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Abstract: The physical foundation and environmental assurance provided by the regional habitat are
crucial for the survival and sustainable development of organisms. Land use change, as a significant
manifestation of human activity, is a crucial factor in habitat quality. An SD-PLUS coupled model
was developed to simulate land use change in the Baiyangdian(BYD) Basin using data on land use,
socio-economic factors, and the climatic environment from 2000 to 2020. The InVEST model was
employed to assess the habitat quality of the basin from 2000 to 2050. The findings indicated the
following: Between 2020 and 2050, the predominant land use changes across the three scenarios
involve the conversion of farmland to construction land and grassland to woodland. The magnitude
of these changes steadily declines over time. The magnitude of change in land use for all kinds was
greater under SSP5 compared to SSP1 and SSP2. The movement of habitat quality grades primarily
occurred from higher grades to lower grades. In 2050, the habitat quality is projected to improve
compared to 2020 under three different scenarios. The highest improvement is expected in SSP5
with a 0.60% increase, followed by SSP2 with a 0.42% increase and SSP1 with the smallest increase
of 0.23%.

Keywords: land use; scenario simulation; SD-PLUS coupling model; InVEST model; habitat quality;
BYD Basin

1. Introduction

Habitat quality pertains to the capacity of an ecosystem to offer appropriate living
conditions for individuals and populations, serving as a reflection of the overall status of
regional biodiversity [1,2]. Human activities have significantly modified the distribution
of regional habitats, leading to issues such as habitat fragmentation, degradation, and
potential loss [3]. These challenges arise from population growth and rapid economic
development, profoundly impacting the circulation of material and energy flow among
habitat patches [4]. Land use/cover change (LUCC) emerges as the primary threat to
habitat quality [5,6], serving as an indicator of the extent of human activity. Therefore,
it is crucial to investigate temporal and geographical variations in LUCC and habitat
quality, and understand how they are influenced by human activities to ensure regional
ecological security.

Currently, the exploration of a multi-scenario simulation for future LUCC relies on the
overarching framework of “scenario establishment-demand prediction-spatial distribution”.
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Various models are employed for demand prediction, including system dynamics (SD),
Markov chains, and linear programming models. For spatial simulation, common models
include cellular automata (CA) [7], the Conversion of Land Use and its Effects modeling
framework (CLUE) [8], Future Land Use Simulation (FLUS) [9], and the Patch-generating
Land Use Simulation (PLUS) Model [10]. The system dynamics (SD) model is particularly
effective in representing the nonlinear, systematic, complicated, and dynamic features of
the LUCC process, making it a valuable tool for simulating land use scenarios [11,12]. The
FLUS model has demonstrated excellent simulation accuracy compared to classic models
such as CLUE-S, ANN-CA, and Logistic-CA [9]. Additionally, the PLUS model exhibits
superior spatial fitting when compared to the FLUS model [13,14]. Wang et al. conducted
a comparative study in Beijing municipality, evaluating CA-Markov, FLUS, and PLUS
models, with their findings indicating that the predictive accuracy of the PLUS model
surpasses that of the other two models [15]. He et al. applied the PLUS model to predict
LUCC in the Yangtze River Basin, demonstrating accurate simulations and predictions
under various scenarios [16]. Another study by Wang et al. involved a dynamic simulation
of LUCC at an urban scale using a linked SD model and a PLUS model, supplemented by
the InVEST model to analyze carbon stock features in relation to the evolution of LUCC
based on climate change scenarios [11]. The combination of the demand prediction model
and the spatial simulation model facilitates the integration of their respective benefits,
resulting in enhanced simulation accuracy [13]. This diverse set of models provides a
comprehensive approach to studying LUCC, with each model contributing unique insights
to the understanding of future land use scenarios.

