did not exhibit any consistent and systematic trend of over-
or under-estimation of the TSW in all fields for SD1 and SD2, as well as SD3 in both 2019
(wet year) and 2020 (dry year) growing seasons (Figures 8–10). In general, the performance
of the model in simulating TSW at the different layers (SD1 and SD2) as well as the entire
rooting depth (SD3) was very poor during validation. In part, this could be a result of the
model’s poor performance in simulating evapotranspiration.

Similar findings have been reported. A slightly better agreement between the model-
simulated and field-measured data without calibration for both irrigated and rainfed
treatments with NRMSEs varying from 11.0 to 19.5% and absolute mean prediction error
(MPE) in the range of 0.5% to 3.7% was reported [21]. However, it should be noted
that the relatively low values of the above statistical indicators resulting in high model
performance were due to the small number of samples used for comparison, and the
experiment was conducted in carefully monitored experimental plots where the potency
of data collection should be relatively high and accurate as opposed the large volume of
continuous SWC data collection mechanism used by the farmer in this study. Ref. [66]
reported that the smaller the number of samples used for comparing the model-simulated
and field-measured data, the tendency for high model performance. Ref. [52] reported
highly unsatisfactory performance when the Hybrid-Maize model was used in simulating
water balance components for rainfed, limited, and full irrigation conditions. The authors
observed negative values of NSE coupled with high NRMSEs in the range of 47–62% across
the two soil layers of SD1 and SD2 and noted that rainfed treatments had the greatest
disparities between simulated and measured data, indicating that the model is unsuitable
for rainfed/dry locations. Although each model structure is unique and parameterized
differently and, in most cases, should not be compared with other crop models, there is
reported evidence of the poor performance of other crop models in simulating TSW in
standard-size fields solely managed by farmers, where the fields are not carefully monitored,
and the potency of data collection seems to be relatively poor. Ref. [65] conducted research
in farmer’s fields with an average size of about 35 ha to evaluate the performance of the
AquaCrop model in simulating field observations relating to leaf area index (LAI), crop
evapotranspiration, soil water content, biomass, and final yield.

Despite the careful calibration of each field, the authors observed poor fitting with an
RMSE ranging from 8.4% to 11.7%, and NSE in the range of 0.03 to 0.72. They attributed
less goodness-of-fit indicators or the bias of estimates of available soil water (ASW) to the
overestimation of actual transpiration and underestimation of soil evaporation by the model.
The authors finally suggested that the maximum standard crop transpiration coefficient
(KcTr) and actual crop canopy cover (CC) curve proportionality should be improved, as
the latter is sensitive primarily to water stress during the vegetative stage and not to daily
water stress throughout the season.

The Hybrid-Maize model assumes that soil water is not retained above field capacity
(FC) and drains to the subsequent soil layers underneath at the end of a day. This may not
be true with the continuously field-measured soil moisture because there may be readings
when the soil water content is above field capacity or even saturated, especially during
major rainfall or irrigation events. That may be responsible for some of the underestimations
of the TSW at the top-soil depths. Therefore, if the model is revised in relation to the above
problem to accommodate periods when saturation may occur, this may improve the model
simulation by reducing the peak gap between simulated and measured soil moisture values
as well as the error in computing or estimating soil water balance.
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Table 6. (a) Goodness-of-fit indicators for total soil water (TSW) for different soil depths using the calibrated Hybrid-Maize parameters for the calibrated fields.
(b) Goodness-of-fit indicators for total soil water (TSW) for different soil depths using the calibrated Hybrid-Maize parameters in the validation fields.

(a)

Year Field

Goodness-of-Fit Indicators

0–0.3 m Soil Depth (SD1) 0.3–0.6 m Soil Depth (SD2) 0–1.0 m Soil Depth (SD3)

RMSE
(mm)

NRMSE
(%)

MAE
(mm) NSE d RMSE

(mm)
NRMSE

(%)
MAE
(mm) NSE d RMSE

(mm)
NRMSE

(%)
MAE
(mm) NSE d

SM-PC1

2019 KF 6.76 11.80 5.12 −19.04 0.11 12.68 21.00 12.10 −10.65 0.13 30.64 15.60 27.98 −7.23 0.13

2020
NKF 12.20 21.80 9.48 −13.15 0.22 21.26 34.30 19.11 −38.27 0.09 47.50 24.10 42.24 −13.69 0.08
SKF 23.96 33.90 21.11 −25.52 0.02 27.57 39.80 25.53 −31.41 0.01 74.11 32.80 69.75 −21.55 0.00

