
Citation: Ali, M.A.H.; Mewafy, F.M.;

Qian, W.; Faruwa, A.R.; Shebl, A.;

Dabaa, S.; Saleem, H.A. Numerical

Simulation of Geophysical Models to

Detect Mining Tailings’ Leachates

within Tailing Storage Facilities. Water

2024, 16, 753. https://doi.org/

10.3390/w16050753

Academic Editor: Glen R. Walker

Received: 3 January 2024

Revised: 15 February 2024

Accepted: 27 February 2024

Published: 1 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Numerical Simulation of Geophysical Models to Detect Mining
Tailings’ Leachates within Tailing Storage Facilities
Mosaad Ali Hussein Ali 1,* , Farag M. Mewafy 2,* , Wei Qian 3, Ajibola Richard Faruwa 3, Ali Shebl 4,5 ,
Saleh Dabaa 6 and Hussein A. Saleem 7,1

1 Mining and Metallurgical Engineering Department, Assiut University, Assiut 71515, Egypt
2 Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK 74078, USA
3 School of Earth Science and Engineering, Hohai University, Nanjing 210098, China;

ajibola.faruwa@gmail.com (A.R.F.)
4 Department of Mineralogy and Geology, Faculty of Science and Technology, University of Debrecen,

Egyetem tér 1, 4032 Debrecen, Hungary; ali.shebl@science.tanta.edu.eg
5 Department of Geology, Tanta University, Tanta 31527, Egypt
6 Ministry of Water Resources and Irrigation, El Dakhla 72716, Egypt; salehdh50@yahoo.com
7 Mining Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia;

hasmohamad@kau.edu.sa
* Correspondence: mossad_ali2000@aun.edu.eg (M.A.H.A.); farag.mewafy@okstate.edu (F.M.M.)

Abstract: The effective detection and monitoring of mining tailings’ leachates (MTLs) plays a pivotal
role in environmental protection and remediation efforts. Electrical resistivity tomography (ERT) is a
non-invasive technique widely employed for mapping subsurface contaminant plumes. However,
the efficacy of ERT depends on selecting the optimal electrode array for each specific case. This study
addresses this challenge by conducting a comprehensive review of published case studies utilizing
ERT to characterize mining tailings. Through numerical simulations, we compare the imaging
capabilities of commonly used electrode configurations, six ERT arrays, aiming to identify the optimal
array for MTLs’ detection and monitoring. In addition, field surveys employing ERT were conducted
at the El Mochito mine tailings site to detect zones saturated with leachates within the tailing storage
facilities (TSFs). The findings indicate that the “Wenner-Schlumberger” array exhibits superior data
resolution for MTL detection. However, the choice of the optimal electrode array is contingent on
factors such as survey location, geological considerations, research objectives, data processing time
and cost, and logistical constraints. This study serves as a practical guide for selecting the most
effective electrode array in the context of pollutant penetration from mining tailings, employing the
ERT technique. Furthermore, it contributes valuable insights into characterizing zones saturated with
mining tailing leachates within the TSFs, providing a solid foundation for informed environmental
management and remediation strategies.

Keywords: mining tailings; groundwater contamination; resistivity; numerical simulation

1. Introduction

Mining tailings are the residual materials remaining following the extraction of valu-
able minerals from ores. These tailings usually contain toxic chemicals such as arsenic, lead,
and mercury, which pose a significant environmental threat if not managed properly [1].
Mining tailings can contaminate soil, water, and air, leading to health hazards for humans
and wildlife. The management and disposal of mining tailings are essential to prevent their
negative impact on the environment [2,3]. Some of the strategies for managing mining
tailings include the construction of tailing dams, the backfilling of mined-out areas, and
reprocessing to extract any remaining valuable minerals [4,5]. Despite these efforts, mining
tailings remain a significant challenge for the mining industry, as the tailings produced
can accumulate for decades or even centuries, with the potential to cause harm to the
environment and communities surrounding the mine sites [6].