Regarding the assessment of habitat quality in specific regions, numerous researchers
have utilized the InVEST model for quantitative investigations, yielding positive outcomes.
Huang et al. utilized the InVEST model and topographic location to analyze spatiotemporal
changes in habitat quality and the interaction between landscape patterns and gradient ef-
fects in Shucheng County. Their findings underscored the significant impact of topography
and landscape patterns on habitat quality evolution [17]. In a study assessing habitat qual-
ity and deterioration in Italy, Sallustio et al. employed the InVEST software cartographically.
They emphasized that habitat quality and degradation are influenced by geographical posi-
tion and human-induced influences, varying in susceptibility to conservation efforts [18].
Moreira proposed a method for assessing the preservation condition of natural habitats
in the Azores, specifically on the island of Pico in Portugal, using the InVEST habitat
quality model. The results highlighted notably favorable conditions in ecosystems at high
altitudes, attributed to the absence of significant hazards such as invasive alien species
and rangelands [19]. In a multi-scenario simulation analysis examining the impact of
land use on the quality of human settlements in Tianjin, Li et al. utilized the PLUS model
and the InVEST Integrated Valuation of Ecosystem Services and Tradeoffs model. They
identified the continuous increase in construction land as the primary factor contributing
to the decline in habitat quality over time [20]. Wang et al. conducted a study to analyze
the impacts of climate change on the regional ecology of Yunnan Province. Their research
involved the use of coupled models, specifically employing the PLUS and InVEST models
for simulation and analysis [21]. In a separate study, Babbar et al. utilized the Markov
chain and InVEST model to assess and predict carbon sequestration in the Sariska Tiger
Reserve [22].

In 2010, the United Nations Intergovernmental Panel on Climate Change (IPCC)
introduced Shared Socioeconomic Pathways (SSPs) in conjunction with Representative
Concentration Pathways (RCPs). These pathways take into account various socio-economic
development factors [23]. The SSPs scenario comprises five socio-economic development
models [24], namely the sustainable development path (SSP1), natural development path
(SSP2), regional competition path (S5P3), unbalanced path (SSP4), and high-speed develop-
ment path (SSP5). The utilization of SSPs in conjunction with LUCC simulations enables a
comprehensive assessment of the interplay between human activities and ecosystems [25].
Increasingly, researchers have conducted numerous studies to forecast future LUCC by
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integrating multiple models. Scenario simulation involves predicting future changes in
development modes by making assumptions about the future social economy, population,
or climate. It offers a fresh perspective for LUCC research [26].

In April 2017, China established the Xiong’an New Area with the aim of “relocating
non-capital functions from Beijing and promoting coordinated development in the Beijing-
Tianjin-Hebei(BTH) region”. Located in the eastern plain of the BYD basin, the Xiong’an
New Area has experienced a significant expansion of construction land as its urbanization
process accelerates. This expansion has resulted in the substantial encroachment upon
grassland, farmland, and woodland, despite a simultaneous increased national investment
in ecological protection. Although efforts have been made to enhance ecological conser-
vation, the region’s habitat quality in the BYD basin is still expected to be impacted by
changes in land use. Currently, there is limited research focused on the alterations in land
use and habitat quality within the BYD basin against the backdrop of the construction and
development of the Xiong’an New Area. This study endeavors to simulate the spatiotempo-
ral changes in land use and habitat quality within the BYD basin, examining three distinct
development scenarios (SSP1, SSP2, SSP5), with a particular emphasis on SSP5 and SSP1
scenarios. The primary objective of this research is to assess the responses and mechanisms
governing habitat quality in BYD amidst policy disturbances and SSP2 scenarios. The
findings of this analysis aim to provide valuable insights for the high-quality, sustainable
development of both the Xiong’an New Area and the BYD basin, serving as a reference for
informed decision-making.

2. Data and Methods
2.1. Study Area

The BYD basin is situated in the central region of the North China Plain, namely
between longitudes 113°40 to 116°16’ E and latitudes 38°04’ to 40°04’ N. The BYD Lake
is part of the Daqing River system within the Haihe River basin. The administrative
division encompasses the BTH region (Figure 1). The cumulative surface area of the
basin is approximately 3.12 x 10* km?. The topography exhibits elevated features in
the northwest, lower features in the southeast, and rugged features in the west. The
primary land utilization categories consist of woodland and grassland. The eastern region
is characterized by flat terrain, with the primary land use consisting of agricultural land and
areas designated for construction. The mountainous areas and plains account for 57.2% and
42.8% of the total area, respectively [27]. The BYD basin features a temperate continental
monsoon climate, with an annual precipitation of 556 mm and an annual evaporation of
1637 mm. The average annual temperature in the region varies from 7.3 °C to 12.7 °C [28].

