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Abstract: Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used
to determine water movement through the saturated soil zone. Understanding the influences of
land-use-specific Ksat on the model estimation error of water balance components is necessary to
advance model predictive certainties and land management practices. An exploratory modeling
approach was developed in the physically based Soil and Water Assessment Tool (SWAT) framework
to investigate the effects of spatially distributed observed Ksat on local water balance components
using three digital elevation model (DEM) resolution scenarios (30 m, 10 m, and 1 m). All three DEM
scenarios showed satisfactory model performance during calibration (R2 > 0.74, NSE > 0.72, and
PBIAS ≤ ±13%) and validation (R2 > 0.71, NSE > 0.70, and PBIAS ≤ ±6%). Results showed that the
1 m DEM scenario provided more realistic streamflow results (0.315 m3/s) relative to the observed
streamflow (0.292 m3/s). Uncertainty analysis indicated that observed Ksat forcings and DEM
resolution significantly influence predictions of lateral flow, groundwater flow, and percolation flow.
Specifically, the observed Ksat has a more significant impact on model predictive confidence than
DEM resolution. Results emphasize the potential uncertainty of using observed Ksat for hydrological
modeling and demonstrate the importance of finer-resolution spatial data (i.e., 1 m DEM) applied in
smaller watersheds.

Keywords: soil and water assessment tool; hydrological modeling; soil saturated hydraulic conduc-
tivity; water balance components; spatial input data; appalachia; mixed land use watershed

1. Introduction

Saturated hydraulic conductivity (Ksat) is an essential hydrologic parameter that quan-
titatively represents the ability of soil to transmit water through the saturated zone [1,2].
Accurate Ksat values are essential for determining infiltration, runoff generation, ground-
water recharge, leaching, and other hydrological processes [3–5]. Consequently, Ksat
influences the relative magnitude of local water balance components [2,3,6]. Determining
Ksat in the field is often expensive, time-consuming, and cumbersome [3,5,7], which is
why Ksat is frequently estimated using relationships to other more easily observed soil
or landscape properties. Furthermore, Ksat is highly spatially variable and is greatly in-
fluenced by soil texture, compaction, and other factors [8–10]. There are many different
techniques to directly determine Ksat in the field and laboratory (e.g., pumping, perme-
ameter tests, and slug tests), as well as indirect methods: pedotransfer functions (PTFs),
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artificial neural networks (ANNs), support vector machine (SVM) models, and hydrolog-
ical modeling [6,9,11–20]. All methods of estimating Ksat often provide varying results
due to differences in measurement and calculation methods. For example, soil types and
topography (environmental conditions) can vary significantly over a small area and affect
equipment performance, resulting in variable Ksat estimates [10,11].

Physically based and semi-distributed hydrological models can be used to estimate
saturated hydraulic conductivity [6,21]. These models use parameters related directly to
the physical characteristics of a given watershed [22]. Watershed parameters govern water
transport and include factors like the topography distribution, soil types, vegetation types,
and geological features [6,21–24]. The Soil and Water Assessment Tool (SWAT) is one
such model. The SWAT model is a continuous-time, physically based, semi-distributed,
watershed-scale model that requires many input parameters and can be forced under
daily or monthly time steps [25,26]. In the SWAT, a watershed is subdivided into mul-
tiple sub-watersheds called hydrologic response units (HRUs) [25,27]. HRUs comprise
various combinations of land use, soil characteristics, and management practices in the
model construction. SWAT simulates the land phase of the hydrologic cycle in HRUs based
on the water mass balance using input parameters governing water transport [16]. The
hydrologic cycle is climate-driven and provides moisture and energy inputs, including
daily precipitation, maximum/minimum air temperature, wind speed, solar radiation,
and relative humidity, all of which control the water balance [25]. The SWAT can assim-
ilate these observed data automatically to generate simulation outputs. However, the
model-simulated streamflow processes contain predictive uncertainty [21,25,28]. Therefore,
simulated streamflow data must be calibrated and carefully validated by adjusting input
(observed) model parameters to minimize the deviation between observed and simulated
streamflow values to achieve the best model performance [22,25,28].

Ksat is a key parameter in the SWAT model that influences streamflow values and
affects the amount of surface runoff and groundwater flow [29,30]. However, limited
studies have investigated the impacts of spatially distributed observed Ksat on water
balance predictions in hydrological models, including the SWAT model. Huisman et al. [30]
showed that Ksat had a more substantial effect than land use change on simulated surface
runoff and groundwater recharge using the SWAT model. Busico et al. [22] investigated
SWAT output changes and showed that Ksat became more critical in streamflow generation
when more soil units were considered. Higher-resolution digital elevation models (DEMs)
may result in similar findings. Rocha et al. [31] used the SWAT model with different
DEM resolutions (from 0.25 m to 10 m) to simulate streamflow. Results indicated that at
10 m resolution, the DEM generated streamflow hydrographs closer to observed records.
Previous research showed that simulated runoff slightly increased with the decrease in
DEM resolution using SWAT [32,33]. Given that previous studies indicate that the Ksat
and DEM resolution are sources of uncertainty in hydrological modeling, work needs to be
conducted to investigate the impact of the spatially distributed observed Ksat and optimal
DEM resolution on model simulation output.