SM-PC2

2019 KF 6.28 11.00 4.81 −7.85 0.17 11.93 19.70 11.30 −9.35 0.15 27.96 14.20 25.12 −5.85 0.16

2020
NKF 10.21 18.20 7.91 −8.91 0.26 12.87 20.70 8.30 −13.39 0.19 25.15 12.80 19.15 −3.12 0.16
SKF 11.36 16.10 9.52 −4.95 0.07 11.02 15.90 6.67 −4.17 0.08 23.68 10.50 19.17 −1.30 0.17

SM-PC3

2019 KF 8.53 14.90 7.44 −14.99 0.08 6.22 10.30 5.47 −1.80 0.39 12.99 6.60 10.77 −0.48 0.45

2020
NKF 9.96 17.80 8.12 −8.43 0.29 12.68 20.40 8.15 −12.96 0.19 24.12 12.20 18.76 −2.79 0.18
SKF 13.27 18.80 9.33 −7.13 0.02 11.20 16.10 6.71 −4.35 −0.07 27.62 12.20 20.13 −2.13 0.17

(b)

Year Field

Goodness-of-Fit Indicators

0–0.3 m Soil Depth (SD1) 0.3–0.6 m Soil Depth (SD2) 0–1.0 m Soil Depth (SD3)

RMSE
(mm)

NRMSE
(%)

MAE
(mm) NSE d RMSE

(mm)
NRMSE

(%)
MAE
(mm) NSE d RMSE

(mm)
NRMSE

(%)
MAE
(mm) NSE d

SM-PC3

2019

NFK 8.59 15.30 7.53 −10.62 0.31 3.81 6.70 2.92 −1.49 0.60 20.81 11.90 18.42 −8.75 0.24
SKF 10.26 18.90 8.87 −3.50 0.40 6.7 11.00 5.65 −0.76 0.49 12.62 6.80 9.46 −0.41 0.59
EF 16.38 34.30 15.45 −20.78 0.10 16.6 42.60 16.36 −39.86 0.07 53.63 3.80 52.78 −44.97 0.05
LF 8.98 15.40 7.63 −5.73 0.22 6.36 11.10 5.36 −0.39 0.21 29.05 13.80 23.22 −2.56 0.20

2020
KF 10.31 17.00 8.26 −5.75 0.13 17.05 26.00 14.29 −8.34 0.07 36.20 17.00 29.72 −4.94 0.06
JF 10.76 16.60 7.82 −8.08 0.35 13.78 22.10 10.58 −19.77 0.24 23.89 11.80 18.34 −4.84 0.35
NF 12.19 23.40 10.33 −3.04 0.19 10.15 17.30 7.40 −2.25 0.36 19.84 11.00 17.20 −0.10 0.57

Notes: SM-PC1: Soil moisture-related parameter combination based on default value; SM-PC2: Soil moisture-related parameter combination for each field-year calibrated values;
SM-PC3: Soil moisture-related parameter combination based on overall pooled average calibrated values.
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3.6. Simulation of Yield

