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Abstract: A proposed method for analyzing the effectiveness of rainwater storage tanks (RWSTs)
based on various enabling rule scenarios has been proposed to address the issue of incomplete
strategies and measures for controlling excessive rainwater runoff. Three enabling rules for RWSTs
have been proposed, as follows: enabling rule I, which involves activation upon rainfall; enabling
rule II, which requires the rainfall intensity to reach a predetermined threshold; and enabling rule III,
which necessitates the cumulative rainfall to reach a set threshold. In order to assess the effectiveness
of these enabling rules when reducing the total volume of rainwater outflow (TVRO), peak flow
rate (PFR), and peak flow velocity (PFV), a comparative analysis was conducted to determine which
enabling rule yielded the most optimal control effect. The findings indicate that the enabling rule I is
responsible for determining the optimal unit catchment’s rainfall capture volume (UCRCV), which is
measured at 300 m3·ha−1. Additionally, the control effect of the TVRO of the RWSTs remains largely
unaffected by the peak proportion coefficient. Enabling rule II establishes the optimal activation
threshold at a rainfall intensity of 1 mm·min−1; under this enabling rule, RWSTs demonstrate
the most effective control over PFR and PFV. Enabling rule III enables the determination of the
optimal activation threshold, which is set at a cumulative rainfall of 20 mm; under this enabling
rule, the implementation of the RWST technique yields the most effective control over the TVRO.
Consequently, the optimal rainwater runoff reduction plan for the study area has been successfully
determined, providing valuable guidance for the implementation of scientific and reasonable optimal
runoff management.

Keywords: rainwater storage tanks (RWSTs); peak flow control; rainwater runoff; rainwater and
flood control

1. Introduction

With the acceleration of urbanization in recent years, impermeable pavement is grad-
ually replacing natural permeable pavement, leading to a significant decrease in urban
soil permeability [1,2]. Additionally, in recent years, extreme rainfall events have begun to
occur more frequently, posing significant risks to the flood control and drainage capacities
of cities [3,4]. Flood disasters have some of the most devastating impacts among natural
disasters in terms of economic losses and population deaths [5]. Between 2000 and 2019,
flood disasters accounted for 31% of the global economic losses caused by natural disasters,
with an economic loss of USD 651 billion [6,7]. Floods have an impact on both developed
and developing countries [8]. Among these, China has some of the most severe flooding
disasters in the world, with about two-thirds of its territory facing the threat of flooding and
many of its cities suffering as a result [9]. According to the China Flood and Drought Disas-
ter Prevention Bulletin 2022, a total of 33.8526 million people were affected by floods in 2022,
resulting in direct economic losses of RMB 128.899 billion [10]. Urban flooding has become
a prominent issue affecting urban public safety in China and a major obstacle to sustainable
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urban development, and in turn has attracted high attention from the country [11–13].
The investigation of urban water safety has emerged as a prominent subject of scholarly
inquiry on a global scale. Developed nations and regions have devised a range of robust
theoretical and technical frameworks for urban rainwater and flood management, aiming to
address the issue of urban waterlogging and to attain urban water security [14]. China has
progressively implemented a sponge city urban rainwater management system, centered
around low impact development, and has successfully devised engineering technologies
and equipment for “source reduction, process control, and system governance”. This has
significantly contributed to the mitigation of the issue of urban waterlogging [11,15].

At present, research has shown that low impact development (LID) facilities are still
effective in controlling the rainwater runoff generated by small- and medium-sized rainfall
events, but are basically ineffective when alleviating the urban waterlogging caused by
large amounts of rainfall [16,17]. In the work of waterlogging control, RWSTs are often used
to collect and retain rainwater runoff to alleviate waterlogging problems. Many scholars
have conducted research on the structural design, operational efficiency optimization, and
control strategies of RWSTs. For example, Zhang et al. [18] have developed an underground
RWST using fiber-reinforced polymer materials for rainwater retention, storage, and reuse
to alleviate urban waterlogging and collect rainwater. Dabrowski et al. [19] have examined
the impact of the outflow structure of RWSTs on the necessary volume of the system. The
authors introduced a reasonable method for determining the size of RWSTs suitable for
small-scale sewage treatment systems. Their aim was to demonstrate that the volume of
an RWST remains unaffected by the configuration of the effluent discharge from the tank.
Wang et al. [20,21] have devised a novel approach that employs the stormwater manage-
ment model (SWMM) and an elastic feature measurement-based method to minimize the
modeling prerequisites in order to seek optimization solutions for RWSTs. The primary
objective is to minimize the occurrence of flooding, reduce the total suspended solids load,
and minimize storage costs to the maximum extent feasible. The proposed multi-objective
optimization framework has the potential to identify the most optimal solution for an RWST
or LID. This methodology offers a novel approach for determining improved RWST layout
schemes and contributes valuable insights for equipment placement in sustainable drainage
systems. Wang et al. [22] have proposed a method to optimize the simulation accuracy of
RWST operating scenarios in the SWMM, determined the real-time control (RTC) rules and
RWST operating modes for different scenarios of RWSTs in the SWMM (flushing toilets,
green space irrigation, combined flushing toilets and green space irrigation). They also eval-
uated the multi-objective operating effect of residential scale RWSTs. This study improved
the simulation accuracy of the model and established a multi-objective evaluation method
for operational effectiveness, providing theoretical support for the optimization method
for the operational strategy of RWSTs. However, there is still a lack of optimal control
strategies for rainwater runoff at the large watershed scale, and especially of methods for
determining RTC schemes for RWSTs, which still require sufficient research.