The overall objective of this study was to investigate the impact of model-generated
versus observed spatially distributed Ksat values on water balance components’ predictive
uncertainty using three DEM resolutions. The specific objectives were to (1) complete a
sensitivity analysis to determine the most sensitive parameters within the SWAT model
for the study watershed; (2) assess the model performance based on three different DEM
resolutions; and (3) quantify the potential uncertainty of SWAT-generated water balance
components caused by observed Ksat and DEM resolutions.

2. Materials and Methods
2.1. Study Area

The West Run Watershed (WRW) is a mixed-land use, urbanizing watershed in north-
eastern Morgantown, West Virginia. It has a catchment area of 23 km2 and ranges from
244 m to 427 m above mean sea level elevation [34]. The WRW is categorized as a hydro-
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logic group D watershed (HUC #05020003) [35,36]. West Run Creek, the primary drainage
of the WRW, is a third-order tributary of the Monongahela River. Morgantown is located
in the north-central region of West Virginia and has a strong seasonal climate pattern [37].
July is the wettest month, receiving an average monthly precipitation of 117 mm, while
February is the driest month, with an average monthly precipitation of 66 mm [36]. On
average, the West Run Watershed received a total annual precipitation of 1140 mm between
2001 and 2021 [38].

The West Run Watershed (WRW) has developed rapidly. The urban/suburban area
in the WRW increased from 4.37 km2 to 8.76 km2 from 2011 to 2020, including a mix of
residential and commercial spaces [35,36]. Recent studies divided the watershed area
into three main categories: forest (42.7%), urban/suburban (37.7%), and agricultural use
(19.4%) [35,39]. The streamflow data used in the current study were collected from a single
monitoring site near the confluence of the Monongahela River (Figure 1). This monitoring
site (a two-inch polyvinyl chloride stilling well) was outfitted with a Solinst Levelogger
Gold pressure transducer, which captured stream stage (cm) at 5 min intervals with an
accuracy of ±0.3 cm [35,40]. In addition, the Solinst Levelogger monitored atmospheric
pressure at 5 min intervals to compensate for atmospheric pressure [40].
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2.2. Data Collection
Field Data Collection (Observed Ksat)

Observed Ksat values (77 points) of the surface soil horizon were collected from
June 2022 to October 2022. Sampling locations (Figure 2) were selected using a stratified
random sampling design using the conditioned Latin hypercube sample algorithm to avoid
repeated disturbance to the soil [41,42]. Ksat measurements were conducted in triplicate at
each sampling location using a fully automated dual-head infiltrometer (DHI) [42]. The
DHI was chosen for its ease of use, rapidity, accuracy, and efficiency in measuring Ksat
values [42]. In each infiltration experiment, a 5 or 10 cm deep, 7.5 cm radius insertion
ring was gently hammered into the soil to ensure a good seal with the soil with minimal
disturbance [4,42]. To guarantee that the ring was leveled in all orthogonal directions,
the infiltrometer head was checked periodically to ensure the seal was intact. Any given
experiment was aborted and re-initiated if any sign of leakage was detected [4,42]. An air
pump installed in the control unit was used to pump air into the sealed infiltrometer head
to add air pressure [4]. The optimized measurement parameters were applied per Zhang
et al. [4], including a 15 min soaking period and two cycles of 35 min holding times at the
experiments’ high- and low-pressure heads.
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2.3. The Soil Water and Assessment Tool (SWAT)

The SWAT model is a comprehensive, temporally continuous, semi-distributed hydro-
logical model developed by USDA Agricultural Research Service (ARS) [25]. In the SWAT
model, the WRW was discretized into several sub-watersheds and HRUs. These HRUs are
the smallest spatial units in SWAT [43] and are defined as areas within each sub-watershed
with homogeneous combinations of land use, soil, and slope classes [25].

In the SWAT model, streamflow was estimated separately for each HRU and routed to
obtain the total model streamflow for the WRW. The streamflow processes included the
water balance that governs the land phase of the hydrological cycle, including percolation,
infiltration, lateral flow, and evapotranspiration (ET) from the soil profile and groundwater
flow from the aquifer [25,44,45]. The water balance equation used in the SWAT model is
as follows:

SWt = SWO + ∑t
i=1

(
Rday − Qsur f − Ea − Wseep − Qqw

)
, (1)

where SWt is the final soil water content (mm H2O), SWo is the initial soil water content
(mm H2O), t is time (days), Rday is the amount of precipitation on dayi (mm H2O), Qsur f
is the amount of surface water runoff (mm H2O), Ea is the amount of evapotranspiration
(mm H2O), Wseep is the amount of water entering the vadose zone from the soil profile (mm
H2O), and Qqw is the amount of return flow on dayi.

2.4. Model Forcings for the Current Study

For the current investigation, spatial data sets for the SWAT included DEMs, land-use
maps, soil maps, and meteorological data. Three DEMs of 1, 10, and 30 m in resolution
were implemented (Table 1). Each DEM was iteratively used as a topographic input
into the SWAT model. SWAT model simulation conditions were kept constant to avoid
any disruption from other sources of uncertainty. Therefore, other SWAT simulation
conditions, such as input data (e.g., land use, soil, and meteorological data), were also kept
constant. In the model construction, DEM data facilitated the delineation of the watershed
and river network [46]. Land use and soil data provided the necessary information to
force the SWAT to simulate the needed hydrological (runoff) parameters. In addition,
the Soil Survey Geographic Database (SSURGO) soil data contained the primary soil
information with high accuracy (https://www.nrcs.usda.gov/resources/data-and-reports/
soil-survey-geographic-database-ssurgo (accessed on 20 April 2023)). These data may,
therefore, more closely simulate the actual soil conditions of local soil to the greatest
extent possible. Climate data (daily precipitation, maximum, and minimum temperatures)
were required for model forcings and obtained from the meteorological station at the
Morgantown Municipal Airport.

