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Abstract: Land surface temperature plays an important role in the water cycle and surface energy
balance. Using data collected by a vorticity covariance tower from 2010 to 2022, the relative threshold
method and TRM method were employed to study the land–atmosphere exchange of water and the
heat flux of rubber forest ecosystems under heatwave and non-heatwave conditions. The results
show that the latent heat flux, sensible heat flux, and incoming and outgoing radiation increase from
non-heatwave to heatwave conditions. In addition, the multi-year average LST was 6.7 ◦C higher
under HW conditions than under non-HW conditions at the 99% confidence level. Further attribution
analysis demonstrates that heatwave-induced land surface temperature change is mainly governed
by atmospheric factors rather than by land surface factors. Specifically, radiative forcing shows the
largest positive contribution, which is partly offset by the negative contributions of air temperature
and relative humidity. In particular, the contributions of radiative forcing, air temperature, relative
humidity, and atmospheric pressure to LST were 14.70 K, −4.76 K, −5.86 K, and −0.04 K, respectively.
Moreover, surface resistance contributed to LST by 2.42 K, aerodynamic resistance by −0.23 K, and
soil heat flux by −0.91 K.

Keywords: land surface temperature; heatwave; rubber plantation ecosystem

1. Introduction

In terrestrial climatology, land surface temperature (LST) is defined as the thermal state
of the Earth’s surface [1]. This thermodynamic variable arises from the interplay between
solar irradiance absorption and albedo-induced reflection at the lithospheric interface.
LST is not an isolated metric but a critical determinant in the modulation of regional and
global bio-geophysical processes; it underpins the empirical quantification of water transfer
and energy fluxes between the surface and boundary layers, necessitating its precise
measurement and modeling [2]. LST’s wide range of applications in scientific endeavors
includes predicting forest fires [3] and monitoring vegetation health [4]. Furthermore, the
incorporation of LST data into global circulation models and regional climate simulations
is indispensable for accurate climate forecasting [5,6]. A recent report from the IPCC of the
United Nations underscores a sustained increase in LST across a majority of land-based
biomes, indicating an alarming trend that is likely to perpetuate over the ensuing seven
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decades (roughly from 2021 to 2091) [7]. This can be seen in previous studies, such as the
overall increase in the LST in China, which has led to intense and extensive warming [8],
or the significant increase in the LST in the Spanish Peninsula between 1982 and 2014 [9].
Consequently, temporal analysis of LST emerges as a paramount focus in climatological
research essential to the advancement of predictive models and to devising informed
climate resilience strategies.

Heatwave events (HWs), characterized by prolonged periods of temperatures sur-
passing climatological norms [10,11], represent a critical facet of current climatic shifts.
Moreover, increasing global warming has led to significant changes in the frequency and in-
tensity of extreme events such as heatwaves, floods, and droughts [12,13]. According to the
Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC),
globally, there is a significant trend toward an increase in the intensity and duration of heat-
waves as well as in the number of heatwave days (frequency) [14]. This finding is consistent
with the fact that previous studies have observed an increase in the frequency and intensity
of HW events in regions such as Africa [15], South America [16], India [17], and China [18].
This trend is confirmed by the latest CMIP6 climate projections, which predict a worsening
of these conditions under the current global warming scenarios [19–21]. In addition, rapid
urbanization in developing nations is exacerbating urban warming due to the urban heat
island effect, which in turn intensifies the occurrence of HWs [22–24]. With the acceler-
ation in urbanization and the increase in extreme weather events due to global climate
change, high-temperature heatwaves have been found to have significant impacts on natu-
ral ecosystems, agricultural production, economic development, and human health [25].
Such events pose significant threats to plant growth and survival [26], underscoring the
urgency of investigating heatwave patterns and the related land surface temperature shifts
in ecosystems such as rubber forests during both heatwave and non-heatwave periods.
In recent years, extreme heat events have occurred frequently, especially concentrated in
temperate regions, such as the 2019 European heatwave, the 2020 Australian heatwave,
and the 2021 heatwave in western North America. Researchers have generally focused
on high-temperature heatwave events in temperate regions, investigating their causes,
durations, and impacts on the environment and society [27]. Meanwhile, relatively little
research has been conducted on high-temperature heatwave events in the tropics, where
high temperatures and significant rainy seasons are common year-round. This unbalanced
research attention may lead to a lack of comprehensive understanding of high-temperature
extremes on a global scale, and thus greater attention and research delving deeper into
high-temperature heatwave events and their potential impacts in the tropics is needed.