2.2. Data Sources

The relevant data are presented in Table 1. The primary data for the SD model include
the SSPs dataset, land use information, socio-economic indicators (such as population, GDP,
and fixed asset investment in different industries), and BYD water level data. The PLUS
model data consist of raster data representing land use and driving factors. These factors
include seven socio-economic variables (GDP, population density, distance from railway;
expressways, national highway, provincial highway, and water system) and five climatic
and environmental variables. The China land cover dataset (CLCD) in the BYD basin has
been classified into six categories based on the current conditions: farmland, woodland,
grassland, water, construction land, and unutilized land. The data mentioned above were
consolidated in ArcGIS, including the number of rows and columns and the projection
coordinate system, and resampling was employed to transform the data into raster format
with a resolution of 30 m.
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Figure 1. Location of BYD Basin.
Table 1. Details of research data.
Data Type Name Time Attribute Sources
Scenario SSPs 2010-2050. Cell point/0.5° Jiang Tong et al. [24]
Land Use CLCD 2000-2020. Raster/30 m Yang and Huang [29]
GDP 2019 Grid/1 km Resources and Environmental Science and
Socio-F . Population density 2020 Grid/1 km Data Center (https://www.resdc.cn)
oclo-Eeonomic - - China City Statistical Yearbook, Annual
Statistical Yearbook 2000-2020. Statistics . . -
Bulletin of Baoding City
Average annual 2000-2015. Grid/1 km
emperature R d Envi tal Sci d
Average annual ) esources and Environmental Science an
i _ precipitation 2000-2015. Grid/1 km Data Center (https://www.resdc.cn)
Enlgilfgfmental Soil type 1995 Grid/1 km
Water Level 2006-2019. Statistics Yearbook of Haihe River Basin
ydro. oglcla [éat? y
. . Geospatial data Cloud platform
Elevation / Grid/30 m (https:/ /www.gscloud.cn)
Slope / Raster/30 m Extracted from elevation data
Road network 2016 Vector National Center for Basic Geographic
Road, Water System Water System 2015 Vector Information (https://www.webmap.cn)

2.3. Models and Methods
2.3.1. LUCC Future Scenario Demand Prediction Based on SD Model

The SD model framework, in conjunction with the data of land use, was developed
using Vensim software(v7.3.5) and information from the provinces and localities included
in the study area, as well as the China Urban Statistical Yearbook and bulletins on the
economy, population, and water level (Figure 2).

The relationship equations between variables were established using the SPSS software
(R26.0.0.0), incorporating historical data from 2000 to 2050. In the historical simulation
phase covering the period from 2000 to 2020, the accuracy of the research results is evalu-
ated by comparing them with historical data. Upon conducting a thorough analysis of the
land use values for the year 2020, it is evident that the relative errors between the actual
and simulated data are found to be below 5%, as presented in Table 2. The concentrated
distribution of various land use types in the BYD basin, particularly with forested areas pre-
dominantly located in the western mountainous region, is responsible for this phenomenon.
Additionally, the human activity disturbance is low, contributing to higher model accuracy.
This paper focuses on the selection of three scenarios, namely SSP1, SSP2, and SSP5, for
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the purpose of predicting future demand. SSP1, also known as Shared Socioeconomic
Pathway 1, is distinguished by its moderate to high economic development and relatively
low population levels. SSP2 is characterized by a moderate economic level and population
size, while SSP5 is characterized by a high economic level and a relatively smaller middle
population size [30].
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demand L
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Figure 2. SD model framework.

Table 2. Verification of simulation accuracy of SD model.

Landscape Type Actual Area in 2020/km? Simulated Area in 2020/km? Relative Error/%
Farmland 12,675.08 12,428.31 —1.95
Woodland 8484.29 8456.03 —0.33
Grassland 5574.27 5786.59 3.81

Water 169.67 171.00 0.78
Construction land 4322.14 4378.33 1.30

The key factors to consider in future scenario analysis are the economic and population
parameters. The population parameters consist of the estimated population data for each
province under the universal two-child policy; the economic parameters are the total GDP
of each province (2010 price). The average rate of change over a ten-year period is computed
for the population parameters. The parameters for various scenarios have been established
and are presented in Table 3.