2.5. SWAT-CUP, Sensitivity Analysis, Calibration, and Validation

The SWAT model was calibrated and validated using the split-time method (i.e., split
the observed data into two time periods) with the assistance of the SWAT Calibration and
Uncertainty Programs (SWAT-CUP, version: 2012), an auto-calibration software [25,28,47].
Observed streamflow data from 2017 to 2018 was used for calibration, while the observed
streamflow data from 2019 was used for validation. Given this study’s relatively short
calibration and validation periods, it is noteworthy that these available observed data
were carefully selected and representative of the realistic local hydrological conditions.
Furthermore, multiple studies have used the short calibration and validation period within
the context of SWAT model research, and the results from these studies showed that if
the model could perform well in the calibration period, the validation performance is
also satisfactory [21,22,48–51]. A standard algorithm in SWAT-CUP called Sequential
Uncertainty Fitting 2 (SUFI-2) was applied for multi-site model calibration and validation
for monthly time steps [52,53] (Figure 3). SUFI-2 performs sensitivity analysis via global
sensitivity analysis to test the sensitivity of model parameters, which is indicated by the
t-stat and p-value [28,54–56]. The parameter has greater sensitivity if it has a higher absolute

https://www.nrcs.usda.gov/resources/data-and-reports/soil-survey-geographic-database-ssurgo
https://www.nrcs.usda.gov/resources/data-and-reports/soil-survey-geographic-database-ssurgo
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t-stat value [28]. Additionally, a parameter with a p-value closer to zero is considered more
sensitive [28].

Table 1. Data types, descriptions, and sources of map units used in the SWAT model in the
current study.

Data Types Descriptions Data Sources Resolution/Scale/Year

DEM-1 Digital elevation model
WVU GIS Technical Center http:

//data.wvgis.wvu.edu/elevation/
(accessed on 15 April 2023)

1 m

DEM-10 Digital elevation model
USGS National Map https://apps.

nationalmap.gov/downloader/
(accessed on 15 April 2023)

10 m

DEM-30 Digital elevation model
USGS National Map https://apps.

nationalmap.gov/downloader/
(accessed on 15 April 2023)

30 m

Land Use WV land use land cover

WVU GIS Technical Center
https://wvgis.wvu.edu/data/dataset.

php?ID=489 (accessed on
13 April 2023)

5 m

Soil Soil Survey Geographic
Database (SSURGO)

Natural Resources Conservation
Service (NRCS)

https://www.nrcs.usda.gov/
resources/data-and-reports/soil-

survey-geographic-database-ssurgo
(accessed on 20 April 2023)

1:24,000

Meteorological Data Daily precipitation data and
temperature data

National Climate Data Center (NCDC)
USW00013736 Morgantown Municipal
Airport https://www.ncei.noaa.gov/

(accessed on 21 April 2023)

2001–2021
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and validation [25,28]. This analysis helped to decrease the number of parameters in the
calibration process by eliminating the parameters identified as not sensitive. The initial
set of parameters was selected based on recommendations from Griensven et al., Paul
et al., and Mehan et al. [57–59] (Table 2). Calibration and validation were conducted
using the best-fitted parameter values generated by the SWAT-CUP. Model performance
was evaluated using the Nash–Sutcliffe efficiency (NSE), percentage of bias (PBIAS), and
coefficient of determination (R2), which are presented in the following equations [60,61]:

NSE = 1 − ∑i(YOBS − YSIM)2

∑i
(
YOBS − YO

MEAN
)2 , (2)

PBIAS = 100 × ∑i(YOBS − YSIM)

∑i YOBS
, (3)

R2 =
∑i

[(
YOBS − YO

MEAN
)(

YSIM − YS
MEAN

)]2

∑i
(
YOBS − YO

MEAN
)2

∑
(
YSIM − YS

MEAN
)2 , (4)

where YOBS is the observed data, YSIM is the simulated data, YS
MEAN is the mean of the

simulated data, YO
MEAN is the mean of the observed data, and i is the ith measured or

simulated datapoint. The value of NSE varies between −∞ and 1, and NSE = 1 is the
optimal value [62,63]. The optimum value of percent bias (PBIAS) is 0, which measures the
average tendency of the simulated values to be larger or smaller than the observed data,
and a low absolute PBIAS value means accurate model simulation [62]. The coefficient of
determination (R2) ranges from 0–1, with higher values indicating less error variance, and
a value larger than 0.5 is considered acceptable [63]. The model performance can be judged
“satisfactory” for monthly streamflow if R2 > 0.7, NSE > 0.55, and PBIAS ≤ ±15% [63].

Table 2. Description of the initial calibration parameters for West Run Watershed, Morgantown, West
Virginia, USA.

Parameter Identifier Parameter Detailed Parameter Description

R CN2.mgt SCS curve number for moisture condition II

R SOL_K.sol Saturated hydraulic conductivity (mm/h)
(by layers)

R SURLAG.bsn Surface runoff lag coefficient

V GW_DELAY.gw Groundwater delay (days)

V ALPHA_BF.gw Baseflow alpha factor (days)

V GWQMN.gw Shallow aquifer water threshold depth
required to occur for the return flow (mm)

V ESCO.bsn Compensation soil evaporation

V CH_K2.rte Alluvium main channel hydraulic
conductivity (mm/h)

V TIMP.bsn Temperature lag snowpack factor

V SFTMP.bsn Temperature of snowfall (◦C)

V SMFMN.bsn Minimum melt rate for snow during the year
(mm H2O/◦C-day)

Notes: “V”: The default parameter is replaced by a given value; “R”: The existing parameter value is
changed relatively.