The rubber tree (Hevea brasiliensis) is a perennial deciduous species indigenous to
the Amazon River Basin in Brazil that exemplifies typical tropical rainforest flora. The
production of natural rubber using this tree species represents a crucial economic resource
in tropical regions [28]. Since China introduced rubber plantations in the early 20th century,
industrialized plantations have formed after years of development [29]. On Hainan Island,
tropical rubber forests cover approximately a quarter of the total vegetation, position-
ing them as not only the predominant vegetation type on the island but also as a vital
component of forest ecosystems in China’s tropical region. Beyond their direct economic
value as artificial economic forests, rubber forests are increasingly recognized for their
multifaceted ecological benefits, including soil and water conservation, carbon sequestra-
tion, biodiversity maintenance, and soil fertility enhancement [30]. Perturbations in LST,
particularly under the stress of high-temperature heatwaves, present profound challenges
to these plant ecosystems. Rubber plantations, due to their dependency on specific growth
cycles and yield parameters, are notably susceptible to heatwave events [31]. However,
current studies on the response of rubber forest ecosystems to climate change are mainly
qualitative in nature, with limited understanding of the mechanisms by which tropical
vegetation responds to global climate change [32]. For example, a study on the impacts
of climate change and rubber plantation expansion on reference evapotranspiration [33]
was conducted to assess the future impacts of climate change on rubber in Peninsular
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Malaysia by analyzing three salient features, namely, drought, flooding, and sea-level
rise [34]. Although qualitative studies provide important insights revealing the response of
rubber forest ecosystems to climate change, quantitative studies are also necessary to more
accurately quantify the changes in rubber forest ecosystems and to provide a scientific basis
for developing effective management and conservation measures. Therefore, in this paper,
we focus on quantitative studies of LST changes induced by HWs. By analyzing the changes
in LST, the response mechanism of rubber forest ecosystems to climate change can be better
understood. This can help to predict the impacts of future climate change on this ecosystem
and develop adaptation strategies accordingly. Meanwhile, it can provide important data
and references for assessing the ecological integrity of the rubber forest ecosystem and
formulating sustainable economic and social development strategies [35,36]. In addition,
understanding the drivers of surface temperature change can help guide ecosystem man-
agement and conservation, and also has great potential for practical applications involving
environmental protection, energy management, disaster prevention, regional economic
development, etc. [37,38].

Given the specific ecological attributes of rubber plantations in tropical environments,
this study aims to achieve two key goals: (1) to capture the variations in land surface
temperature (LST) during heatwave and non-heatwave periods and (2) to identify the
dominant factors driving these LST changes in various periods, utilizing sophisticated
attribution analysis techniques.