Table 3. Parameter setting for different scenarios.

. 2020-2030. 2030-2040. 2040-2050.
Variables
SSP1 SSP2 SSP5 SSP1 SSP2 SSP5 SSP1 SSP2 SSP5
GDP change rate/% 4.64 4.67 4.59 2.36 2.38 2.61 1.36 1.10 1.81
Population change rate/ %o 091 224 1.59 —0.49 0.53 0.31 —-2.25 —0.52 -141

2.3.2. Introduction of In'VEST Model

The Habitat Quality module of the INVEST model can calculate the degree of degrada-
tion of habitat quality based on the relationship between land use types and threat factors,
and then calculate habitat quality.

The equation used to determine the extent of habitat degradation is as follows:

R Y,
Dy = ; 2 (Z o >7’yirxy,3xsjr 1
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1 (o (Linear recession)
iny — Armax (2)
exp {_ (dzrf,?x) X dxy:| (Exponential recession)

where ij is the habitat degradation degree of grid x of land use typej (0 < D, j <1, the
greater the value, the higher the habitat degradation degree); r is the habitat threat factor; y
is the grid in threat factor 7; w; is the weights of different threat factors; r, is the threat factor
intensity; i,y is the influence of threat factor r in grid y on grid x; By is the anti-interference
level of habitat; S;, is the relative sensitivity of different habitats to different threat factors;
dyy is the distance between grid x and grid y; and d;ay is the maximum influence distance
of threat factor r.
Habitat quality is calculated by:

Dz,
=Hi(1-—L— 3
Qu ]( D;z(jJrkz) )

where Q,; is the habitat quality of grid x in land use type j (0 < Q,; < 1, the greater the
value, the better the habitat quality); H; is the habitat suitability of land use type j; z is
the normalized constant of 2.5; and k is the half-full sum constant and takes half of D’s
maximum,; value.

Based on the current conditions of the study area, the threat factors selected include
farmland, construction land, and roads (including railways, expressways, and national
and provincial roads). This decision is informed by the INVEST Model Guide [31] and
previous studies [6,32,33]. In order to ascertain the pertinent characteristics of the stress
factors (Table 4), it is necessary to assess both the habitat suitability and habitat sensitivity
(Table 5).

Table 4. Related parameters of threat factors.

Maximum Impact

Threat Factor Distance/km Weights Type of Decline
Farmland 4 0.7 Linear
Construction land 8 1 Index
Railways 5 0.6 Linear
Expressways 3 0.6 Linear
National highways 3 0.6 Linear
Provincial roads 2 0.5 Linear

Table 5. Sensitivity of habitat types to threat factors.

Susceptibility

Landscape Types Habitat Constructi Nati 1 Provincial

Suitabilit onstruction . ationa rovincia

y Farmland Land Railway  Expressways Highways Roads
Farmland 0 0 0 0 0 0 0
Woodland 1 0.5 0.7 0.75 0.7 0.7 0.6
Grassland 0.7 0.6 0.65 0.5 0.3 0.3 0.2
Water 1 0.75 0.7 0.75 0.7 0.7 0.6
Construction land 0 0 0 0 0 0 0
Unutilized land 0 0 0 0 0 0 0
3. Results

3.1. Spatial and Temporal Changes of Land Use from 2000 to 2020

The predominant land uses in the BYD Basin are farmland, woodland, grassland, and
construction land. These land uses exhibit distinct variations in their spatial distribution,
as depicted in Figure 3. The majority of farmland in the study area is concentrated in the
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southeastern plain region, comprising almost 40% of the total area. The mountainous area
in the northwest contained a mixture of grassland and woodland, primarily concentrated in
the middle and western regions, with a predominant presence in the northern portion. The
availability of land suitable for construction is primarily concentrated in plain regions, rural
areas, and urban centers. Between 2000 and 2020, there were major changes in the land use
area in the study area. Specifically, the area of farmland, grassland, and unutilized land
were decreased by 1255.93 km?, 1042.12 km?, and 8.04 km?, respectively. The Woodland
area experienced a substantial growth of 873.21 km?, whereas the construction land area
saw a big increase of 1389.66 km?. The water area has undergone substantial changes,
decreasing from 126.46 km? in 2000 to 106.10 km? in 2010, and subsequently increasing to
169.67 km? in 2020.