Water 2024, 16, 753. https://doi.org/10.3390/w16050753 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16050753
https://doi.org/10.3390/w16050753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-1796-0134
https://orcid.org/0000-0003-2848-5575
https://orcid.org/0000-0001-7285-285X
https://doi.org/10.3390/w16050753
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16050753?type=check_update&version=3


Water 2024, 16, 753 2 of 18

Geophysical techniques are extensively employed for the monitoring of groundwater
contamination, which can arise from diverse sources, including hydrocarbon contamina-
tion [7,8], landfills [9,10], saline water intrusions [11,12], and mine tailings [13,14]. These
techniques are cost-effective, repeatable, rapid, and non-destructive during data acquisition.
Moreover, they provide an informative image of the subsurface petrophysical conditions.
These geophysical surveying methods involve the use of the physical and petrophysi-
cal properties of the earth to identify the presence and movement of fluids within the
ground [15]. The presence of hydrocarbon contaminants stimulates biological and chemical
activity, resulting in bio physicochemical changes induced in the subsurface during the
reaction of contaminants [16]. The increase in reactions in the surfaces of the substrate and
between pore openings in rocks and sediments can induce physical changes in the porous
material itself [17]. These reactions result in the production of acids which are responsible
for the leaching of the surrounding soil matrix causing an increase in the ionic strength of
the pore water. Hence, the dissolution of minerals results in the etching of the grains of the
soil matrix [18]. These changes may cause an increase in the bulk electrical conductivity of
contaminated soil that is detectable by geophysical methods such as Electrical Resistivity
Tomography (ERT) and Ground-Penetrating Radar (GPR) [16,19,20]. These techniques play
a crucial role in assessing and understanding the extent and nature of groundwater contami-
nation, enabling effective mitigation strategies and resource management [21,22]. However,
choosing the optimal geophysical method that meets the purpose of a project sometimes is
challenging and may dictate the success or failure of the subsurface imaging [23,24].

The ERT method has been widely applied in groundwater, mining, environmental,
and civil engineering investigations [25,26]. Mineral grains in the subsurface constitute
the primary component of nonconductive soil and rock fragments [27,28]. However, in
contaminated areas like mining sites, the presence of conductive metallic ores leads to
variations in conductivity, creating anomalous zones [29]. As a result, the resistivity of soil
and rock fragments can be readily differentiated from conductive zones. Other factors that
may affect the resistivity include water in the pore spaces, water salinity, permeability, and
porosity [30]. Resistivity measurements can detect anomalies in the subsurface and hence
provide an image of the subsurface conditions [31]. Recently, there have been significant
advances in automated ERT data acquisition approaches as well as 2D and 3D inversion
software [32–34]. Thus, ERT has become a more attractive exploration method and a
proven non-invasive and cost-effective technique. Many authors have demonstrated the
conceivability to obtain accurate resistivity data of the subsurface structure using 2D/3D
ERT inversion models [35–41].

As ERT is very sensitive to electrode array types [42], choosing the right array for each
case study can have a substantial impact on the produced image [43,44]. Various numerical,
experimental, and field studies have been conducted to compare different ERT electrode
arrays for near surface geophysical settings and structures [45–54]. To our knowledge,
there has not been a comprehensive comparison of ERT electrode arrays for mining tailings’
leachates (MTLs). Most of the previous work on MTLs using ERT employed a single
electrode array without justification for why this array was employed. Therefore, this study
aims to determine the appropriate electrode array that could be used to detect and monitor
MTL. In this study, “leachate” pertains to the fluid that accumulates within tailing storage
facilities (TSFs) subsequent to leaching through the tailing materials. To achieve this goal,
a review of the published case studies in the literature that applied ERT to characterize
mining tailings was performed to identify the most commonly used electrode array for
such applications. Subsequently, a numerical investigation was conducted to evaluate the
imaging capability of the commonly used electrode configurations. This evaluation was
performed on a synthetic mining tailing backfilling model. A robust inversion approach
was utilized to compare the configurations for 2D ERT, because it is a common inversion
scheme for such projects. The following factors were evaluated for each electrode array: the
imaging resolution, the depth of investigation (DOI), the data density, and the sensitivity
to noise. Additionally, field surveys were conducted at the El Mochito mine tailings site
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to detect zones saturated with leachate within the tailing storage facilities (TSFs). This
methodology is expected to help in selecting the most appropriate electrode array for
mapping the MTL.

2. Literature Review

The use of ERT in characterizing mining tailings has become increasingly popular
due to their accuracy and cost-effectiveness. In the section below, a review of published
case studies that employed ERT to characterize mining tailings with emphasis on iden-
tifying the most commonly used electrode array for detecting MTLs within TSFs was
conducted. Several criteria were considered while reviewing the published literature,
including the following:

(1) Research focus: choosing the published literature that is closely aligned with the
research focus and objectives of this study;

(2) Relevance: selecting articles that directly address similar or related research ques-
tions allows the authors to build upon existing knowledge and establish a coherent
framework for their study;

(3) Methodological compatibility: limiting the selected literature that uses the same
electrode arrays and employs a similar or complementary methodologies

(4) Limitations and scope: Because of limitations on space and the scope of the study, it is
not feasible to include all the articles available on a particular topic. Thus, the authors
had to make strategic choices to include representative studies that adequately cover
the range of relevant perspectives and findings.