2. Data and Methods
2.1. Observational Data

We obtained eddy covariance and meteorological data from Hainan Danzhou Tropical
Agro-ecosystems of the National Observation and Research Station (DZ for short, Figure 1)
from 2010 to 2022. The vorticity flux system at this study site has been recording near-
surface fluxes since November 2009, taking measurements of wind speed, temperature and
humidity, wind direction, rainfall, incident longwave and shortwave radiation, outgoing
longwave and shortwave radiation, CO2 and water vapor fluxes, latent and sensible
heat fluxes, soil temperature and humidity, and soil heat fluxes. For specific measuring
instruments and devices, please refer to the Supplementary Materials (Table S1 in the
Supplementary Materials). DZ is located in zone No.3 of the experimental farm of the
Chinese Academy of Tropical Agricultural Sciences (19◦32′16′′ N, 109◦28′06′′ E; 114 m a.s.l),
Danzhou, Hainan Province, China. In DZ, the climate is predominantly influenced by
intense solar radiation, and distinct seasonal cycles are observed with pronounced monsoon
and drought periods. Annual precipitation averages 1504.7 mm, with a significant 80%
of this precipitation being concentrated between July and September, reflecting a marked
seasonal distribution. In DZ, the forest canopy reaches an average height of approximately
20 m, a reflection of the area’s vigorous and well-developed vegetation.

2.2. Identification of Heatwave Events

The existing methodologies for defining heatwaves in climatological research yield
varying results. Commonly, studies deploy either absolute thresholds [13] or relative
thresholds [39,40] to identify days of elevated temperatures. HWs identified based on
relative thresholds can reflect abnormally high temperatures in different seasons, can better
characterize local anomalies, and are more widely used in the study of the variability in
and mechanisms of heatwaves. Thus, in this paper, we apply the relative threshold method
to define the occurrence of a heatwave [38,41], using the daily maximum temperature as
the primary metric. Specifically, the threshold for heatwave events in this study is defined
as follows: based on the daily maximum temperature data from 2010 to 2022 at the DZ
station, the daily maximum temperature of one day during the study period as well as the
seven days before and after it (i.e., a 15-day window) is used as the dataset determining the
heatwave threshold for that day. Following that, the daily maximum temperatures within
the 15-day dataset are sorted in ascending order, and the 90th percentile value is taken
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as the high-temperature heatwave threshold for the chosen day. This process is repeated
to obtain the HW threshold for each day of the year. In this study, a heatwave event was
defined as three or more consecutive days of daily maximum temperatures exceeding a
specific threshold from March to November during the study period (2010–2022) [41,42].
Figure 2 shows the daily maximum temperatures and corresponding thresholds for the
period from 1 to 15 July 2010, where the shaded portion (i.e., the dates corresponding to
the daily maximum temperature above the threshold) indicates the occurrence of an HW
event. For more information on HW and non-HW events, see Appendix A (Table A1 in
Appendix A). Thus, for a number of given days, d, the threshold is the 90th percentile of
the dataset, Ad, defined by the following equation [39]:

Ad=
2022⋃

y=2010

d+7⋃
i=d−7

Ty,i, (1)

where U is the union of sets, and Ty,i is the daily maximum temperature on the i-th day in
the y-th year.
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2.3. The Attribution Framework

In this paper, we employ a recently proposed two-resistance mechanism (TRM) attri-
bution method [7,20,25] to attribute changes in land surface temperature during heatwaves
to driving factors. The TRM method is based on the surface energy balance equation:

Rn = Sin(1 − α)+εLin − εσT4
s= H + LE + G, (2)

where Rn is the net radiation, Sin is the incident shortwave radiation, α is the albedo,
ε is the emissivity, Lin is the incident longwave radiation, σ is a Boltzmann constant of
5.672 × 10−8, Ts is the surface temperature, H is the sensible heat flux, LE is the latent heat
flux, and G is the ground heat flux.

By introducing the concept of resistance, the sensible and latent heat fluxes are param-
eterized as follows [10]:

H =
ρcp

ra
(Ts − Ta), (3)

LE =
ρLv

(ra + rs)
(q∗

s (Ts)− qa), (4)

where ρ is the air density, cp is the specific heat of air at constant pressure, ra is the
aerodynamic resistance, Ta is the air temperature, Lv is the latent heat of vaporization, q∗

s is
the saturated specific humidity at Ts, qa is the atmospheric specific humidity, and rs is the
surface or resistance.