In summary, there is currently a knowledge gap in research on methods and technical
systems for controlling excessive rainwater runoff. Exploring the optimal timing and
conditions for RWSTs to collect rainwater runoff is of great significance. Therefore, this
study proposes a method by which to optimize the threshold for RWST activation—a
method that utilizes the InfoWorks integrated catchment management (ICM) model—and
takes a specific urban watershed in Jinan city as an example for research. The control effect
of RWSTs on rainwater runoff under different rainfall conditions and different enabling
rules was studied. The optimal enabling rules and corresponding activation thresholds
were evaluated and obtained in order to obtain the optimal RTC scheme for runoff control
in the study area so as to provide a theoretical basis and a runoff control technology system
for future waterlogging control and urban disaster prevention work in the study area.
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2. Methodology
2.1. Study Area

The research site is situated in Jinan city, Shandong province, specifically within the
Shiqingya river basin, which is a sub-basin of the Xingji river basin. Encompassing an
approximate area of 5.45 km2, the Shiqingya river basin constitutes 14% of the designated
pilot area. The total area of the building is 0.49 km2, the road square area is 1.66 km2,
the park green area is 0.65 km2, and the mountain area is 2.66 km2. The Shiqingya river,
situated within the aforementioned watershed, functions as the principal tributary to the
Xingji river. The confluence of the Shiqingya and Xingji rivers has been designated as the
control point for the watershed, wherein the investigation of rainwater runoff control is
conducted. The geographical position of the study area is depicted in Figure 1.
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2.2. Model Building
2.2.1. Multi Model Coupling

The study area was simulated and analyzed using the InfoWorks ICM model. However,
the independent models of InfoWorks ICM do not provide a comprehensive representation
of the entire rainfall runoff flow scenario in terms of two-dimensional surface, drainage
network, and river channels. Consequently, it becomes imperative to integrate the surface
runoff model, pipeline convergence model, two-dimensional surface overflow model, and
river confluence model (Figure 2) in order to accurately simulate the water exchange
process between various sub models. The watershed can be partitioned by considering
various factors, such as the topography, local slope orientation, and spatial arrangement
of the river system, alongside urban planning and land utilization patterns, road network
development, and the intended drainage network.
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The current water system, ditches, and pipeline network data in the study area were
vectorized and subsequently imported into the InfoWorks ICM model to generate the
topological structure diagram of the pipeline network in the research basin. In order
to enhance the precision of the InfoWorks ICM model’s simulation, the Tyson polygon
method, integrated within the model, was employed to subdivide the 9 catchment areas into
1271 sub-catchment areas, aligning with the configuration of the rainwater pipeline network.
The research basin encompasses a total of 7 generalized drainage outlets, 1351 inspection
wells, and 1202 rainwater pipelines. The existing pipeline network comprises circular pipes
with diameters ranging from 300 mm to 1500 mm, square culverts with widths ranging
from 700 mm to 7500 mm, and spans a total length of 66.32 km.

2.2.2. Design Scheme for the Enabling Rule of RWSTs

Constructing RWSTs to retain rainwater in areas with severe waterlogging can effec-
tively reduce the total volume of rainwater outflow (TVRO) and peak flow rate (PFR) [23].
Thus, when studying regional waterlogging control, the potential location for constructing
RWSTs should be determined based on the waterlogging conditions in the study area.
Therefore, based on the simulation results of waterlogging points in the study area, the
potential locations for the construction of five new RWSTs are shown in Figure 3.
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By using RTC technology on RWSTs, the PFR reduction rate can be further im-
proved [23,24]. This study primarily investigates the operational guidelines of RWSTs
under various enabling rules and assesses their impact on rainwater runoff control. The
discharge mechanism of RWSTs is simplified, wherein organized emissions are executed
subsequent to the conclusion of rainfall. There exist three distinct regulations governing
the activation of RWSTs:

(1) Enabling rule I: Initiate activation promptly upon the start of rainfall.