The Wenner-Schlumberger (WSC) array was successfully used during a 2D-ERT survey
to characterize the environmental hazard of lead and zinc leaching of mine tailings at
Frongoch Mine, Ceredigion, UK [55]. Another study was conducted in the Sierra Minera
region, Spain, and employed the WSC array combined with soil chemical analyses. Their
study helped in mapping the mine-tailing ponds [38]. Similarly, the WSC array was used to
identify acid waste drainage from Zn-Pb post-flotation tailing ponds in Olkusz, Poland [14].
The WSC array was also used in the characterization of tailing dams [56], in the evaluation
of tailing ponds in Linares, Southern Spain [57]. Meanwhile, the dipole–dipole array was
used to assess waste materials in a mining tailing pond in El Gorguel, Spain [58]. ERT
was employed to diagnose alteration channel penetration in uranium waste in Osamu
Utsumi, Brazil, using the Schlumberger array [59]. The Schlumberger array was used
for investigations and evaluation of environmental pollution in a mine tailings area in
Komsomolsk, Russia [60]. Moreover, the most suitable spots for mine waste disposal
were identified using the Wenner array [35]. Also, the Wenner array was utilized for the
assessment of mine wastes in Regoufe, Portugal [61]. Copper mine tailings in Rio Tinto,
Spain, were characterized utilizing the Wenner array [62], while the same array was used for
undrained oil sands’ tailing ponds in Alberta, Canada [30]. For the characterization of water
contamination due to metal mine waste in EsgairMwyn, Ceredigion, a Wenner-α electrode
array was used [63]. WSC was employed to characterize abandoned sulfide mine-waste
ponds in Iberian, SW Spain [64], and the same array was used for the assessment of the
environmental threat of reclaimed mining tailing ponds [65]. The Schlumberger array was
utilized for the delineation of subsurface structures in U-tailings in Jaduguda, India [66].
Table 1 summarizes some of the case studies where ERT was utilized to characterize
mining tailings.
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Table 1. A summary of some case studies that applied ERT to characterize mining tailings.

Array Survey Type Ore Mine Country Ref.

Wenner-Schlumberger 2D Lead (Pb) and
Zinc (Zn) Frongoch UK [36]

Wenner-Schlumberger 2D/3D
Cadmium (Cd),
Copper (Cu), Pb

and Zn
Sierra Minera Spain [23]

Wenner- Schlumberger 2D Zn-Pb Olkusz Poland [14]

Wenner–Schlumberger 2D Zn-Pb Federico Spain [56]

Wenner-Schlumberger 2D Pb–Ag Linares Spain [57]

Wenner-Schlumberger 2D Cu–Zn–Pb Iberian Spain [64]

Wenner–Schlumberger 2D Pb-Cd- Zn Cordillera Bética Spain [65]

Schlumberger 1D/2D Uranium Jaduguda India [66]

Schlumberger 2D/3D Uranium Osamu Utsumi Brazil [59]

Schlumberger 2D Gold Komsomolsk Russia [60]

Wenner 2D Tungsten Regoufe Portugal [59]

Wenner 2D/3D Cu Peña de Hierro Spain [62]

Wenner 2D Oil Fort McMurray Canada [30]

Wenner 2D Zn-Pb EsgairMwyn Ceredigion [63]

Wenner 2D Iron Mount Gibson Australia [67]

Wenner 2D Ag-Pb- Zn El Mochito Honduras [35]

Dipole–dipole 2D Ni-Cd- Fe Cartagena-La
Union Spain [18]

3. Methodology
3.1. ERT Technique and Data Collection

ERT method uses the measurement of electrical resistivity to produce images of
subsurface structures. The principle of ERT is based on the fact that different materials
have different electrical resistivities. Through injecting electrical currents into the ground
through two current electrodes (A, B) and tracking the potential difference between two
potential electrodes (M, N), the electrical resistivity distribution can be mapped within
the subsurface. We make the assumption of subsurface homogeneity and isotropy when
calculating apparent resistivity values. However, it is important to note that the subsurface
is not truly homogeneous and isotropic.