Substituting Equations (3) and (4) into Equation (2), we obtain:

Sin(1 − α)+εLin − εσT4
s =

ρcp

ra
(Ts − Ta)+

ρLv

(ra + rs)
(q∗

s (Ts)− qa) + G, (5)

linearizing the outgoing longwave radiation and the saturation-specific humidity term at
the air temperature yields:

Ts =
Rn* − G − ρLv

(ra+rs)
[q∗

a(Ta)− qa]

1
4εσT3

a
+

ρcp
ra

+ ρLv
ra+rs

∂q∗
∂T |Ta

+ Ta, (6)

where the radiative forcing, Rn∗ is expressed as Rn∗ = Sin(1 − α) + εLin − εσT4
a , which is

subject to the combined effect of incident shortwave radiation, incident longwave radiation,
albedo, and air temperature.

By employing the derived analytical formula for LST, as delineated in Equation (6),
we can make a quantitative assessment of LST’s sensitivity to variations in key influencing
factors. The LST change can be attributed to changes in the radiative forcing (Rn*), aerody-
namic resistance (ra), surface resistance (rs), ground heat flux (G), relative humidity (RH),
and air temperature (Ta):

∆Ts =

(
∂Ts

∂Rn*

)
∆Rn* +

(
∂Ts
∂ra

)
∆ra +

(
∂Ts
∂rs

)
∆rs +

(
∂Ts
∂G

)
∆G+

(
∂Ts

∂RH

)
∆RH+

(
∂Ts
∂Ta

)
∆Ta, (7)

where ∆ refers to the change in each variable over time (e.g., ∆G =GHW −Gnon−HW) and the
partial derivatives represent the sensitivity of Ts to changes in driving factors. In Equation
(7), each term on the right-hand side is designated as a ‘contribution’. These contributions
are bifurcated into two distinct components: the ‘partial derivative’, representing the rate
of change, and the ‘change’ itself, quantifying the magnitude of the variation.
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2.4. Implementing Attribution Method on Observational Data

In this paper, we focus on daytime variations occurring between 7:30 and 17:30
(local time). To ensure the representativeness of the observational data, we only consider
calculation days where at least 50% of the daytime data is available. To estimate the LST
from observational data, we assume that the rubber plantation’s emissivity value is 0.92.

Given that the TRM method relies on a first-order Taylor expansion, it neglects the
higher-order and cross-order terms. Generally, this method’s error remains acceptable when
the variation in imputed variables is minimal. However, the high variability of driving
factors can lead to significant errors, particularly when estimating partial derivatives in a
non-heatwave (non-HW) reference state. Therefore, we used the weighted average method
proposed in a previous study to optimize the results [43]. This method can effectively
reduce the error of LST estimation:

X =
Xbefore+mXafter

1 + m
, (8)

where X is the final partial derivative in the model; m is the optimized weight; and Xbefore
and Xafter are the partial derivatives calculated using data from the non-HW and HW
conditions, respectively.

3. Results
3.1. Response of LST in Tropical Rubber Forest Ecosystem to Heatwaves

In this paper, we examine how land surface temperature (LST) in tropical rubber
forests responds to heatwave (HW) conditions. Our analysis, covering the transition from
non-heatwave (non-HW) to HW conditions, reveals a distinct pattern in LST throughout
the year. This pattern shows a gradual increase in LST to a peak around the middle of
the year, then a decrease toward the end (Figure 3a). Figure 3b shows the distribution
of HW vs. non-HW days at the monthly scale in terms of LST. We observe that between
March and November, the LST under HW conditions shows a trend of increasing first,
reaching a maximum, and then decreasing. Similarly, the same is true for the non-HW
condition, which coincides with the intra-year variation in LST illustrated in Figure 3a.
The month with the highest LST in the HW period was May, with a peak temperature
of 36.48 ◦C, while the highest LST in the non-HW period appeared in June, with a peak
temperature of 31.82 ◦C. Moreover, the lowest LST in both the HW period and non-HW
periods appeared in November, with temperatures of 29.79 ◦C and 24.76 ◦C, respectively.
In addition, we found that the most significant difference in LST between the HW and
non-HW periods was between March and May when it was in the spring–early summer
period and the temperature began to gradually increase; compared to the HW period, the
non-HW period may have had a more stable temperature during this time, which may be
one reason for the significant difference in LST during this period. Figure 3c compares the
average daily LST across multiple years. In this figure, it can be seen that the LST during
HW periods is significantly higher than during non-HW periods. Specifically, the average
daily LST during the HW period is 33.9 ◦C, while it is 27.2 ◦C during the non-HW period,
representing an increase of 6.7 ◦C. Statistical analysis of these values shows a p-value less
than 0.01, indicating a significant difference in LST between the HW and non-HW periods
in these ecosystems.
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3.2. The Impacts of Heatwaves on Radiation and Surface Fluxes