The performance of the grain yield simulation using default parameter combinations
(GY-PC1) and calibrated parameters is presented in Table 7a,b. The default model pre-
dicted grain yields across all the fields and years with low accuracy and with percentage
deviations (PD) ranging from 18.2–38.8%. The PD range corresponds to an overprediction
error range of 2.4–5.2 Mg/ha and the pooled data MAE of 4.0 Mg/ha, RMSE of 4.1 Mg/ha,
and NRMSE of 29.0% before calibration (Table 7a). Ref. [64] reported a moderate to poor
simulation accuracy with an underestimation of 1.2 Mg/ha for fully irrigated treatments, an
overestimation of 2.0 Mg/ha for limited irrigation treatments, and up to 5.7 Mg/ha under-
estimation for rainfed treatments, with R2 of 0.69, mean bias error (MBE) of 0.0–0.44 mm,
NRMSE of 14%, and NSE of 0.57 using pooled data without calibrating the model. These
values are better than those obtained in this current research prior to calibration. This
could be because of the small size of the fields used in the referenced study, with relatively
fewer yield variations coupled with a carefully monitored experiment. Also, the GY-PC1 in
the Hybrid-Maize model may be close to the true parameters (if they were measured) in
the referenced study. In another research conducted by [21], the authors reported PDs of
yield ranging from 2.3–11.7% under both irrigation and rainfed treatments in a semiarid
environment. Contrary to the results in the present study using the GY-PC1, results from
the previous investigation showed that the model tends to underestimate grain yield prior
to calibration for irrigated treatments. The poor default simulation results (GY-PC1) in
our study (Table 7b) forced the need to calibrate the model. The simulation results of
each field show a good match between the field-measured and model-simulated grain
yield using each field’s calibrated parameter combination (GY-PC2). However, the goal
of this study was to have a good combination of calibrated parameters for the study area.
Therefore, we evaluated two different grain yield-related parameter combinations (GY-PC2
and GY-PC3) from all the calibrated parameter values of the calibrated fields across the
two growing seasons (Table 7b). The results showed improved yield simulations with
GY-PC2 significantly reducing the GY-PC1 MAE, RMSE, and NRMSE values by 72%, 72%,
and 72%, respectively, while GY-PC3 reduced the ME, RMSE, and NRMSE using GY-PC1
values considerably by 71%, 69%, and 69%, respectively. Besides using the GY-PC1 values,
the largest discrepancies between measured and simulated grain yield were observed
using GY-PC3, wherein the MAE = 1.4 Mg/ha, RMSE = 1.5 Mg/ha, and NRMSE = 10.3%,
while the lowest discrepancies between measured and simulated grain yield were detected
using GY-PC2 with MAE = 1.3 Mg/ha, RMSE = 1.3 Mg/ha, and NRMSE = 9.3%. With the
above evaluation results, GY-PC2 was the best parameter combination considering that
its corresponding reduction estimation errors were the highest. However, even though
the simulation results using GY-PC2 were considered the best parameter combination
during calibration, it is important to note that GY-PC3 still fell within the acceptance range.
Additionally, considering the need to have a single set of calibrated yield-related param-
eters for all fields across years, GY-PC3 was the only calibrated parameter combination
evaluated during validation. This decision supports the need to have a single parameter
combination that would accommodate the climatic variations between years and across
fields for regional decision-making.

Validation was carried out using GY-PC3 across the two growing seasons for the
validation fields. Again, some correlational regression-based and deviation-based statistical
methods were also used to evaluate the model performance since each statistical method
would provide unique information relating to the accuracy of the simulation. The validation
results in Table 7b depict that GY-PC3 significantly reduced the MAE, RMSE, and NRMSE
of using GY-PC1 by 84%, 74%, and 74%, respectively. Figure 10 shows the results of the
Hybrid-Maize model grain yield simulation using GY-PC3 for the pooled data for the
validation fields across the two growing seasons of 2019 and 2020. R2 of 0.55 as shown
in Figure 11 indicated that the model simulated grain yield across the various fields well.
Although there was no consistent or systematic trend of under- or over-estimation using
GY-PC3 for all the fields across the two growing seasons, only one was under-estimated
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and three fields closely match the 1:1 line. This shows an improved simulation of the grain
yield across the fields as opposed to using the default parameter (GY-PC1). In a study
where four different parameter combinations were compared in simulating grain yield
using the Hybrid-Maize model under different agronomic management practices from
different farmers in pilot-scale fields, Ref. [20] reported an improved Hybrid-Maize model
simulation of grain yield with an MAE of 1.1 Mg/ha, RMSE of 1.4 Mg/ha, and NRMSE of
7% using the best parameter combination. The authors suggested that using in situ sensors
combined with the calibrated model’s precision/adequacy would be more beneficial for
improving in-season crop management and yield predictions for field-scale study.

Table 7. (a) Measured and default-simulated yield of all the fields in 2019 and 2020 growing seasons.
(b) Goodness-of-fit for yield using different parameter combinations.

(a)

Yield (Mg ha−1)

Year Field Meas Std. Dev (±) GY-PC1 Difference PD (%)

2019

HF 13.9 1.97 18.4 4.5 32.4
KF 13.4 1.68 18.6 5.2 38.8

NKF 15.4 2.06 18.8 4.6 31.5
SKF 15.6 1.28 18.8 4.3 28.9
EF 13.4 1.97 18.5 3.4 22.1
LK 12.7 1.96 15.9 3.2 20.5

2020

NKF 14.6 3.19 19.2 5.1 38.1
SKF 14.9 2.62 19.2 3.2 25.2
HF 13.6 2.29 18.6 5.0 36.8
KF 13.2 2.6 15.6 2.4 18.2
JF 13.3 2.74 17.3 4 30.1
NF 15.0 2.55 18.5 3.5 23.3