(¢) 2020

(b) 2010

2

0 40 km
[Ea=T—
zed land

Figure 3. Land use in BYD Basin in 2000, 2010, and 2020.

Figure 4 illustrates that land use transfer primarily encompasses the transfer of farm-
land and grassland, as well as the transfer of woodland and construction land. A large
portion of construction land is converted from farmland, including an area of 1287.13 km?.
The primary region for this conversion is the southeast plain. Woodland primarily orig-
inates from the conversion of farmland and grassland, with the predominant converted
area being distributed in a straight line from the northeast to the southwest. The expansion
of farmland area primarily results from the conversion of grassland, totaling 487.02 km?.
The transfer area is primarily situated in the southwestern region, where the mountainous
terrain meets the plain area.

3.2. Spatial and Temporal Characteristics of Habitat Quality from 2000 to 2020

The InVEST model was employed for the purpose of quantifying and assessing the
habitat quality within the designated study area, spanning the time range of 2000 to 2020.
To enhance the examination of temporal and spatial fluctuations in habitat quality, previous
research endeavors have been employed to categorize habitat quality into five distinct
grades, as depicted in Figure 5. These grades are as follows: In English, the translation
would be the following: 0~0.2 is labeled as low, 0.2~0.4 as relatively low, 0.4~0.6 as medium,
0.6~0.8 as relatively high, and 0.8~1 as high [34]. The findings of the study indicate that
the average habitat quality values for the years 2010, 2015, and 2020 were observed to be
0.3756, 0.3847, and 0.3836, respectively. In terms of habitat quality, the spatial distribution,
particularly in the categories of relatively high and high, primarily encompasses the north-
western mountainous region within the study area. The distribution of low habitat quality
was primarily concentrated within the southeastern plain region of the designated study
area. The distribution of habitats with relatively low and medium quality was primarily
observed in the transitional zone between mountainous and plain regions. From the per-
spective of time, the period spanning 2000-2020 witnessed the discovery of a substantial
proportion, exceeding 50%, of regions characterized by either a relatively low or low habitat
quality grade. This observation serves as an indication that the overall state of habitat
quality within the designated study area was predominantly low. The spatial distribution
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(a) 2000

of habitats experienced notable changes during the observed period. Specifically, the areas
characterized as high habitats expanded by approximately 827.67 km?, whereas the low
habitats increased by 118.88 km2. Conversely, the relatively low, medium, and high habitats
exhibited reductions in their respective areas, with decreases of approximately 97.12 km?,
159.61 km?, and 689.82 km?. These alterations in habitat distribution signify significant
shifts in the ecological landscape.
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Figure 4. Map of land use type transfer in BYD Basin from 2000 to 2020.

(c) 2020
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Figure 5. Spatial distribution of habitat quality in BYD Basin from 2000 to 2020.

The LEAS module was employed to assess the extent to which driving factors con-
tribute to changes in habitat quality (Figure 6). The findings indicated that LUCC played a
crucial role in contributing to the alteration of habitat quality.