The datasets collected from these measurements, as shown in Figure 1, are then used
to create an image of the subsurface by solving an inverse problem. The inverse prob-
lem involves finding the electrical resistivity distribution that best fits the observed data.
This is achieved by using a mathematical algorithm that takes into account the geoelectri-
cal properties of the subsurface materials as well as the geometry of the electrode array
used in the measurements [68]. The inversion process is the central operation in geo-
physics, akin to fitting a puzzle in reverse. Instead of predicting measurements based on a
model (forward modeling), inversion adjusts model parameters iteratively until calculated
measurements closely match observed ones. This involves tweaking parameters, such
as material distributions underground, to minimize differences between observed and
calculated measurements. Once convergence is reached, the final model represents the
possible model of the subsurface distribution based on the measured apparent resistivities,
revealing helpful information about geological or hydrogeological features. Some com-
mon electrode configurations and their geometric factors (k) are shown in Figure 2 and
Table 2, respectively.
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Table 2. Geometric factors for electrode configurations illustrated in Figure 2.

Array Type Geometric Factor (K)

Wenner-α 2πa

Wenner-β 6πa

Wenner-γ 3πa

Dipole–dipole πna(1 + n)(1 + 2n)

Schlumberger πb(b + a)/a

Wenner-Schlumberger πna(1 + n)

3.2. Synthetic ERT Model for MTL

A synthetic model is a simulated representation of a mining tailing’s backfilling
scenario. In the context of ERT, a synthetic model for MTL has been created to simulate the
electrical resistivity of the subsurface materials. The purpose of this model is to numerically
examine the capability of six different electrode arrays, shown in Figure 2, in imaging the
synthetic MTL model. Three different geoelectric layers were designed, as shown in Figure 3.
The top layer has a thickness of 2.5 m with a relatively high resistivity (80 Ωm), indicating a
dry tailing’s region. The second layer shows a moderate resistivity value (40 Ωm) and has
a thickness of 7.5 m, representing a percolation/leaching (semi-saturated tailings) region.
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The third layer has a dramatically low resistivity (15 Ωm) and represents the saturated
region. This layer indicates active leaching and the presence of conductive materials.
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In general, rectangular or square elements are the most commonly used shapes in ERT
as they are easy to implement, and they offer good accuracy for most practical applica-
tions [70]. However, non-rectangular or non-square elements such as triangles or hexagons
may be a better fit for subsurface regions with irregular shapes or complex geometries.
These shapes can provide a better resolution of subsurface features and hence reduce the
number of computational resources needed to discretize the subsurface region [71,72].

This study compared the six electrode configurations used in the literature to charac-
terize mining tailings, as mentioned earlier. The minimum electrode spacing is 2 m and the
total number of electrodes is 50 for each configuration.

Several numerical modelling software packages are available for simulating electrical
measurements in ERT. RES2DMOD is one of the most common software packages for such
cases [45]. The forward-modelling algorithm which we applied via RES2DMOD is based
on the finite element method, which solves the forward problem of ERT by discretizing the
subsurface into a grid and calculating the resistivity values at each grid node.

Noise and errors were added to the simulated measurements to mimic the real sub-
surface and make them more realistic. This can be achieved by randomly perturbing the
simulated measurements or by adding noise that follows a specific distribution (e.g., Gaus-
sian). The average Gaussian noise value that can be added to an ERT model depends on
several factors, including the signal-to-noise ratio (SNR) of the original data, the complexity
of the subsurface structure, the purpose of the model, and the desired level of accuracy
and precision. Also, the amount of noise added was based on expected noise levels in
actual field measurements and should be considered when interpreting the results, which
generally range from 5% to 20% [72]. Based on the noise value of the real-world case,
15% was added to the synthetic data to identify the strengths and weaknesses of different
electrode configurations and provide insights into how to optimize the design of ERT
surveys for MTL applications.

The inversion software used here is RES2DINV (V4.08, Geotomo Software, Penang,
Malaysia), a software package for inverting ERT data to estimate the subsurface resistivity
distribution. The optimization inversion algorithm by RES2DINV is based on the robust
least squares method [73,74], which compares the calculated and measured data at each
electrode position. The inversion process was repeated until a convergence criterion was
met, such as a minimum change in the misfit function or a maximum number of iterations.
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The accuracy of the synthetic model was evaluated by comparing the inverted electrical
resistivity values to the true values assigned in step 2. This was achieved using various
metrics, such as the root mean square (RMS) error or correlation coefficient. The details are
explained in the next section.