Figure 4 presents the diurnal changes in environmental factors related to the surface
energy balance within tropical rubber forest ecosystems, comparing conditions during
HW and non-HW periods. These variables include latent heat flux (LE), sensible heat
flux (H), incoming shortwave radiation (Sin) and outgoing shortwave radiation (Sout),
and incoming (Lin) and outgoing (Lout) longwave radiation. For studies of short-term
events (e.g., heatwaves), there is great variability in the changes in radiative and turbulent
energy over the course of a day. The Earth’s radiation balance is strongly influenced by
clouds [44]. In general, the thickness of clouds affects the incoming shortwave radiation
and outgoing longwave radiation, which in turn causes changes in temperature [45,46].
There is greater cloud cover in the tropics [47], but heatwaves are usually accompanied
by high temperatures, which may result in fewer clouds [48] and less aerosols [49] during
heatwaves, and thus more radiation during heatwaves than during non-heatwaves. In
addition, changes in surface properties (e.g., soil moisture, vegetation cover, heat storage,
surface roughness, etc.) under HW conditions may also affect the turbulent processes
of energy generation and transport [50], in turn leading to changes in LST. For a more
detailed study, we have investigated the intraday variability in radiative and turbulent
energy on an hourly scale to better understand the formation mechanisms and evolution of
heatwave events.

In Figure 4a, LE demonstrates a significant midday peak under HW, implying in-
creased evapotranspiration rates compared to non-HW conditions. This suggests that as
transpiration increases due to increased vegetation and soil temperatures during heatwaves,
more water is transported from the soil to the atmosphere, leading to an increase in LE.
Figure 4b indicates that the sensible heat flux similarly shows higher values during HW,
signifying enhanced heat dissipation from the forest canopy to the atmosphere. This is due
to the fact that the atmosphere is usually hotter and drier during heatwaves, which can
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potentially increase the temperature difference between the surface and the atmosphere,
leading to a faster transfer of heat from the surface to the atmosphere and an increase in
H. This is because the LE and H fluxes represent the evaporation of water vapor from the
surface and the heat exchange at the surface, respectively.
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Figure 4. The diurnal cycles of (a) latent heat flux (LE), (b) sensible heat flux, (c) incoming shortwave
radiation, (d) outgoing shortwave radiation, (e) incoming longwave radiation, and (f) outgoing
longwave radiation under HW and non-HW conditions.

Figure 4c illustrates the incoming shortwave radiation, which shows heightened levels
during HWs, reflective of the intense solar irradiance that is characteristic of these periods.
Figure 4d presents the outgoing shortwave radiation, illustrating a distinct rise during HW
periods, consistent with the increased solar radiation observed in Figure 4c.

The longwave radiation trends, depicted in Figure 4e,f, display an inverted “U” shape,
with both incoming and outgoing longwave radiation experiencing elevated levels during
HW periods. This indicates not only a more pronounced thermal emission from the surface
but also a significant retention of radiative heat, suggesting an intensified greenhouse effect
during HW events. It has been shown that periods of heatwaves are usually accompanied
by clearer, cloudless weather and more intense solar radiation [51], resulting in more
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shortwave radiation being received at the surface. This increases the energy input to the
surface [52,53], which in turn increases the surface temperature. However, higher surface
temperatures result in more thermal energy being released into the atmosphere in the form
of longwave radiation [54].