At the onset of precipitation, the RWST is set into motion, allowing rainwater runoff
to infiltrate the system via terrain slopes, nodes, pipelines, and other conduits. When
the RWST reaches its maximum capacity or when rainfall ceases, it ceases to store water.
Enabling rule I establishes six threshold values for the unit catchment’s rainfall capture
volume (UCRCV), namely 0, 100, 200, 300, 400, and 500 m³·ha−1, which corresponds
respectively to RWST volumes of 0, 5.45 × 104, 10.90 × 104, 16.35 × 104, 21.80 × 104, and
27.25 × 104 m3. These values are used to investigate the functioning of the regulating
RWST under various UCRCV conditions and to determine the most suitable UCRCV for
the optimal performance of RWST.

(2) Enabling rule II: Rainfall intensity reaches threshold.

The process of rainfall is characterized by its dynamic nature, whereby the activation
of the RWST occurs when the rainfall intensity surpasses a predetermined threshold.
Rainwater runoff is directed into the RWST through various pathways. The storage of
water in the RWST ceases either when it reaches its maximum capacity or when the rainfall
ceases altogether. Enabling rule II establishes six distinct thresholds for rainfall intensity,
namely 0, 1.0, 2.0, 3.0, 4.0, and 5.0 mm·min−1. The primary objective of this enabling
rule is to investigate the functioning of the RWST under different activation conditions
based on rainfall intensity, ultimately determining the most optimal threshold for activating
the RWST.

(3) Enabling rule III: Cumulative rainfall reaches threshold.

Once the cumulative rainfall surpasses the predetermined threshold, the RWST is
triggered, allowing rainwater runoff to enter. The storage process ceases either when
the RWST reaches its maximum capacity or when the rainfall ceases. Enabling rule III
establishes six distinct cumulative rainfall thresholds (0, 20, 40, 60, 80, and 100 mm) by
which to investigate the RWST’s functionality under various activation conditions and to
identify the most effective cumulative rainfall threshold for RWST activation.

The three enabling rules above are commonly used RTC modes for RWSTs in practical
engineering. Each enabling rule is set with six different thresholds. Through flood simula-
tion using the InfoWorks ICM model, the optimal enabling rule and threshold for solving
waterlogging points in the study area will be determined, providing the optimal runoff
reduction scheme for future waterlogging control work.
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2.3. Rainfall Parameters

The short-duration rainfall process line in this study employs the commonly utilized
Chicago rain pattern, with a duration of 120 min. As per the Comprehensive Planning of
Urban Drainage (Rainwater) and Waterlogging Prevention in Jinan, [25] the modified rainstorm
intensity Equation (1) for Jinan is presented below:

q =
1421.481 × (1 + 0.932lgP)

(t + 7.347)0.617 (1)

where, q is the design rainstorm intensity, mm·min−1; P represents the design return period, a;
t is the time it takes for the rainwater well to collect rainwater (which is related to the surface
collection time and the time it takes for rainwater to pass through the pipeline, and is designed
by the model based on parameters such as terrain, slope, and pipeline length) in minutes.

Calculate and select two types of rainfall data using Equation (1) to simulate the opera-
tional effectiveness of RWSTs under different enabling rule scenarios: (1) rainfall with a return
period of 1, 3, 5, 10, 20, and 50 years (every 5 min interval represents the time interval between
changes in rainfall intensity, the smaller the time interval, the closer it is to the actual rainfall
scenario) and a peak rainfall coefficient (the ratio of the time elapsed from the onset of rainfall
to its peak intensity to the total duration of the rainfall event) of 0.3 (P =1, 3, 5, 10, 20, 50,
r = 0.3); (2) rainfall with a return period of 20 years (every 5 min interval) and peak rainfall
coefficients of 0.3, 0.5, and 0.7 (P = 20a, r = 0.3, 0.5, 0.7). Table 1 and Figure 4 show short-term
rainfall patterns with different rainfall return periods and peak coefficients. From Figure 4, it
can be seen that, as the return period increases, rainfall depth and intensity increase. With the
increase of the rainfall peak coefficient, the corresponding time of rainfall peak intensity shifts
backward, and the accumulated rainfall before the rainfall peak (the area formed by the rainfall
intensity curve and the x-axis) increases. Therefore, by selecting the above two types of rainfall
data to simulate the rainwater runoff control effect in the study area, the relationship between
rainfall, rainfall intensity, and cumulative rainfall before rainfall peak and the rainwater runoff
control effect can be compared. Furthermore, by orthogonal combination and comparison with
three enabling rules, the optimal enabling rules and thresholds can be determined based on the
effectiveness of rainwater runoff control. In addition, in the preliminary work, the flow rate
and velocity hydrographs of monitoring locations under three enabling rules (a total of 162 sim-
ulation scenarios) in the model were exported. It was found that the relationships between
flow rate, velocity changes, peak delay time and return period at the monitoring location were
relatively ideal, and, after comparison, there were no sudden increases or decreases. Due to the
large number of flow rate and velocity hydrographs, TVRO, PFR, and peak flow velocity (PFV)
were selected for comparison in each scenario in order to improve the comparison efficiency
between simulated scenarios and to obtain more scientific conclusions.
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Table 1. Variations in precipitation across distinct time intervals.