3.3. Real Case of ERT Field Surveys for MTL

Figure 4a displays the detailed location of the El Mochito mine site. The site is situated
in the northwestern region of Honduras, proximate to Las Vegas [35]. It is positioned
approximately 88 km to the southwest of San Pedro Sula and 220 km to the northwest of the
capital city, Tegucigalpa. The survey area encompasses a range of latitude and longitude
coordinates, specifically 14.86◦ N, −88.07◦ W to 14.87◦ N, −88.06◦ W. Additionally, the
coordinate reference system employed is EPSG:4267—NAD27.
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The El Mochito mining facility comprises an underground operation extracting lead,
zinc, and silver ores, with a concentrator that separates zinc and lead concentrates. Ore
processing involves a traditional sulfide flotation system, handling an average of 2250 tons
per day (t/d), leading to the generation of substantial waste, amounting to 300 t/d, in
the flotation plants. Liquid tailings, produced after separating solids, are transported
via a 4.5 km pipeline to TSFs [29]. The El Mochito mine has numerous TSFs, enabling
continuous mining activities. This study was conducted on the El Bosque dump, the earliest
TSF, containing approximately 5 million tons of old mining tailings. Closed officially in
2018, the dump’s surface has undergone natural re-vegetation. Figure 4b,c depicts the
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spatial distribution of profile positions and the extent of electrode spacing along the tailing.
The ERT data was systematically acquired along multiple surface profiles with a uniform
interval of 40 m, while the electrodes were separated by a distance of 2.3 m. A survey
employing the EarthProbe high resolution DCIP system, as demonstrated in Figure 5, was
conducted for ERT.
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4. Results
4.1. Results of the Synthetic ERT Model for MTL

The efficiency and resolution of these six electrode configurations for detecting MTL
using the ERT survey were compared through numerical simulations, and 2D resistivity
inversion results are shown in Figure 6. The comparison of these six electrode configurations
for detecting MTL using ERT was based on various factors, including data resolution,
depth of investigation (DOI), data density, and sensitivity to noise, as listed in Table 3.
The results of the 2D inversion show that each electrode configuration has its advantages
and disadvantages.

For the Wenner Alpha (W-α), Beta (W-β), and Gamma (W-γ) arrays, a total of 335 data
points were collected using each array. The sections images map ~11, ~9, and ~13 m below
surface, respectively. An average sensitivity of three and moderate resolution is observed
for the three arrays. Three layers were mapped using each array. However, thicknesses
vary for each array.

The dipole–dipole (DD) array measured more data points compared to Wenner arrays
with a total 425 data points; however, the maximum model depth is ~6 m which is the least
compared to all other arrays. This array mapped three layers and provided more details
about the MTL changes in the subsurface.
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The Schlumberger (Sch) array measured more data points compared to both Wenner
and DD arrays with a total of 520 data points. The maximum model depth is ~13 m, and
the array mapped three layers.

The Wenner-Schlumberger (WSC) array measured the highest number of data points
compared to all other arrays with a total of 640 data points. The maximum model depth is
~18 m which is the deepest compared to all other arrays.
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Figure 6. The 2D inversion models for the six electrode configurations. The dashed lines represent
the boundaries between the modelled geoelectric layers.

Table 3. Comparing the results of the six electrode configurations for detecting MTL using the
ERT survey.

Array Number of
Data Points Average Sensitivity DOI Resolution Abs. Errors, % RMS, %