MAE (Mg/ha) 4.03
RMSE (Mg/ha) 4.12

NRMSE (%) 29.00

(b)

Year
Calibration Yield (Mg ha−1) Validation (Mg ha−1)

Field Meas. GY-PC1 GY-PC2 GY-PC3 Year Field Meas. GY-PC1 GY-PC3

2019
HF 13.9 18.4 15.0 15.4

2019

NKF 15.4 18.8 15.8
SKF 15.6 18.8 15.8

KF 13.4 18.6 14.6 15.6
EF 13.4 18.5 15.6
LK 12.7 15.9 12.9

2020
NKF 14.6 19.2 16.3 15.6

2020

HF 13.6 18.6 15.1
KF 13.2 15.6 12.7

SKF 14.9 19.2 16.1 15.6
JF 13.3 17.3 14.0
NF 15.0 18.5 15.0

MAE
(Mg/ha) 4.65 1.30 1.35 MAE 3.73 0.71

RMSE
(Mg/ha) 4.66 1.32 1.47 RMSE 3.83 1.00

nRMSE (%) 33.00 9.30 10.30 nRMSE 27.30 7.20

Notes: PD, percent deviation of default-simulated yield from the field-measured yield; Meas., field-measured
yield; Std. dev., standard deviation of field-measured yield; GY-PC1, grain yield-related parameter combination
based on the default value; GY-PC2, grain yield-related parameter combination for each field-year calibrated
values; GY-PC3, grain yield-related parameter combination based on overall pooled average calibrated values.
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Figure 11. Field-measured and model-simulated grain yield for the pooled data using GY-PC3.

3.7. Limitations, Practical Considerations, and Recommendations for Improvement

Our study attempted to use data collected from commercial-scale production fields
for the calibration and validation of the Hybrid-Maize model, instead of first using data
from small research plots before moving to large fields. Although large fields may produce
uncertainty in calibration and validation, as in our study, they provide a direct idea of the
magnitude of errors that may be encountered in real-field situations when using the model.

One of the limitations of this study is that only eight fields were used for the new
method of model calibration, which may not be enough to test the validity of the innovation
in the research. With this limited field dataset, there is a high risk of overfitting a crop
simulation model with the new method of calibration and the overfitted model will not be
able to generalize well to new datasets. Another limitation is that the current Hybrid-Maize
model does not consider the upward capillary flux of soil water when simulating soil water
dynamics, especially for locations with possibilities of high-water tables, as in the case of
our study area with considerable upward flux. It is also worth noting that the assumption
of instantaneous drainage of soil water above field capacity used in the Hybrid-Maize
model is another serious drawback. This tends to support why the model showed declining
patterns in soil water, whereas the soil water sensors showed almost no decline, because it
may take some time for the soil water above field capacity to drain down the soil profile.
Another possible reason for the no significant decline in the soil water measured by the soil
water sensors could be that the electronic soil moisture sensors do not work very well.

Although the re-calibrated model produced a relatively moderate overall average
RMSE of less than 20 mm in relation to the total average applied water (precipitation + ir-
rigation) of 651 mm, there is still a need to reprove the part of the model responsible for
simulating soil water balance.

4. Summary and Conclusions

In this study, we demonstrated the use of calibration and MPO approach for enhancing
the Hybrid-Maize simulation of v and grain yields in production maize fields. The sensitiv-
ity analyses revealed that the texture-specific constant (GAM) and texture-specific suction
boundary (PSImax) had the greatest impact on the simulation of SWC, while grain yield
simulations were most sensitive to potential kernel filling rate (G5), the potential number
of kernels per ear (G2), initial light use efficiency (ILUE), and growth respiration coefficient
of grain (GRG) out of all the model parameters taken into consideration. We concluded the
GY-PC3 (G5 = 7.9 mg kernel−1 day−1, G2 = 611 kernel ear−1, ILUE = 12.2 g CO2 MJ−1 PAR,
and GRG = 0.494 g CH2O g−1 dry matter) was a good, calibrated parameter combina-
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tion for simulating grain yield, while SM-PC3 (GAM = 0.0245, PSImax = 300) is a good,
calibrated parameter combination for soil moisture. Future studies should also consider
applying and evaluating the MPO approach to other distinct groups of hybrids with unique
characteristics and farmers’ fields across different agroclimatic zones.
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