After completing the sensitivity analysis and calibration/validation procedures, the
calibrated Ksat value in the soil input file for each calibrated model was replaced by mean
observed field Ksat values based on each land use type (forest, pasture, and urban) using
SWAT-CUP. Figure 4 shows the flowchart of the replacement procedure and the comparison
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between modeled water balance components using model-derived Ksat and those using
mean observed Ksat values. The water balance components from the default calibrated
model (Figure 3) output were compared with those from the model output with observed
Ksat, and the differences were assessed using one-way analysis of variance (ANOVA).
Significant differences were evaluated at the 0.05 level.
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Figure 4. Flowchart of the replacement procedure within the SWAT-CUP for the current investigation
(WRW), Morgantown, West Virginia, USA. Note: the current figure begins where the previous
Figure 3 leaves off.

2.6. Quantification of Model Uncertainties Due to Different DEM Scenarios

The relative difference (RD) is a standard method to quantify the SWAT model output
uncertainty due to different DEM scenarios [32,46,64–66]. This approach was defined as:

RD =
(DEMx − DEMbaseline)

DEMbaseline
× 100, (5)

where DEMbaseline is the SWAT output derived from the baseline, and DEMx is the SWAT
output generated from each different DEM scenario. A positive RD, as an uncertainty
measure, indicated overestimation, and a negative RD, as an uncertainty measure, meant
underestimation [64]. Moriasi et al. [63] and Tan et al. [46] suggested that if the RD values
are >±15% than the baseline scenario, it is assumed that the DEMx scenario has a large
impact on the SWAT model output.

3. Results
3.1. Observed Hydraulic Conductivity (Ksat)

Sample points where Ksat measurements were collected were classified by land use
type (forest, pasture, and urban) [42,67,68]. Thirty points were collected from urban, 25
from pasture, and 22 from forest land use types (Table 3) (Figure 2). The Ksat values showed
high spatial variability across the WRW, ranging from 15.73–433.12 mm/h for pasture sites
to 157.87–823.12 mm/h for forest and 12.69–1606.56 mm/h for urban land. The average
forest Ksat value was the highest (419.62 mm/h), followed by average urban land use Ksat
(234.6 mm/h) and average pasture land use Ksat (190.14 mm/h). Field Ksat values showed
a high standard deviation, indicating that values within each land use type were more
variable. The causes of the high observed Ksat variability presumably include various
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factors, including differences in soil properties, topography, vegetation cover, or human
activities [69,70].

Table 3. Descriptive statistics of measured (observed) Ksat values (mm/h) based on land use types
for West Run Watershed, Morgantown, West Virginia, USA.

Land Use n Minimum Maximum Mean Median

Pasture 25 15.73 433.12 190.14 160.87
Forest 22 157.87 833.12 419.62 391.74
Urban 30 12.69 1606.56 234.60 151.71

3.2. Sensitivity Analysis and Model Performance Evaluation

The SWAT-CUP program with the SUFI-2 algorithm was applied in the sensitivity
analysis, calibration, and validation of 1 m, 10 m, and 30 m DEMs. A total of 11 parame-
ters related to streamflow were chosen for the sensitivity analysis (Table 2), and the first
seven high-sensitivity parameters were selected for further analysis (Table 4). The cali-
bration results of the three scenarios showed that the Ksat from all soil layers decreased
by 17.21%. The observed saturated hydraulic conductivity generally varied between 13
and 1607 mm/h in the field. The observed Ksat values were collected at soil depths from
0 to 10 cm in the field. Therefore, the calibrated Ksat of the first soil layer (SOL_K1) was
replaced with observed Ksat values to implement the research purpose of the experiment,
and the primary information about soils in other layers was held constant to maintain
conditions. The default saturated hydraulic conductivity values for WRW soil within the
SWAT interface for the first layers were 3.276, 32.4, 82.8, and 331.2 mm/h. Furthermore,
three scenario calibration results indicated that the Ksat from layer 1 of the soil decreased
by 17.21%, with no significant difference between the three scenarios. Thus, the calibrated
Ksat values in the first soil layer were 2.71, 26.82, 68.55, and 274.2 mm/h. Notably, the
observed average Ksat values for urban (234.6 mm/h) and pasture (190.14 mm/h) land use
were found to be underestimated by 16.01% and 30.66% when compared to the calibrated
Ksat value of 274.2 mm/h. Conversely, the forest land use observed average Ksat value
(419.62 mm/h) was overestimated by 53%.