W-α 335 2.831 Moderate Shallow Moderate 0.78 0.97

W-β 335 2.847 Moderate Shallow Moderate 0.81 1.04

W-γ 335 3.398 Moderate Shallow Moderate 0.7 0.87

DD 425 6.241 High Moderate High 0.87 1.1

Sch 520 4.231 High Moderate High 0.76 0.98

WSC 640 4.440 High Moderate/Deep High 0.79 1

4.2. Results of the Real Case

The ERT field survey was conducted in this study to confirm the results of the synthetic
ERT model for MTL. The data acquisition was conducted along various 2D parallel profiles
using the W-α array. These profiles covered varying lengths, ranging from 104 to 363 m,
allowing for the mapping of subsurface conditions to a maximum depth of approximately
60 m. The inverted ERT data revealed consistent patterns of decreasing resistivity with
increasing depth across all profiles; some of these profiles/lines are illustrated in Figure 7,
as an example, the results of all these profiles can be found in Appendix A, Figure A1.
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Figure 8 illustrates the RMS and absolute errors of the inversion results, considering
the inclusion of data-point outliers. Subfigure (a) presents a histogram, providing a visual
representation of the percentage of total data points against the apparent resistivity percent-
age errors. This histogram allows for an overview of the distribution of errors throughout
the dataset. The tallest bar in the bar chart represents the smallest error, and as the error
increases, the height of the bars decreases. This indicates the quality of the measured data
points, as negative resistivity values, spikes, and erroneous data points have been removed
before conducting the inversion to generate an accurate inversion model. In subfigure (b), a
scatter plot visualizes the misfit results by showcasing the disparity between the calculated
and measured apparent resistivity values. The scatter plot offers a detailed examination
of individual data points, aiding in the identification of outliers and contributing to a
comprehensive understanding of the inversion accuracy and reliability. Outliers account
for less than 2% of the data, and the errors are as follows: the L1-norm data misfit is 9.212%,
and the L2-norm data misfit is 18.55%.
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5. Discussion

The results of the modeling investigations indicate that the Wenner Alpha (W-α) array
provides a relatively decent data resolution (data density) by measuring the apparent
resistivity at various electrode spacings (i.e., a moderate data density compared to other
electrode arrays). The top layer, representing a dry tailing region, has a thickness that is
almost the same as the synthetic model (2.5 m) with a small difference in resistivity value.
Similarly, the second layer represents a percolation/leaching (semi-saturated tailings)
region of which the boundaries are well resolved in the inverse resistivity model. However,
the third layer, which represents the saturated tailings region, has a relatively low data
resolution due to the wide electrode spacing. The maximum model depth of this array has
a moderate depth of investigation because the depth to which the Wenner-alpha array can
investigate the subsurface is much smaller than the maximum AB separation (<AB/6). This
can also be seen in Figure 7, where the maximum AB separation of ~400 m corresponds to
a maximum depth of ~56 m. Thus, for deeper investigations, a wider electrode spacing
is required, which results in data resolution attenuation. Additionally, the data density of
the W-α array is relatively low as it requires a relatively large number of electrodes. For
sensitivity, the W-α array showed a good sensitivity to resistivity changes at shallower
depths, which decreased at greater depths due to current dispersion as it travels deeper
into the ground.

The Wenner Beta (W-β) array is a modification of the W-α with a shorter current
electrode spacing. Despite the shorter electrode spacing, the W-β array produces a data
resolution for the first layer nearly like the W-α array. However, for the other layers, the
resolution is lower than that of the W-α array since the DOI of the W-β array is relatively
shallow. The W-β array has the same data density as the Wenner array since both use four
electrodes. Nevertheless, the W-β array offers a higher sensitivity to subsurface resistivity
changes than the W-α array. This increased sensitivity is due to the short electrode spacing,
which allows for a greater portion of the subsurface to be investigated, resulting in higher
sensitivity to subsurface resistivity changes, especially in shallow applications.

The Wenner Gamma (W-γ) array is another modification of the W-α, where the current
and potential electrodes are placed in an alternative order. This means that the electrode
spacing is twice that of the W-α electrode spacing. The W-γ array provides a similar
data resolution to the W-α, with the electrode spacing being the primary factor affecting
data resolution. Smaller electrode spacings result in higher data resolution. The DOI of



Water 2024, 16, 753 12 of 18

the W-γ array is better than the W-α, as the current is focused between the outermost
electrodes, resulting in deeper penetration. While the data density is the same as the W-α,
the sensitivity of the W-γ array is like the Wenner array. However, the higher DOI may
result in lower sensitivity at shallower depths.

The dipole–dipole (DD) array is a commonly used configuration for ERT surveys. This
array provides good data resolution, as the spacing between the electrodes can be adjusted
to optimize data resolution for a particular target depth. The array provides a relatively
high data density compared to Wenner arrays, as multiple measurements must be taken at
each electrode location. However, this can increase the time and cost of the survey. The DD
array is sensitive to both lateral and vertical changes in resistivity, making it a good choice
for investigating complex subsurface structures.