3.3. LUCC Prediction under SSPs Scenario Based on SD-PLUS Coupling Model

The land use demand for SSP1, SSP2, and SSP5 scenarios was determined using the
SD model (Figure 7). The spatial-temporal changes in land use under the SSP scenarios
were then analyzed using the PLUS model (Figures 8 and 9). The Figure 8 results indicate
that between 2020 and 2050, the area of farmland and grassland in the study area exhibits a
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declining trend under the SSP1, SSP2, and SSP5 scenarios. Furthermore, the magnitude
of the decrease diminishes over time. Specifically, the farmland area exhibits a decrease
of 9.28%, 10.22%, and 11.15% under the respective scenarios. The grassland area had
a reduction of 8.95%, 10.72%, and 11.71% consecutively. With the passage of time, the
amplitude of the upward trend in the area of woodland and construction land diminished.
The most significant growth was seen in the area of construction land, which climbed by
20%, 23.12%, and 25.16%, respectively. The area of woodland, on the other hand, increased
by 5.19%, 5.59%, and 6.28%, respectively. The water area and unutilized land had an initial
increase, followed by a decline, and then another growth. The water area experienced a
change of less than 5 km?, while the unutilized land area saw a change of less than 0.8 km?.
However, these changes were not significant or easily noticeable. Figure 9 illustrates that
between 2020 and 2050, the land use dynamics in the study area primarily involve the
conversion of farmland to construction land and grassland to woodland across the three
scenarios of SSP1, SSP2, and SSP5. The land area of farmland to construction land is
1118.10 km?, 1233.58 km?, and 1350.16 km?2, while the area of grassland to woodland is
418.31 km?, 490.94 km?, and 551.32 km?, respectively.

I high [ relatively high medium [l relatively low [l low

Soil Types

Slope

Distance to Waterways
Distance to National highways
Distance to Provincial roads
Population density
Precipitation

GDP

Driving Factors

Distance to Motorways
Elevation
Temperature

Distance to railways

Contribution

Figure 6. Contribution of drivers to habitat quality.
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Figure 7. Prediction of land use demand under different SSPs scenarios.
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Figure 8. Land use demand in BYD Basin in 2030, 2040, and 2050 under different scenarios.
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Figure 9. Land use type transfer in BYD Basin in different scenarios from 2020 to 2050.

When comparing LUCC across three scenarios, the findings indicate that the decrease
in farmland area is the least significant under the SSP1 scenario, and the rate of growth
for building land is the slowest under the SSP1 scenario. The possible reason for this is
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that the population is at its minimum in comparison to the other two scenarios, and the
amount of arable land converted into construction land is relatively minimal. Furthermore,
the conversion of farmland to woodland has the lowest magnitude, with the smallest
expansion in the woodland area. Within the SSP2 scenario, the grassland area experienced
the smallest reduction, while the shift in construction land closely resembled that of the
SSP1 scenario. When comparing the SSP1 and SSP2 scenarios, the farmland and grassland
areas were shown to be the smallest in the SSP5 scenario, while the amount of other land
use was the biggest. This phenomenon could be attributed to the swift proliferation of
urban development, leading to significant encroachment into arable land and grassland
areas. Furthermore, according to the SSP5 scenario, the significant growth in the economy
resulted in a substantial rise in the amount of woodland and construction land, making
them the two types of land with the fastest expansion. The magnitude of the overall change
under SSP5 is greater than that under SSP1 and SSP2, as shown in Figures 7 and 8. This is
precisely consistent with the research findings of Fan’s land cover change simulation in the
BTH region, which was conducted using several scenarios of SSP-RCP [35].

3.4. Habitat Quality Prediction Based on SSPs Scenarios

The average habitat quality within a 30 m x 30 m grid was calculated based on the
spatial distribution map of habitat quality obtained from the InVEST model for the time
period spanning from 2000 to 2050 (as depicted in Figures 5 and 10). This calculation is
illustrated in Figure 11. The findings of the study indicate that there was a discernible
improvement in the habitat quality within the designated study area over the period
spanning from 2000 to 2010. Notably, this positive trend exhibited the highest rate of
increase observed throughout the entire duration of the study, amounting to a substantial
2.40%. During the period from 2010 to 2020, an observable pattern emerged wherein the
quality of the habitat experienced a discernible decline, characterized by a reduction of
0.27%. Within the timeframe spanning from 2020 to 2050, an analysis conducted under the
SSP1 scenario revealed a discernible pattern in the mean habitat quality. Specifically, this
pattern exhibited a sequence of declining, rising, and subsequently declining trends. In
the context of the SSP2 scenario, it is observed that the mean habitat quality exhibited a
pattern characterized by an initial increase, followed by a subsequent decrease, and finally
another increase. Conversely, under the SSP5 scenario, the mean habitat quality displayed a
consistent and uninterrupted upward trend. In comparison to the year 2020, it is observed
that the average habitat quality across the three scenarios in the year 2050 will exhibit an
overall increase. Notably, the scenario known as SSP5 will experience the most substantial
increase, with a rise of 0.60%. The observed data reveal that SSP1 exhibited the most modest
growth, with a marginal increment of merely 0.23%. The second scenario, referred to as
55P2, exhibits a concentration level of 0.42 percent.