Return Period/a Rainfall Depth/mm Return Period/a Rainfall Depth/mm

1 51.7 10 99.8
3 74.7 20 114.3
5 85.3 50 133.4

2.4. Calibration and Validation

In order to guarantee a precise depiction of the runoff generation and confluence
circumstances within the designated research region, it is imperative to calibrate the model
parameters prior to conducting simulation analysis. The selection of Nash–Sutcliffe ef-
ficiency (NSE) and R2 as evaluation metrics serves as indicators by which to assess the
precision of the model’s simulations [26]. This study aims to assess the level of concordance
between simulated and measured values, as well as the extent of linear correlation between
simulated and measured curves (points).

The NSE metric serves as an evaluative tool for assessing the precision of model
simulation, with its calculation process being demonstrated in Equation (2):

NSE = 1 − ∑n
i=1(Qsim,t − Qobs,t)

2

∑n
i=1(Qobs,t − Qavo)

2 (2)

where NSE is the Nash efficiency coefficient, with a value range less than 1. The larger the value,
the better the simulation effect. When NSE is less than 0, this indicates poor simulation accuracy;
Qsim,t is the simulation value of flow rate at time t; Qobs,t is the monitor value of flow rate at time
t; Qavo is the average monitor value of flow rate; and n is the length of the data sequence.

The R2 statistic serves as a measure that characterizes the magnitude of the association
between two variables, and its computation is demonstrated in Equation (3).

R2 =
[∑n

i=1(Qsim,t − Qavs)(Qobs,t − Qavo)]
2

∑n
i=1(Qsim,t − Qavs)

2 × ∑n
i=1(Qobs,t − Qavo)

2 (3)

where R2 is the correlation coefficient, with a value between 0 and 1 and where the larger
this value, the better the simulation effect. Qavs is the average simulation value of flow rate.

The actual monitoring data utilized in this study were derived from the rainfall station
at Shandong University within the study area. The precise monitoring locations can be
observed in Figure 1. The calibrated results are presented in Figure 5a,b, indicating that
all NSE values and R2 values exceeded 0.9. The verified results, displayed in Figure 5c,d,
demonstrate NSE values surpassing 0.85 and R2 values exceeding 0.9. Thus, these findings
can be effectively employed in subsequent simulation analyses. The specific parameters
employed in the model can be found in Table 2.

Table 2. Model parameters of InfoWorks ICM.

Type Parameter Rating Results

Production and convergence model SWMM SWMM

Runoff coefficient
Roof runoff coefficient 0.75
Road runoff coefficient 0.80

Confluence parameters (Manning coefficient)
Roof convergence parameters 0.015
Road confluence parameters 0.015

Road confluence parameters green space 0.03

Initial losses/m
Initial loss of roof 0.01
Initial road losses 0.01

Initial loss of green space 0.015

Horton permeability coefficient
Initial infiltration rate/mm·h−1 100
steady infiltration rate/mm·h−1 15

Attenuation rate/1·h−1 2
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3. Results and Discussion
3.1. Analysis of Stormwater Runoff Reduction Effect in RWSTs under Different Enabling
Rules Scenarios

The main evaluation indicators (TVRO, PFR, and PFV) of the stormwater runoff
reduction effect under different enabling rules were analyzed. We explored the runoff
control effect and its relationship with the threshold values of each rule under three different
enabling rule scenarios of RWSTs. Among these, the UCRCV of the RWSTs was set to
300 m3·ha−1 under enabling rules II and III to determine the optimal rainfall intensity and
cumulative rainfall threshold.