Figure 5 shows the sensitivity analysis results of parameters contributing to the stream-
flow in the SWAT model of the WRW for the 1 m, 10 m, and 30 m DEMs. Parameters
with greater t-stat values and lower p-values were more sensitive, with changes resulting
in a higher impact on the streamflow simulations. The shallow aquifer water threshold
depth required for return flow (GWQMN) and temperature of snowfall (SFTMP) were
the most sensitive parameters for the WRW, as they showed the highest t-stat values and
lowest p-values among the seven selected parameters (Figure 5). The comparison between
the sensitivity of parameters in different DEM resolutions showed that the 1 m and 30 m
DEMs shared the same first three sensitive parameters, while the 10 m DEM only shared
two parameters with the 1 m and 30 m DEMs. In the sensitivity analysis of the 1 m DEM,
the factors with the highest impact on the streamflow simulation were identified as the
shallow aquifer water threshold depth required for return flow (GWQMN), temperature
of snowfall (SFTMP), saturated hydraulic conductivity (SOL_K), SCS runoff curve (CN2),
effective hydraulic conductivity for the main channel (CH_K2), groundwater delay time
(GW_DELAY), and temperature lag snowpack factor (TIMP). In the sensitivity analysis of
the 10 m DEM, GWQMN and SFTMP were the top two most sensitive parameters, with
CH_K2 as the third, followed by SOL_K, GW_DELAY, CN2, and TIMP. In addition to the
top three most sensitive parameters in the 30 m DEM sensitivity analysis, which were
the same as those identified in the 1 m DEM analysis, CH_K2, GW_DEALY, CN2, and
TIMP were also identified as sensitive parameters in the 30 m DEM analysis, in the same
order as in the 10 m DEM analysis, except CH_K2. These results align with the findings of
Nazari-Sharabian et al. [55], who showed that specific parameters may become more or
less sensitive depending on the resolution threshold above or below.
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The calibration and validation performance of the model is presented in Table 5, and
Figure 6 compares the three model simulations with observed data using monthly values.
The R2 value obtained from the three DEMs during calibration ranged from 0.75 to 0.76,
indicating a good correlation between observed and simulated streamflow data. The
PBIAS values (−10.6, −11.4, and −12.8) for streamflow simulation in WRW were negative,
revealing that 10.6%, 11.4%, and 12.8% of monthly streamflow in the calibration period
are overestimated. During the validation period, the R2 values for the three DEMs ranged
between 0.72 and 0.73, with higher R2 values indicating less error variance. Based on the
three statistical indices (NSE, R2, and PBIAS), the SWAT model performance with the three
DEMs is at least satisfactory (R2 > 0.7, NSE > 0.55, and PBIAS ≤ ±15%) [63].

Table 4. Sensitivity analysis results and calibrated values for Scenario 1, Scenario 2, and Scenario 3.

Parameter Identifier Parameter
Scenario 1 Scenario 2 Scenario 3

Calibrated Value (1 m) Calibrated Value (10 m) Calibrated Value (30 m)

R CN2.mgt −1.8839 −1.8831 −1.8832
R SOL_K.sol −17.2095 −17.2097 −17.2096
V GW_DELAY.gw 3.5204 3.5205 3.5205
V GWQMN.gw 2322.5589 2322.5632 2322.5623
V CH_K2.rte 25.6532 25.6533 25.6532
V TIMP.bsn 0.3089 0.3088 0.3088
V SFTMP.bsn 2.6412 2.6412 2.6412

Notes: “V”: The default parameter is replaced by a given value; “R”: The existing parameter value is
changed relatively.

Given that land use and soil types remained unchanged during model simulations,
any differences in watershed delineation and streamflow generation were attributed to
DEM resolution differences. As anticipated, the resolution of the DEM data impacted the
number of subbasins and the layout of streams. For instance, subbasins decreased from 20
to 18 when the DEM resolutions were changed from 1 m to 10 m or 30 m. Similarly, the
recommended drainage areas for streams also varied with DEM resolution, being 22.77 km2

for the 1 m DEM, 22.6 km2 for the 10 m DEM, and 21.81 km2 for the 30 m DEM. The 1 m
DEM generated a model-delineated area closest to the actual WRW area compared with
other DEMs (Table 6). The 1 m DEM also generated more HRUs (122) than the 10 m (86)
and 30 m (87) DEMs. Furthermore, the 1 m DEM generated a streamflow of 0.315 m3/s,
which was only 7.98% higher than the observed value (0.292 m3/s) at the streamflow
monitoring site in the WRW (Figure 1). Therefore, the results generally confirm that the
higher-resolution 1 m DEM produced more detailed and accurate SWAT model output
than the 10 m and 30 m DEMs.

3.3. Impact of DEM Resolutions on the SWAT Model Output

According to the topographic and watershed characteristics calculated from the respec-
tive DEM resolutions, the 1 m DEM scenario showed results closer to the actual watershed
conditions than the other two DEM scenarios. Therefore, the 1 m DEM scenario output was
a baseline scenario to quantify the SWAT model output uncertainties.

The effect of different DEM scenarios on the SWAT model annual output is shown
in Figure 7. Surface runoff, lateral flow, groundwater flow, percolation flow, evapotran-
spiration (ET), and water yield are the most common interest outputs for water balance
components in SWAT model studies [71–74]. Comparison of the RDs in the modeled
outputs indicated that coarser DEM resolutions (10 m and 30 m) affect the model output
uncertainties. The overall uncertainty of the annual SWAT model output increased, as the
absolute RD values in Figure 7b were higher than the absolute RD values in Figure 7a. The
absolute RD values indicated that DEM resolution (10 m and 30 m) had minor impacts
on the surface runoff, ET, and water yield, which ranged from 0.89 to 6.75% (less than
15%). Therefore, the effect of DEM resolution was considered negligible. However, the RD
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values of groundwater flow for the 30 m resolution were from 11.38% up to 23.41%, which
were greater RD values than observed for the 10 m DEM scenario. Furthermore, the 30 m
DEM resolution also greatly affected the lateral flow, and its absolute RD values were from
17.05% to 17.22%, in a pattern similar to that of the percolation flow.
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Table 5. Performance analysis of the SWAT model simulating monthly streamflow during the
calibration and validation procedures at West Run Watershed, located in Morgantown, WV, USA.