These observations underscore significant differences in the diurnal patterns of these
variables between HW and non-HW periods. Specifically, the average daily incoming
shortwave radiation during an HW is substantially higher than during a non-HW, with
values of 432.8 W/m2 for HWs and 278.9 W/m2 for non-HWs, indicating a notable increase
in solar energy received by the ecosystem during HW periods. The observed diurnal
patterns and differences contribute to our understanding of the effects of HW on the energy
balance of these forest ecosystems, leading to a deeper understanding of the mechanisms
by which heatwaves affect surface temperature changes in rubber forests.

3.3. Attribution of LST Response to Heatwave

In this paper, we employed the TRM method to analyze the variations in LST induced
by heatwave events. As presented in Figure 5, the changes in LST from non-HW to HW con-
ditions were decomposed into variations influenced by several driving factors, including
(1) atmospheric factors such as air temperature, radiative forcing, relative humidity, atmo-
spheric pressure; and (2) land surface factors such as ground heat flux, surface resistance,
and aerodynamic resistance.
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Figure 5. Attribution results for LST changes between HW and non-HW periods over DZ sites.
Part I: Comparison of observed and modeled Ts changes. ∆Ts and ∆Tsm represents the observed
and modeled land surface temperature changes from non-HW to HW. Part II: Comparison of the
total contribution of atmospheric (fa) and land surface factors (fb). Part III: Contribution from each
atmospheric (blue bar) and land surface (purple bar) factor. Ta, RH, Rn*, Press, G, rs, ra represent the
contributions of air temperature, relative humidity, radiation, atmospheric pressure, soil heat flux,
surface resistance, and aerodynamic resistance, respectively.

As shown in Figure 5 Part I, the modeled ∆LST (red bars) closely matches the observed
∆LST (yellow bars). Following this, we focus on quantifying the total contributions of
atmospheric and land surface factors to LST. In Part II, the total atmospheric and land
surface contributions are positive, suggesting they jointly amplify LST when transitioning
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into HW conditions. Importantly, our results show that the total contributions from
atmospheric factors are more significant compared to those from land surface factors.

Among the atmospheric factors (third part in Figure 5, blue bars), air temperature
and relative humidity both negatively contribute to LST, while radiative forcing shows the
largest positive contribution. As illustrated in Table 1, the sensitivity of LST to changes
in relative humidity and radiative forcing is positive. Therefore, an increase in radiative
forcing during a heatwave leads to a higher LST during this period, which accounts for
the positive contribution of radiative forcing. Conversely, a decrease in relative humidity
leads to a negative contribution. Consequently, the sensitivity of LST to air temperature is
negative; thus, an increase in air temperature under HW conditions results in a decrease in
LST at this time of year. The positive contribution of radiative forcing is partly offset by the
negative contributions of air temperature and relative humidity. Thus, radiative forcing
plays a dominant role in modulating the response of the LST to HWs, while the effect of
atmospheric pressure is minimal.

Table 1. Sensitivities of LST to changes in driving factors.

∂Ts
∂Ta

(K−1)

∂Ts
∂RH

(%−1)

∂Ts
∂Rn*

(m2/W)

∂Ts
∂Press

(kPa−1)

∂Ts
∂G

(m2/W)

∂Ts
∂rs

(m/s)

∂Ts
∂ra

(m/s)

−0.7799 0.5467 0.1703 0.2199 −0.1703 0.0811 −0.1929

Among the land surface factors (third part in Figure 5, purple bars), the land surface
resistance makes the strongest positive contribution (i.e., increases in the surface resistance
tend to increase the LST). This finding is consistent with previous research that suggests
that in response to high temperatures and a lack of water, plants generally close their
stomata, thereby elevating surface resistance [55,56]. The minor contributions from ground
heat flux and aerodynamic resistance are attributed to their minimal variations during
HWs, as seen in Table 2.