3.1.1. Analysis of the TVRO Control Effect

The TVRO of an RWST, under the application of enabling rule I, is depicted in Figure 6a,b.
The graph illustrates a decline in TVRO as the UCRCV of the RWST increases. The study area
exhibits minimal variation in the influence of different peak proportion coefficients on the
TVRO, while the TVRO decreases with an increase in UCRCV. An increase in the UCRCV of
the RWSTs from 0 to 500 m3·ha−1 leads to a significantly higher reduction rate of TVRO during
a rainfall event with P = 1a, compared with rainfall events with other return periods. This
phenomenon is believed to be caused by the limited capacity of the RWST and its associated
water collection infrastructure, which hinders the storage of runoff beyond its maximum
capacity and results in the outflow of rainwater. This finding is consistent with the findings of
previous studies conducted by Schubert and Snir et al. [27,28]
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However, as the UCRCV continues to increase, the PFR has reached its lowest level and 
is unable to decrease further. The control effect of PFR is not significant when the UCRCV 

Figure 6. Control effect of TVRO from RWSTs under different enabling rule scenarios. (a,c,e) TVRO
at different return periods with enabling rules I, II and III, respectively (P = 1, 3, 5, 10, 20, 50a, r = 0.3).
(b,d,f) TVRO at different rain peak coefficients with enabling rules I, II and III, respectively (P = 20a,
r = 0.3, 0.5, 0.7).

Figure 6c,d visually depict the performance of the TVRO under the influence of en-
abling rule II. Upon analyzing Figure 6c, it becomes evident that the TVRO does not display
a significant trend as the threshold for rainfall intensity rises. However, significant distinc-
tions were noted, particularly in the form of a substantial decrease in the TVRO during the
rainfall intensity threshold of 0–1 mm·min−1. The TVRO exhibited a recovery within the
range of 1–2 mm·min−1 and subsequently stabilized without further modifications within
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the range of 2–5 mm·min−1. In this study, it was observed that the implementation of
enabling rule II demonstrated a more effective regulation of the TVRO across various return
periods of rainfall events when the threshold of rainfall intensity was set at 1 mm·min−1.
The study observed that the reduction rates of TVRO during rainfall events with P = 1,
3, 5, 10, 20, 50a were determined to be 14.45%, 10.59%, 9.13%, 7.60%, 6.33%, and 5.06%,
respectively. It is plausible to consider that the excessively elevated threshold for rainfall in-
tensity might account for this phenomenon. When rainfall intensity surpasses 2 mm·min−1,
the RWSTs system remains inactive. Consequently, there is a failure to optimize storage
capacity utilization and mitigate runoff outflow. Figure 6d demonstrates a decreasing trend
in TVRO as the threshold for rainfall intensity increases across different scenarios of rainfall
events that are characterized by varying peak proportion coefficients. However, the impact
of these coefficients on TVRO is considered to be insignificant. The study documents the
average rates of reduction in total external emissions at peak proportion coefficients of
r = 0.3, 0.5, and 0.7 as 6.37%, 6.44%, and 6.46%, respectively. The main reason for such
situations is that the occurrence of TVRO is influenced by rainfall intensity and has little
correlation with the peak proportion coefficient [29]. Therefore, enabling rule II has the
same optimal rainfall intensity threshold range for different design rainfall events.

Figure 6e,f present portrayals of TVRO that depend on the implementation of enabling
rule III. The graph visually shows a significant decrease in TVRO as the cumulative rainfall
threshold for the RWST increases. The optimal operating time for an RWST is when the
rainfall approaches or reaches its peak. The larger the return period of a rainfall event, the
greater the cumulative rainfall before the rainfall approaches or reaches its peak, and the
smaller the threshold for optimal cumulative rainfall activation. The effectiveness of an
RWST is maximized when rainfall is approaching or at its peak level, particularly as the
return period of a rainfall event increases. The larger the recurrence period of a rainfall
event, the higher the total rainfall before it reaches its peak, and the lower the threshold for
achieving the optimal cumulative rainfall [29].

3.1.2. Analysis of the PFR Control Effect

The PFR pattern of RWSTs under various enabling rules is illustrated in Figure 7.
Analysis of Figure 7a,b reveals that the PFR of rainwater outflow decreases as the UCRCV
of the RWSTs increases. This can be attributed to the fact that the regulatory impact
of PFR has reached or approached its optimal level at a unit catchment area regulation
volume of 300 m3·ha−1, which allows for maximum collection and storage of rainwater
runoff. However, as the UCRCV continues to increase, the PFR has reached its lowest level
and is unable to decrease further. The control effect of PFR is not significant when the
UCRCV of the RWSTs is less than 0 m3·ha−1, 100 m3·ha−1, and 200 m3·ha−1 for respective
peak proportion coefficients of 0.3, 0.5, and 0.7. In situations where the peak proportion
coefficient is relatively high, the capacity of the RWSTs becomes saturated before reaching
the peak, resulting in an insignificant reduction of PFR.