The data regarding habitat quality in 2050 and 2020, under various scenarios, were
overlaid in ArcGIS. This allowed for the determination of the spatial distribution of changes
in the habitat quality area (Figure 12) and changes in the habitat quality grade (Figure 13).
The findings revealed that the optimal grade area constituted the smallest percentage
(26.91%) in the SSP1 scenario and the maximum percentage (27.10%) in the SSP5 scenario.
In the SSP1 scenario, the medium-grade area occupies the largest proportion at 14.88%,
while in the SSP5 scenario, it represents the least proportion at 14.70%. The extent of low- to
medium-quality habitat was consistent between the SSP1 and SSP2 scenarios. SSP1, SSP2,
and SSP5 exhibited a predominant transition of habitat quality from a reasonably high
grade to high grade, measuring 420.27 km?2, 492.65 km?, and 552.79 km?, respectively. The
reduction in the habitat quality grade was primarily observed in Lingqiu County, Fuping
County, Quyang County, Tang County, Shunping County, Mancheng District, and Fangshan
District. These locations exhibited a cross-hook distribution pattern. The areas exhibiting
superior habitat quality are primarily Fuping County and Laishui County, situated on both
sides of the connection, as well as BYD District.
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Figure 10. Habitat quality of BYD basin in 2030, 2040, and 2050 under different scenarios.
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Figure 11. Change of mean value of habitat quality in BYD Basin from 2000 to 2050.
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Figure 12. Habitat quality transfer in BYD Basin under different SSPs scenarios from 2020 to 2050.
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Figure 13. Changes of habitat quality grade in BYD Basin under different SSPs scenarios from 2020
to 2050.

4. Discussion
4.1. Land Use Change Driving Mechanisms

Based on the forecasting results, it is evident that LUCC under the three scenarios
is significantly influenced by regional policies and ecological investments. The overall
trends indicate an increase in areas designated for construction, woodland, and water
bodies, while the extent of cropland and grassland gradually diminishes. Since the year
1980, the implementation of national afforestation initiatives, namely the “Taihang Moun-
tain Greening”, “Sanbei Shelter Forest”, and “Mine Greening Project”, has resulted in a
heightened focus on ecological engineering construction. This intensified investment has
consequently facilitated substantial growth in the Woodland area within the designated
study area, particularly in areas directly visible from Baoding’s 332 and 335 provincial
roads. The decrease in grassland area is subject to the influence of economic development
and regional policies [36]. One aspect to consider is the extensive conversion of grasslands
into arable land, primarily driven by the cultivation of cash crops as a means to augment
financial gains. Conversely, it is noteworthy that governmental efforts have been fervently
directed towards the restoration of mountainous regions, with a particular emphasis on the
conversion of grasslands into woodland areas. Water bodies have experienced significant
impacts as a result of water replenishment efforts. Since the establishment of the Xiongan
New Area, the area of BYD has experienced a stabilization in its transformation, primarily
attributed to the implementation of a systematic mechanism for ecological water replenish-
ment. Economic, demographic, and urbanization factors exert a significant influence on
both farmland and construction land. The phenomenon of rapid urbanization, driven by
factors such as robust economic growth, population growth, and the migration of rural in-
habitants to urban areas, has resulted in the extensive expansion of urban construction land.
Consequently, a significant portion of agricultural land has been converted for the purposes
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of residential housing, transportation infrastructure, industrial and mining activities, as
well as the development of tourist destinations [37,38].