Table 2. Changes in driving factors from non-HW to HW periods.

∆Ta
(K)

∆RH
(%)

∆Rn*

(W/m2)
∆Press
(kPa)

∆G
(W/m2)

∆rs
(s/m)

∆ra
(s/m)

6.1082 −10.7186 86.3368 −0.1798 5.3319 29.8581 1.1844

Overall, changes in surface temperature due to heatwaves are controlled by atmo-
spheric factors, mainly radiative forcing, air temperature, and relative humidity. In terms
of the contributions of these factors, radiative forcing is usually the most dominant positive
contributor, while the air temperature and relative humidity are offset by negative contri-
butions. From the LST attribution results in Figure 5, it can be seen that the contribution of
radiative forcing is 14.70 K, that of air temperature is −4.76 K, that of relative humidity is
−5.86 K, and that of atmospheric pressure is −0.04 K. Moreover, the contribution of surface
resistance is 2.42 K, that of aerodynamic resistance is −0.23 K, and that of soil heat flux is
−0.91 K.

4. Discussion

In previous studies seeking to understand changes in rubber forest ecosystem charac-
teristics, researchers have focused on changes in water use efficiency between the monsoon
and drought seasons and the dominant factors behind such changes [57]. The impacts on
rubber forest ecosystems under extreme climatic conditions are still under study. Located
at the edge of the tropics, rubber forest ecosystems have environmental characteristics such
as high temperatures and high humidity. In addition to this, according to previous studies,
evapotranspiration from rubber plantations during the rainy season is greater than that
from tropical rainforests, and the idea that rubber plantations act as a “Water suction pump”
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has been confirmed [58]. However, as a “Water suction pump”, the larger evapotranspi-
ration from rubber plantations may have implications for changes in LST during HWs.
Therefore, to further investigate how climate change causes changes in rubber plantations’
LST, this paper aims to reveal changes in rubber plantations’ LST during heatwaves and to
analyze the mechanisms producing such changes.

The results of the attribution analysis indicate that during HWs, both radiative forcing
and surface resistance are driving factors that tend to increase LST. When only the effects
of atmospheric factors are considered, radiative forcing is the main influence, followed by
temperature and relative humidity. In addition, it is worth noting that radiative forcing
provides a positive influence, and temperature and relative humidity provide a negative
influence; these forces cancel each other out to some extent. Previous studies have shown
that solar radiation directly heats the surface under clear and cloudless conditions, implying
that changes in LST are mainly influenced by radiation [59]. Moreover, compared to
grasslands, forests are more likely to contribute heat to the atmosphere, leading to higher
air temperatures [60]. Concerning the negative contributions of temperature, we argue that
transpiration from vegetation is enhanced during HWs. This is because high temperatures
usually increase the transpiration rate of plants, as the plants allow water to evaporate
faster to prevent overheating. This results in plants requiring more water to meet their
transpiration demands. However, this process can have a cooling effect on the ground
surface, which can negatively affect the increase in surface temperature to some extent.
Previous studies have found that rubber forests have strong evapotranspiration, and this
has been further confirmed [58]. In addition, their study showed that evapotranspiration
from rubber forests was spatially significant and positively correlated with net radiation [61].
The negative contribution of relative humidity can be explained by the fact that high relative
humidity usually leads to more water vapor being present in the air, which in turn promotes
the process of evapotranspiration. The evaporation of water vapor consumes surface heat,
resulting in lower surface temperatures. When considering the effect of land surface factors,
surface resistance is the main influence. Under high temperatures and water deficits, plants
usually close their stomata, thus increasing surface resistance [55,56]. The opening and
closing of the stomata affect plant transpiration. When transpiration is reduced, plants
are unable to dissipate heat efficiently, thus reducing the cooling effect on the ground and
leading to higher surface temperatures.