Based on the observations from Figure 7c,d, it is evident that the progressive rise in
the rainfall intensity threshold of the activated RWSTs leads to a general decline followed
by a slight increase in the PFR. This analysis is supported by the fact that when the
rainfall intensity threshold reaches the range of 4–5 mm·min−1, the RWST enables efficient
utilization of storage capacity, resulting in a reduction in the PFR and successful attainment
of PFR reduction effects. These findings align with the research conducted by Xu et al. [30].
As the intensity of rainfall surpasses a certain threshold, the PFR exhibits a consistent
trend across various scenarios of rainfall events characterized by different peak proportion
coefficients. Notably, when the peak proportion coefficients are set at r = 0.3 and 0.5, the
optimal control effect of PFR is observed at a rainfall intensity threshold of 1 mm·min−1.
However, as the value of r increases to 0.7, the reduction rate of PFR demonstrates an
upward trend in correlation with the escalation of the rainfall intensity threshold. When
the rainfall intensity threshold falls within the range of 1 mm·min−1, the activation of
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enabling rule II yields the most effective control over PFR during diverse rainfall events
characterized by varying peak proportion coefficients [23].
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at different rain peak coefficients with enabling rules I, II and III, respectively (P = 20a, r = 0.3, 0.5, 0.7).

Based on the observations from Figure 7e,f, it is evident that there is a decreasing trend
in the PFR as the cumulative rainfall threshold for enabling rule III increases. Additionally,
this trend is consistent across different return periods of rainfall. As the cumulative rainfall
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threshold increases, the PFR exhibits a consistent decreasing trend across various scenarios
of peak proportion coefficient rainfall events. A smaller peak proportion coefficient cor-
responds with a more pronounced reduction effect. Specifically, the PFR reduction rate
surpasses 12% for rainfall events with r = 0.3 and 0.5, whereas it is merely 5.77% for rainfall
events with r = 0.7. The optimal threshold for activating cumulative rainfall for PFR control
is 20 mm under rainfall events with peak proportion coefficients of 0.3, 0.5, and 0.7.

3.1.3. Analysis of the PFV Control Effect

Based on the observations from Figure 8a,b, it is evident that the PFV of enabling
rule I exhibits a decline as the UCRCV of the RWSTs increases. Furthermore, the PFV
gradually decreases as the return period increases, while keeping the conditions constant.
The reduction effect of the P = 1, 3, and 5a rainfall event is considerably superior to that of
the P = 10, 20, and 50a rainfall event, primarily due to the ample regulating capacity of the
RWST system. This capacity enables the efficient mitigation of substantial rainwater runoff
and discharge and aligns with the research findings of Liang and Matteo et al. [23,24]. As the
UCRCV of the RWSTs increases, the PFV control effect becomes increasingly pronounced,
as indicated by peak proportion coefficients of 0.3, 0.5, and 0.7. Notably, rainfall events
characterized by smaller peak proportion coefficients exhibit significantly superior control
effects compared with those with larger peak proportion coefficients. This phenomenon
can be attributed to the positive correlation between the peak proportion coefficient and the
accumulation of rainfall prior to reaching its peak. Consequently, enabling rule I exhibits
distinct optimal thresholds, dependent on the nature of the rainfall event. In general, a
higher threshold is required for the optimal activation of the UCRCV when the rainfall
return period is longer or when the peak rainfall is delayed.

From Figure 8c,d, it can be seen that, with the increase of the rainfall intensity threshold
for enabling rule II to activate the RWST, the PFV generally shows a decreasing trend, and
rainfall at different return periods shows a similar trend. The overall PFV reduction rate
shows a trend of first decreasing and then increasing. As the threshold of rainfall intensity
increases, there is a slight difference in the reduction rate of PFV for different return periods
of rainfall events. The smaller the return period, the better the reduction effect of PFV. The
reason for this is that, when the threshold of rainfall intensity increases to the range of
4 mm·min−1, the RWST can be activated, which in turn allows for the effective utilization
of the storage space of the RWST to regulate excess runoff, thereby reducing the PFV and
reducing the risk of water safety incidents caused by excessive PFV. As the threshold of
rainfall intensity increases, the PFV under different peak proportion coefficient rainfall event
scenarios shows the same trend. When the peak proportion coefficient r = 0.3 and 0.5, the
PFV control effect is best at the rainfall intensity threshold of 1 mm·min−1. However, when
r = 0.7, the PFV reduction rate increases with the increase of rainfall intensity threshold. As
the threshold for rainfall intensity increases, the rate of PFV reduction shows an upward
trend. When the rainfall intensity threshold is within the range of 1 mm·min−1, enabling
rule II shows the best control effect on PFV under different peak proportion coefficient
rainfall events.