Watershed Statistical Parameters
1 m DEM 10 m DEM 30 m DEM

Calibration Validation Calibration Validation Calibration Validation

West Run
Coefficient of determination (R2) 0.75 0.72 0.75 0.72 0.76 0.73
Nash–Sutcliffe efficiency (NSE) 0.72 0.72 0.72 0.71 0.73 0.73

Percent bias (PBIAS) (%) −10.6 −3 −11.4 −5.3 −12.8 −2.8Water 2024, 16, x FOR PEER REVIEW 12 of 25 
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Figure 6. SWAT streamflow simulation for the 1 m DEM, 10 m DEM, and 30 m DEM for calibration
and validation periods for West Run Watershed, Morgantown, West Virginia, USA.

Table 6. Surface area, HRU, and average streamflow within the West Run Watershed, Morgantown,
West Virginia, USA.

DEM Resolution (m) Model Delineated Area (km2) HRU Streamflow (m3/s)

1 m 22.77 122 0.3153
10 m 22.6 86 0.3192
30 m 21.81 87 0.3193
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Uncertainty analysis indicated that the influence of DEM resolutions on surface runoff,
ET, and water yield was negligible, as the mean absolute RD values ranged from 0.77% to
3.5%, on average less than 15%. Therefore, the uncertainty analysis for the monthly SWAT
model output was focused on lateral flow, groundwater flow, and percolation flow. The
effects of the 10 m DEM and 30 m DEM resolution scenarios on these three components at
the monthly scale are shown in Figure 8. The overall uncertainty increased as the resolution
increased from 1 m to 30 m. The percolation and groundwater flow were overestimated
within coarser DEMs (10 m and 30 m) and monthly time series. Specifically, RD values of
percolation flow ranged from 1.6% to 21.18% and from 5.34% to 23.59% in the 10 m and
30 m DEM scenarios, respectively. Groundwater flow exhibited a similar pattern, with the
most significant RD values being 21.24% and 39.98% in the 10 m and 30 m DEM scenarios,
respectively. The mean RD value of groundwater flow in the 30 m DEM resolution scenario
was 20.25%, exceeding 15% on average. The absolute RD values for the monthly lateral
flow were less than 10%, indicating that the lateral flow changed little with the 10 m DEM
resolution impact. Interestingly, the 30 m DEM resolution had a more significant impact on
the lateral flow, with most absolute RD values greater than 15%, and these absolute values
were nearly twice as large as the absolute RD values in the 10 m DEM resolution scenario.
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3.4. Water Balance Components Analysis Based on Observed Ksat

This study’s water balance components (lateral flow, groundwater flow, percolation
flow, evapotranspiration, surface runoff, and water yield) were derived from the principles
outlined in the SWAT documentation [16]. Figure 9a–c presents the total contributions
of the water balance components in the WRW. The results (i.e., lateral flow, groundwater,
and percolation flow) of the one-way ANOVA showed that the outputs of the calibrated
model (1 m, 10 m, and 30 m) were significantly different from the outputs obtained after
substituting the observed Ksat values (p < 0.05). Furthermore, the lateral flow increased
the most among these six components after the observed Ksat values were applied to the
output of the calibrated model (1 m, 10 m, and 30 m scenarios). Lateral flow using observed
Ksat forcings contributed more than lateral flow using the calibrated SWAT model output
(478 mm, 447 mm, and 396 mm), ranging from 1113 mm to 1338 mm. Comparatively,
groundwater and percolation flow exhibited decreased trends compared to the calibrated
model outputs. The groundwater flow and percolation flow ranged from 370 mm to
524 mm and from 628 mm to 851 mm after the observed Ksat values were integrated into the
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calibrated model’s output (1 m, 10 m, and 30 m scenarios). In addition, water yield increased
after observed Ksat values were applied. However, the difference was non-significant based
on one-way ANOVA results (p > 0.05). Both evapotranspiration and surface runoff slightly
declined after observed Ksat values were used in model simulations. These results are
similar to the work of Bauwe et al. [75], who found that the value of Ksat affects the
estimation of water balance components. For example, if Ksat is 10 mm/h or smaller, the
SWAT model generates more surface runoff [75]. Still, some water balance components
exhibited insignificant differences in the model simulation. However, insignificance should
not be taken to mean that these changes would not be enough to impose hydrological or
aquatic ecological challenges for the WRW.

Lateral flow showed an overall increase after the calibrated Ksat values were sub-
stituted by the observed Ksat values in the model simulations, ranging from 635 mm
to over 900 mm, depending on the three different DEM scenarios (Table 7). The Ksat-F
(forest land use) had the most considerable impact on the lateral flow, contributing to an
average increase of 874 mm across the three model outputs, followed by Ksat-U (urban
land use) (724 mm) and Ksat-P (pasture land use) (674 mm). This result is presumably due
to the specific hydrological characteristics of forest areas, such as the soil with a relatively
high infiltration rate due to the native forest vegetation and minimal anthropogenic dis-
turbance [42]. This finding is similar to the research of Neitsch et al. [16], who showed
that lateral flow becomes more significant in areas with high-hydraulic-conductivity soil
in surface layers at a shallow depth. In contrast, the groundwater and percolation flows
decreased after the observed Ksat values were applied in the model simulation. The
Ksat-F values caused the most significant reduction in the 30 m DEM scenario, where the
groundwater flow declined by 552 mm and the percolation flow declined by 751 mm. The
groundwater and percolation flow showed the smallest reduction, 340 mm and 487 mm,
under the Ksat-P impact in the 1 m DEM model scenario.