The Schlumberger (Sch) array is a commonly used electrode configuration in ERT
surveys for characterizing mine tailing dumps. It provides a relatively high data resolution
compared to Wenner and DD arrays due to its sensitivity, which is important for detecting
small-scale features in the subsurface. The Sch array gives the DOI better than Wenner
arrays and can be adjusted by changing the electrode spacing, making it suitable for
studying shallow subsurface layers. Additionally, the data density is higher also than that
of the Wenner and DD arrays and can be controlled by adjusting the number of electrode
measurements, allowing for higher-resolution data in areas of interest. The Sch array is
also sensitive to changes in subsurface resistivity, making it useful for detecting subtle
variations in the MTL subsurface. The Schlumberger array produced high-quality data
with relatively low RMS errors.

The Wenner-Schlumberger (WSC) array is a modification of the Wenner array in
which the current electrodes are kept at the same spacing, but the potential electrodes
are spaced closer together to increase the sensitivity of the method. The WSC array
provides a higher data resolution compared to Wenner and DD arrays due to the increased
sensitivity achieved by spacing the potential electrodes closer together. This allows for
a better delineation of near-surface features. Moreover, the DOI of the WSC array is
higher compared to other arrays such as Wenner, and the data density of the WSC array is
higher also than that of the Wenner and DD arrays. Additionally, the increased sensitivity
of the WSC array results in a higher-resolution dataset due to the closer spacing of the
potential electrodes. This allows for a better delineation of near-surface features and can
help to identify subtle changes in subsurface MTLs. Therefore, the WSC array is useful in
situations where a high resolution is required at shallow depths, making it a popular choice
for environmental and engineering applications. The WSC array, while effective, does come
with certain drawbacks. It requires a larger surface area for cable deployment due to the
substantial distance between current electrodes. Consequently, surveying expansive areas
for MTL plumes can be cumbersome, particularly in access-limited regions. Moreover, the
slower acquisition of the WSC array can be time-consuming, which may pose challenges
for the dense data collection often required for precise MTL plume delineation.

In addition to the results and analyses obtained from synthetic modeling MTL data,
we conducted a field survey of an old mining-tailing pond in Honduras to validate these
findings. The inversion results of the field survey are depicted in Figure 7. It is noteworthy
that the survey utilized the W-α array for practical reasons, such as the ease and speed
of use, as well as calculations. Moreover, this array is widely employed in previous
studies for similar applications, as indicated in Table 2. Additionally, the choice aligns with
the principle that obtaining satisfactory results with a less efficient array suggests better
outcomes with a more efficient one.

Upon the analysis and interpretation of these resistivity profiles in Figure 7, a consistent
and distinguishable layering pattern became apparent across all surveyed profiles which is
practically consistent with the results of the synthetic modeling for the MTL. The profiles
reveal the presence of three geoelectric layers, each with varying thickness and depth.
This observation is summarized in Table 4. The uppermost layer (A) is characterized by
relatively high resistivity values ranging from 60 to 100 Ωm and is located approximately
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2.5 m below the surface. Layer A is interpreted as a dry tailing cover, primarily composed
of solid tailing/waste materials. It is worth noting that the bottom boundary of this layer
exhibited uniformity in most profiles.

Table 4. A summary of the description geoelectric profiles.

Sequence Resistivity (Ωm) Thickness (m) Description

Upper (A) >60 ~2–5 Dry tailings

Middle (B) >30:60 ~10–15 Semi-saturated

Down (C) <30 ~>15 Saturated layer

The second geo-layer (B) is sited beneath the dry covering layer for tailings, typically
at depths of 3–10 m below the surface. It demonstrates the resistivity values of relatively
moderate magnitudes, 30 to 60 Ωm, and exhibits a thickness that varies between approxi-
mately 10 and 20 m. This layer is understood to be a partially saturated zone for the tailings.
The third geo-layer (C) represents the lowest geoelectric layer in all the resistivity profiles.
It displays resistivity values that are very low, measuring less than 30 Ωm. The transition
from B to C is noteworthy, as this transition exhibits an irregular boundary.

The utilization of the Wenner array in our field survey of an old mining tailing pond
in Honduras presented both advantages and disadvantages. The practical advantages of
choosing the W-α array were evident in its ease and speed of use, making it a convenient
choice for efficient data collection in challenging field conditions. This array’s widespread
application in similar studies, as reflected in Table 2, added credibility to our selection.
However, it is important to acknowledge the trade-offs associated with the Wenner array.
While it provides practical benefits, its efficiency may be compromised when compared to
other arrays, such as WSC or DD. The principle guiding our choice suggests that satisfactory
results obtained with the Wenner array indicate the potential for even better outcomes with
a more efficient array. The resistivity profiles resulting from the survey, depicted in Figure 7
and summarized in Table 4, aligned well with the synthetic modeling results for MTL. The
consistent layering pattern observed in the field matched the synthetic profiles, revealing
three geoelectric layers with varying resistivity values and thicknesses. This alignment
strengthens our confidence in the validity of our field survey results and the applicability
of the chosen Wenner array in characterizing the subsurface structure of the tailings pond.