Based on the observations from Figure 8e,f, it is evident that there is a general decline in
the PFV as the cumulative rainfall threshold for enabling rule III increases. Additionally, the
rainfall at various return periods exhibits a comparable pattern. There exists a cumulative
rainfall activation threshold of 20 mm that maximizes the flow rate control effect under
rainfall events of P = 1, 3, 5, 10, 20, and 50a. As the threshold for cumulative rainfall
increases, there is a consistent decreasing trend in the PFV under various peak proportion
coefficient rainfall event scenarios. It is observed that a smaller peak proportion coefficient
results in a more favorable reduction effect. Specifically, for rainfall events with peak
proportion coefficients of 0.3, 0.5, and 0.7, the optimal threshold for activating cumulative
rainfall is determined to be 20 mm.

In summary, enabling rules I, and II have different thresholds for TVRO, PFR, and
PFV under rainfall events at different return periods. When their threshold of UCRCV
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and rainfall intensity are greater than 300 m3·ha−1 and 1 mm·min−1, respectively, the
growth trends of TVRO, PFR, and PFV decrease. The TVRO, PFR, and PFV of enabling
rule III showed no significant fluctuations after the accumulated rainfall exceeded 20 mm.
Therefore, the optimal thresholds for UCRCV, rainfall intensity, and accumulated rainfall
for enabling rules I, II, and III are determined to be 300 m3·ha−1, 1 mm·min−1, and
20 mm, respectively.
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3.2. Optimization of Enabling Rule for Different RWSTs

To facilitate a comprehensive analysis and elucidation of the optimal control outcomes
associated with enabling rules I, II, and III, three distinct types of enabling rules were
implemented for RWSTs with a UCRCV value of 300 m3·ha−1. The rainfall intensity
threshold of 1 mm·min−1 and the cumulative rainfall threshold of 20 mm were identified
as the optimal enabling thresholds for enabling rules II and III, respectively. To determine
the most suitable enabling rule for optimizing and controlling the TVRO, PFR, and PFV,
two actual rainfall events in Jinan city were simulated and verified.

A comparison of the control effect of TVRO under different RWSTs enabling rules is
illustrated in Figure 9. Based on the findings from Figure 9, it is evident that the overall
comparison of the three enabling rules indicates that enabling rule III yields a superior
TVRO control effect compared with the other enabling rules. The control effect of various
RWSTs enabling rules on TVRO decreases as the return period increases. The findings
indicate that, across different design rainfall events (P = 1, 3, 5, 10, 20, 50a, r = 0.3), enabling
rule III demonstrates superior control effectiveness compared with enabling rule I and
enabling rule II. Additionally, enabling rule II exhibits slightly lower control effectiveness
than enabling rule I. The TVRO’s reduction rates, as determined by the application of
enabling rule III across various return periods (P = 1, 3, 5, 10, 20, 50a, r = 0.3), are 14.75%,
13.32%, 11.23%, 9.25%, 7.81%, and 6.25%, respectively.
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r = 0.3). (a) Effect of TVRO control and (b) reduction rate of total external emissions.

Figure 10 illustrates the comparison of the effects of PFR control under various RWST
enabling rules. Based on the findings from Figure 10, it is evident that enabling rule II
outperforms the other enabling rules in terms of PFR control effectiveness. Furthermore, the
PFR control effect exhibits a consistent trend across different RWST enabling rules, wherein
it diminishes as the return period increases. The findings indicate that the implementation
of enabling rule II yielded superior control effects compared with enabling rule I and
enabling rule III during the design rainfall events of P = 1, 3, 5, and 10a. However, enabling
rule II exhibited a slight disadvantage in comparison with enabling rule I and enabling rule
III under the design rainfall events P = 20 and 50a, enabling rule III produced better PFR
control effects. The PFR reduction rates achieved by utilizing enabling rule II varied across
return periods (P = 1, 3, 5, 10, 20, 50a, r = 0.3), with rates of 29.49%, 21.65%, 19.25%, 14.57%,
11.84%, and 9.84% respectively.
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in PFV and PFR control effects, that is, in rainfall events with P = 1, 3, 5 and 10a, the PFV 
control effect with enabling rule II is the best. Under the design rainfall events of P = 20 
and 50a, the PFV control effect is as follows: enabling rule III > enabling rule II > enabling 
rule I. The reduction rates of PFV achieved by enabling rule II were seen to vary across 
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Figure 10. Comparison of PFR under different enabling rules of RWSTs (P = 1, 3, 5, 10, 20, 50a, r = 0.3).
(a) PFR control effect and (b)PFR reduction rate.

Figure 11 illustrates a comparison of the control effects of PFV under various RWST
enabling rules. It is evident from Figure 11 that enabling rule II shows a consistent trend
in PFV and PFR control effects, that is, in rainfall events with P = 1, 3, 5 and 10a, the PFV
control effect with enabling rule II is the best. Under the design rainfall events of P = 20
and 50a, the PFV control effect is as follows: enabling rule III > enabling rule II > enabling
rule I. The reduction rates of PFV achieved by enabling rule II were seen to vary across
different return periods (P = 1, 3, 5, 10, 20, 50a, r = 0.3), with observed reduction rates of
22.36%, 15.38%, 13.46%, 5.85%, 4.59%, and 3.73%, respectively.
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In summary, enabling rule III has more advantages in rainwater runoff regulation
and is more effective than enabling rule II. That is, enabling rule II only showed the best
PFR and PFV control effects in P = 1, 3, 5, and 10a rainfall events, while enabling Rule III
showed the best TVRO, PFR, and PFV control effects in all other rainfall events.