Additionally, the average groundwater flow decrease across the three model outputs
was 489 mm for Ksat-F, 420 mm for Ksat-U, and 384 mm for Ksat-P. Similarly, the percolation
flow exhibited a higher decrease than the groundwater flow, with an overall average decline
of 694 mm for Ksat-F, 561 mm for Ksat-U, and 514 mm for Ksat-P. The percolation flow
decline ranged from a minimum of 487 mm to a maximum of 751 mm. These results
indicated that different land use types may influence groundwater flow and percolation
flow patterns. Astuti et al. [76] and Sertel et al. [77] showed a similar impact of urbanization
on percolation flow and groundwater flow. The impervious surface caused by urban
expansion decreased infiltration, affecting aquifer recharge and hydrological processes.

The observed Ksat values for forest, pasture, and urban land types caused an overall
increase in water yield relative to the calibrated SWAT model output in the three DEM
model scenarios, but the average increase was less than the lateral flow. Furthermore, the
surface runoff and evapotranspiration showed declining trends after the calibrated Ksat
values were replaced with the observed Ksat values in the model simulations. The lowest
average changes in the surface runoff were 39 mm with Ksat-F, 36 mm for Ksat-P, and
37 mm for Ksat-U.

Given the preceding results, scenario 1—Ksat-U (Figure 4) was used as a reference to
demonstrate the general impact of observed Ksat on the dynamics of water balance compo-
nent changes over time in this study. The most significant annual precipitation (PREC) was
simulated in 2018, with a total of 1390 mm, a maximum of 229 mm in September, and a
minimum of 71 mm in January (Figure 10). Conversely, 2019 had the lowest precipitation
among the analyzed years (1144 mm), 112 mm less than the amount generated in 2017
(1256 mm). All variables vary temporally with rainfall patterns (Figure 10a). In scenario
1—Ksat-U, the Ksat value associated with urban land use emerged as a factor driving
an increase in lateral flow (LATQ) within the water balance components; however, this
increase was at the cost of reduced groundwater (GWQ) and percolation flow. Lateral
flow replaced percolation flow in terms of increasing the most when a high precipitation
event occurred (Figure 10b). This dynamic interaction between various water balance
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components emphasizes the relationship between soil properties, hydrological processes,
and their combined impact on watershed hydrologic processes.
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Table 7. Comparison of the water balance components between the calibrated SWAT model output
and each Ksat scenario (mm). F = forest land use, P = pasture land use, and U = urban land use.

Water Balance Components Ksat Types 1 m 10 m 30 m Average Change

Water Yield
F 295 330 309 311
P 238 249 195 227
U 242 260 214 239

Lateral flow
F 798 882 942 874
P 635 690 696 674
U 675 738 758 724

Groundwater flow
F −438 −476 −552 −489
P −340 −376 −436 −384
U −374 −410 −410 −420

Percolation flow
F −638 −694 −751 −694
P −487 −521 −534 −514
U −525 −566 −591 −561

Surface runoff
F −33 −41 −42 −39
P −32 −39 −39 −36
U −32 −39 −39 −37

Evapotranspiration
F −125 −144 −147 −139
P −114 −128 −120 −121
U −116 −131 −126 −125

3.5. Impact of Observed Ksat on the SWAT Output

Figure 11 shows the relative difference (RD) values among the lateral, groundwater,
and percolation flows in the 1 m DEM scenario compared to scenario 1—Ksat-U. The
observed Ksat greatly impacted these water balance components, with mean absolute
RD values exceeding 15% on average. Lateral flow was overestimated after the observed
Ksat was incorporated into the model simulation. Groundwater and percolation flow
exhibited a similar trend; the mean RD values were −33.01% and −32.36%, respectively.
The RD values of groundwater flow and percolation flow fluctuated slightly over time. Both
parameters tended to be overestimated around summertime. However, most RD values
remained below 0, indicating that groundwater and percolation flow were predominantly
underestimated under scenario 1—Ksat-U.
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(1256 mm). All variables vary temporally with rainfall patterns (Figure 10a). In scenario 
1—Ksat-U, the Ksat value associated with urban land use emerged as a factor driving an 
increase in lateral flow (LATQ) within the water balance components; however, this in-
crease was at the cost of reduced groundwater (GWQ) and percolation flow. Lateral flow 
replaced percolation flow in terms of increasing the most when a high precipitation event 
occurred (Figure 10b). This dynamic interaction between various water balance compo-
nents emphasizes the relationship between soil properties, hydrological processes, and 
their combined impact on watershed hydrologic processes.  
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4. Discussion