4.2. Causes Analysis of Habitat Quality

A robust correlation exists between habitat quality and the spatial arrangement of
land use. The regions of relatively low habitat quality include farmland and construction
land [39], characterized by a lower elevation, a higher urbanization degree, and greater
susceptibility to human activities. The regions with excellent habitat quality consist of
woodland and water areas, whereas the regions with somewhat high habitat quality are
primarily found in grasslands. The location with high and relatively high habitat quality
exhibits more elevation, a comparatively lower urbanization degree, and is less impacted by
human activity. The rapid growth of urban areas and the high concentration of people have
altered the land use types, which has led to the disruption of the structure and functioning of
ecosystems, primarily seen in the reduction of woodland, grassland, and farmland areas, as
well as an increase in fragmentation [40,41]. The significant improvement in habitat quality
during the period from 2000 to 2010 can be attributed to the rise in woodland area. During
this time frame, while the amount of land used for construction increased, the majority of
this growth occurred in the plains and had minimal influence on the overall quality of the
basin’s ecosystem. The primary factors contributing to the reduction in habitat quality from
2010 to 2020 are the expansion of construction land into farmland in mountainous regions
and the encroachment of farmland into grassland in mountainous areas. Throughout the
specified time frame, while the expansion of woodland positively impacted the quality
of habitat in certain regions, there was a noticeable increase in construction land and
farmland in the mountainous area. As a consequence, the overall habitat quality in the
basin decreased compared to the period from 2000 to 2010.

In contrast to the conclusions drawn by most scholars, the habitat quality in the
BYD basin has shown an increase under the scenarios of SSP1, SSP2, and SSP5, with
the highest improvement observed under SSP5. This variation may be attributed to the
topography and land changes in the BYD basin, which is generally divided by a southwest-
northeast diagonal line. The western region consists of mountainous areas, characterized
by predominant land use types such as woodland and grassland. In contrast, the eastern
region is a plain area where the primary land use types are cropland and construction land.
As the urbanization process advances, the increase in construction land primarily results
from the conversion of cropland in the eastern plains, thereby having minimal impact
on habitat quality. Simultaneously, with increased ecological water replenishment in the
BYD lake and augmented investments in the development of western woodland, the areas
covered by these two land use types have expanded rapidly. This overall trend contributes
to an enhancement in the habitat quality of the BYD basin.

4.3. Uncertainties and Implications

Future research work and uncertainties: The parameter setting of the InVEST model
primarily relies on the existing literature and expert assessment, thus exhibiting a certain
degree of subjectivity. Further investigation is required in order to adequately quantify
the sensitivity of LUCC types to various threat factors. Furthermore, it is imperative to
acknowledge that the future LUCC is intricately influenced by a multitude of factors,
including but not limited to economic development, national policies, and the climate
environment. Furthermore, urban expansion is a highly intricate process characterized by
significant uncertainty and complexity. The relationship among the population, economy,
and urban land area is not simply a straightforward linear correlation [42]. However, it is
crucial to acknowledge that the simulation outcomes of every scenario retain significant
reference value in assessing the impact of LUCC on habitat quality. The findings of this
study serve as a scientific basis for informing the development of pertinent regional policies.
The maintenance of regional ecological security holds immense significance.
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5. Conclusions

This paper presents a comprehensive framework system for forecasting land use
and habitat quality, drawing upon the SD, PLUS, and InVEST models. The framework is
designed to analyze and discuss the evolution trend of spatio-temporal patterns from 2000
to 2050 under various SSP scenarios. By utilizing these models, the study aims to provide
valuable insights into the future dynamics of land use and habitat quality. The primary
findings are outlined below:

From 2000 to 2020 and from 2020 to 2050, the Baiyangdian watershed experienced a
decreasing trend in the areas of cultivated land, grassland, and unused land, while forest
land and construction land exhibited an increasing trend. The primary transitions in land
use types were from cultivated land to construction land and from grassland to forest land.
Habitat quality showed a high consistency with the spatial distribution of land use. Good
and excellent habitat quality levels were mainly concentrated in the northwest mountainous
region dominated by grassland and forest land. Poor quality was primarily distributed in
the southeast plain area dominated by cultivated land and construction land, while fair and
poor levels were interspersed in the transitional zone between mountains and plains. The
overall magnitude of changes in land use types under the SSP5 scenario was higher than
that under the SSP1 and SSP2 scenarios. Habitat quality level transitions were mainly from
good to excellent. In comparison to the year 2020, habitat quality increased in 2050 under
all three scenarios, with the highest increase observed in SSP5 and the smallest increase
in SSP1.
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