To contextualize the findings within the existing literature, it is evident that each elec-
trode array in our study exhibits distinct advantages and limitations during experimental
and fieldwork endeavors. Our discussion focuses on the data resolution capabilities of the
W-α array across various tailings layers, acknowledging its diminished resolution at greater
depths attributable to wider electrode spacing. Notably, prior investigations [51,59], includ-
ing those by Olayinka and Yaramanci [45], have corroborated similar trends regarding data
resolution concerning electrode spacing and DOI. While Olayinka and Yaramanci [45] ob-
served lesser noise contamination in the W-α array when compared to other configurations
in different geological settings, they noted that the W-β and W-γ arrays exhibited lower
noise contamination during imaging surveys, albeit with inconsistent anomaly effects and
signal-to-noise ratios, as reported by the same authors. The DD array, characterized by
relatively high anomaly effects, is susceptible to noise contamination, resulting in lower
signal-to-noise ratios compared to Wenner arrays, a trend also observed in prior stud-
ies [18,45]. Both the DD and W-β arrays, boasting symmetric electrode configurations
for normal and reciprocal measurements, facilitate robust data quality control to yield
well-resolved images. Despite the DD array’s superior imaging resolution, particularly for
vertical and dipping structures, its depth resolution may not be optimal [45].

In comparison, the Sch array, while demonstrating imaging abilities akin to the W-
α array due to similarities in electric field and measurements, excels in DOI relative to
other arrays, as highlighted in previous research [59,66]. However, challenges persist,
including higher noise contamination and fewer signal-to-noise ratios compared to the
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W-α array [45,60], rendering the Sch array less suitable for multichannel applications
without a reciprocal array. Research conducted by various authors [14,65] aligns with
our study’s findings, indicating that the WSC array achieves superior data resolution,
particularly for near-surface features, while also enabling deeper plume detection compared
to traditional Wenner arrays [56,57,64], attributed to its heightened sensitivity arising from
closer potential electrode spacing.

6. Conclusions

The study utilizes and compares the ERT numerical simulation for six different elec-
trode arrays to find the optimal array for detecting MTL. The comparison considered
various aspects including data resolution, depth of investigation (DOI), data density, and
sensitivity. The 2D resistivity inversion results indicated that each electrode configuration
has its advantages and disadvantages. It also highlighted that the choice of the optimal
array is dictated by the desired goal/s such as the target depth, required data resolution,
and data density.

The results of the modeling investigations indicate that the Wenner Alpha array pro-
vides relatively decent data resolution (data density) by measuring the apparent resistivity
at various electrode spacings (i.e., a moderate data density compared to other electrode
arrays). The Wenner Beta array offers higher data resolution for the first layer than Wenner
Alpha array due to the shorter electrode spacing, but its DOI is relatively shallow. The
Wenner Gamma array provides similar data resolution to the Wenner array, but with better
DOI. The dipole–dipole array is commonly used and provides good data resolution and
a relatively high data density, but it has a shallower DOI compared to the Wenner arrays.
The Sch array provides a better data resolution than the Wenner arrays, with a relatively
deep DOI and higher data density; however, it is very time-consuming and very costly to
use. The WSC array provides a higher data resolution compared to the Wenner and DD
arrays due to the increased sensitivity.

Finally, the choice of electrode configuration depends on the specific goals and condi-
tions of the survey. The Wenner Alpha array may be suitable for shallow investigations,
while the dipole–dipole array may be preferred for complex subsurface structures. The
WSC array may be useful for high-resolution data. Consequently, the WSC is highly recom-
mended for MTL detection using ERT surveys. The MTL models developed in this research
were tested and validated through real field surveys. In the field surveys, the identification
of three distinct geoelectric layers, a dry tailing cover, semi-saturated zone, and saturated
layer, provides a nuanced understanding of the subsurface composition at the El Mochito
mine-tailing pond. Ultimately, this study significantly contributes to the detection of MTL
and its subsurface characteristics through a combined approach of synthetic modelling and
field surveying.
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