This research resulted in an exploratory modeling approach in the SWAT model frame-
work to investigate the SWAT model simulation response to field-measured Ksat values
under three DEM resolutions. Figure 7 shows that DEM resolution impacted model predic-
tive outputs. The overall uncertainty of model outputs increased as the DEM resolution
became coarser, evidenced by the absolute RD values (>15%). A minor impact was found
on surface runoff, water yield, and ET, consistent with previous research [32,33,46,64,65].
For example, the results of Song et al. [33] showed that the simulated values of surface
runoff change gently, and this value dropped by 2% when DEM resolution increased from
10 m to 130 m. Lin et al. [32] used the DEM resolution from 5 m to 140 m, and they also
found similar results, namely that the relative difference (RD) of simulated runoff was less
than 1%. Di Luzio et al. [78] explained that surface runoff was computed using the SCS
curve number method, and DEM resolution did not affect the average curve number value.
Sukumaran and Sahoo [64] pointed out that since surface runoff constituted a significant
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portion of water yield, variations in water yield were predominantly reflected by changes
in surface runoff. Given the insensitivity of surface runoff to DEM resolutions, water yield
was also not sensitive to the DEM resolutions. Further uncertainty analysis revealed that
the 30 m DEM resolution had a more significant influence on the lateral flow, groundwater,
and percolation flow than the 10 m DEM resolution. The groundwater flow (mean RDannual
= 19.32% and mean RDmonthly = 20.25%) and percolation flow (mean RDannual = 9.43%
and mean RDmonthly = 12.86%) tended to be overestimated, and the lateral flow (mean
RDannual = −17.13% and mean RDmonthly = −17.09%) tended to be underestimated on both
annual and monthly scales.

Mean observed Ksat values were forced in the calibrated SWAT model with differ-
ent DEM resolutions to generate distinct DEM scenarios. One-way analysis of variance
(ANOVA) indicated that the mean observed Ksat had a significant (p < 0.05) impact on
the lateral flow, groundwater flow, and percolation flow (outputs) of the SWAT model
within three DEM resolution scenarios. Furthermore, the uncertainty in SWAT model
output within these DEM scenarios was changed relative to DEM resolution, and extra
Ksat data were incorporated into the model simulation. Figure 11 shows the impact of the
mean observed Ksat (urban land use) on model output and isolates the disturbed DEM
resolution effect. The mean observed Ksat (urban land use) changed the SWAT model
output uncertainty under the 1 m DEM scenario. The monthly lateral flow was overesti-
mated, with mean RD values of 164.98%. Conversely, the overall RD values of monthly
groundwater and percolation flow were negative, indicating that they were underestimated.
However, both tended to be overestimated (RD values ranged from 7.01% to 63.21%) in the
summer months.

5. Study Limitations and Future Directions

This study is among the first to test the impact of observed Ksat values on water
balance components, incorporating the influence of DEM resolution. Despite its notable
contributions, the study contains certain limitations. The field Ksat data collection did
not include subsurface soil Ksat values. Ksat may vary with soil depth, and this omission
could potentially affect model predictions, as more observed data might enhance the model
performance and reduce model simulation uncertainty [20,25,31,69,79]. In addition, this
study showed that 1 m DEM could provide a more detailed and accurate analysis in
this study relative to coarser DEMs. However, 1 m DEMs may be impractical for a large
catchment. Finally, while the time series duration was adequate for the current investigation,
the relatively short period of available streamflow may affect model simulation accuracy.
The more extended streamflow dataset includes several wet- and dry-year records, which
may increase the reliability of the model calibration. In future research, investigators may
wish to include additional field observations (i.e., observed field Ksat data with multiple soil
depths) to validate and characterize interactions between observed Ksat and the estimation
of water balance components while considering the impact of DEM resolution. Despite
these limitations, the current study offers valuable insights into the nuanced relationship
between Ksat and water balance components relative to DEM resolution, enriching the
SWAT model research literature and contributing to improving hydrological modeling
predictions. Also, investigators could consider the estimation of a single water balance
component (e.g., evapotranspiration from weather data) to constrain the model further.
While beyond the scope of the current study, this approach may provide impetus for
future work.

6. Conclusions

This investigation used an exploratory modeling approach to assess observed Ksat
values on water balance components under three DEM resolutions in a representative
Appalachian mixed-land-use watershed. The model’s performance was assessed using
statistical indicators (NSE, R2, and PBIAS), and three DEMs showed satisfactory (or better)
performance in both calibration (R2 > 0.74, NSE > 0.72, and PBIAS ≤ ±13%) and validation
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(R2 > 0.71, NSE > 0.70, and PBIAS ≤±6%) periods. The sensitivity analysis from SWAT-CUP
indicated that the most sensitive calibration parameters were the shallow aquifer water
threshold depth for return flow (GWQMN) and the temperature of snowfall (SFTMP),
which is essential for snowmelt threshold estimations and thus soil water infiltration
processes. This observation was consistent across all three DEM scenarios. The novelty of
this work includes the developed exploratory modeling method that could incorporate
observed field Ksat value into the model simulation with the help of SWAT-related software
(SWAT-CUP, version: 2012) under different DEM resolution scenarios. In addition, this
work also quantifies the uncertainty in the model output caused by observed field Ksat and
DEM resolution scenarios. It is worth noting that this methodology includes the flexibility
to adapt to differences in model output attributed to differences between observed field
Ksat model forcings or DEM resolutions. The uncertainty analysis indicated that observed
Ksat and DEM resolutions inevitably affect the model output, especially the lateral flow,
percolation flow, and groundwater flow (RD > 15%), and the observed Ksat had a more
significant impact on model output than DEM resolutions. These findings offer quantitative
evidence on model output, providing valuable insights for hydrologists and modelers to
understand how observed Ksat affects model output relative to empirically derived Ksat
under multiple DEM resolution scenarios.
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