Under HW conditions, the soil moisture often decreases due to increased evaporation
and lack of rainfall. However, DZ is located at the northern edge of the tropical region and
has an average annual rainfall of 1504.7 mm. This means the rubber plantations in this
region generally receive sufficient rainfall. Therefore, in the attribution analysis, although
changes in rs during HWs tend to elevate the LST, their impact is smaller than that of
radiative forcing. The attribution results show that radiative forcing plays a central role in
determining changes in LST.

For further analysis, we decomposed the contribution of radiative forcing into the
sum of atmospheric (Ta, Sin, Lin) and land surface (albedo) factors, as shown in Figure 6.
Figure 6a reveals that the negative contribution of Ta is stronger than before, Sin and Lin
exhibit relatively high positive contributions, and albedo contributes almost nothing. Con-
sidering the contributions of each decomposed element of radiative forcing (as indicated in
Figure 6b), Sin, representing the shortwave radiation that reaches the Earth’s surface, holds
the largest share. Air temperature (Ta) comes next, followed by longwave radiation (Lin),
and albedo has the smallest proportion.

In this study, the attribution analysis of surface temperature changes in rubber forest
ecosystems under heatwave conditions only explores the changes and the driving mech-
anisms behind them from a temporal perspective. Thus, future studies should further
consider the spatial variability in surface temperature changes in tropical forest ecosystems
in order to reveal the differences between different regions and tropical forest ecosystems.
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5. Conclusions

In this study, utilizing data collected at the DZ site, we employed the relative threshold
method to identify heatwaves in the region and investigated their impact on land surface
temperature (LST) using the TRM approach. The results indicate that it is atmospheric
rather than surface factors that dominate heatwave-induced changes in daytime LST in trop-
ical rubber plantation ecosystems, a result that is consistent with the conclusions reached
in previous studies [52]. It was found that radiative forcing and surface resistance are the
most important atmospheric and surface factors controlling the LST changes under HW
conditions, respectively. The increase in LST during a heatwave is mainly influenced by ra-
diative forcing (which depends mainly on the incident shortwave and longwave radiation),
which is partially offset by the contributions of air temperature and relative humidity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w16050752/s1, Table S1: Installation of measurement instruments
of eddy flux observation system at DZ Experimental Station of Tropical Crop Science Observation,
Ministry of Agriculture, DZ City, Hainan.
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Appendix A

Table A1 shows heatwave information for the DZ region from January 2010 through
December 2022, including heatwave start date, end date, number of days of duration, and
the number of heatwave days and non-heatwave days summarized on an annual scale.

Table A1. High-temperature heatwave events from January 2010 to December 2022 in DZ.

Year Start Date of HW End Date of HW Duration of HW Days Number of HW Days Number of
Non-HW Days

2010

03–01 03–06 6

25 340
04–11 04–13 3
07–04 07–12 9
07–26 08–01 7

2011 05–09 05–11 3 3 362

2012 - - - - 365

2013 - - - - 365

2014
06–02 06–05 4

10 35509–27 10–02 6

2015

03–15 03–19 5

41 324

03–31 04–04 5
04–18 04–20 3
06–30 07–04 5
08–15 08–19 5
09–04 09–08 5
09–22 09–26 5
11–11 11–13 3
11–15 11–19 5

2016

05–05 05–08 4

22 343
06–13 06–15 3
07–15 07–19 5
08–07 08–09 3
10–22 10–28 7

2017
04–09 04–11 3

9 35608–08 08–10 3
08–12 08–14 3

2018 03–03 03–05 3 3 362

2019

03–20 03–22 3

16 349
04–09 04–11 3
04–19 04–25 7
05–18 05–20 3

2020
05–05 05–09 5

13 35206–06 06–09 4
06–21 06–24 4

2021
08–08 08–10 3

6 35908–22 08–24 3

2022
03–20 03–22 3

9 35604–25 04–27 3
11–27 11–29 3

Total - - - 157 4588
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