The historical rainfall data were utilized to provide additional confirmation of the
runoff control efficacy of the optimal enabling rule and its corresponding threshold, as
demonstrated by two monitored rainfall events within the study area. The verification
outcomes of these two actual rainfall events are depicted in Figure 12. It was observed that,
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under the three enabling rules, the TVRO, PFR, and PFV were effectively regulated during
both rainfall events.
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In the rainfall event that occurred on 1 August 2016 (Figure 12a), the implementation of
enabling rule III was demonstrated the most effective control on the TVRO. The utilization
of enabling rules I, II, and III resulted in reductions of 5.81%, 5.92%, and 7.98% respectively,
in comparison with the prevailing conditions. In terms of PFR, enabling rule II exhibited
the most significant control effect, leading to reductions of 12.77%, 14.03%, and 11.33%
for enabling rules I, II, and III, respectively, when compared with the current situation.
Similarly, for PFV, the implementation of enabling rule II yielded the most effective control
effect, resulting in reductions of 5.06%, 5.91%, and 4.64% for enabling rules I, II, and III,
respectively, in comparison with the current situation.

The rainfall event that occurred on 14 August 2016 (Figure 12b) showed a consistent
trend with the rainfall event on 1 August 2016 (Figure 12a). Overall, the control effect of
the two actual rainfall events is consistent with the above conclusion. That is, enabling rule
III has an advantage in controlling the TVRO, with enabling rule III being more effective
than enabling rule II, and enabling rule II being more effective than enabling rule I. The
control effect of enabling rule II on PFR and PFV is either better or similar to the other
two enabling rules.

In summary, it can be determined that enabling rule III has the greatest advantage in
improving stormwater runoff reduction within the study area, thereby reducing TVRO. Its
optimal threshold for activating an RWST is when the accumulated rainfall reaches 20 mm.
The above activation threshold evaluation and determination methods can be used to
construct a stormwater runoff reduction pattern from the large watershed scale, including
the determination of RWST location, size, and control threshold, and other operating modes.
This provides an important theoretical basis for the study of future waterlogging control
and urban disaster prevention in the study area.

4. Conclusions

At present, in the global rainwater control work, a large number of RWSTs are con-
structed for rainwater regulation, and a large number of solutions have been proposed, but
the results are very limited. The best control strategy for large-watershed-scale rainwater
runoff is still lacking; this is especially so for a method and technical system by which
to adjust the RWST RTC scheme and improve the reduction effect of excessive rainwater
runoff. This still requires sufficient research. Therefore, exploring the optimal solution for
the RTC of large-watershed-scale RWSTs is of great significance.
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This study proposes a method for optimizing the activation threshold of RWSTs, apply-
ing the RTC function of the InfoWorks ICM model in order to evaluate the TVRO, PFR, and
PFV control effects of RWSTs under three enabling rules (a total of 162 simulation scenarios).
The optimal enabling rule and corresponding activation threshold were determined, and
the runoff control effect of an RWST was further evaluated using actual rainfall data. It has
been confirmed that the optimal enabling rule with the greatest impact when improving the
efficiency of rainwater runoff reduction in the study area is enabling rule III, and that the
corresponding optimal threshold by which to activate RWST is met when the accumulated
rainfall reaches 20 mm. Meanwhile, the control effects of three enabling rules on TVRO,
PFR, and PFV were also explored. Enabling rule II displays the maximum control over PFR
and PFV, while enabling rule III displays the most effective control over TVRO. The con-
struction of this method can improve the flood control capacity of the research area and the
large-watershed-scale rainwater runoff control mode, providing an important theoretical
basis and a technical system for future waterlogging control work in the research area.

In future waterlogging control work, the abovementioned rainwater runoff control
work can be carried out in different areas. It could be utilized to analyze the runoff
regulation effects among various RWSTs and adopt different enabling rules and thresholds
for each region in order to achieve free control of TVRO, PFR, PFV, and cross regional
runoff transfer. It is conducive to the establishment of a large-watershed-scale rainwater
runoff control technology system and optimal RTC schemes, and may help to create further
scientific plans for rainwater control around the world. This may provide a reasonable
reference method for evaluating the efficiency of RWSTs worldwide and determining an
optimal RTC scheme.
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