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Abstract: The global problem of microplastics in the environment is “inspiring” scientists to find
environmentally friendly and economically viable methods to remove these pollutants from the
environment. Advanced oxidation processes are among the most promising methods. In this work,
the potential of Fenton, photo-Fenton, and Fenton-like processes for the degradation of microplastics
from low-density polyethylene (LDPE), polypropylene (PP), and poly(vinyl chloride) (PVC) in water
suspensions was investigated. The influence of three parameters on the efficiency of the degradation
process was tested: the pH of the medium (3–7), the mass of added iron (10–50 times less than
the mass of microplastics), and the mass of added H2O2 (5–25 times more than the mass of added
iron). The effectiveness of the treatment was monitored by FTIR-ATR spectroscopy. After 60-min
treatments, the PP microparticles were found to be insensitive. In the Fenton treatment of PVC and
the photo-Fenton treatment of LDPE and PVC, changes in the FTIR spectra related to the degradation
of the microplastics were observed. In these three cases, the treatment parameters were optimized. It
was found that a low pH (3) and a high iron mass (optimal values were 1/12 and 1/10 of the mass of
the microplastics for LDPE and PVC, respectively) favored all three. The degradation of LDPE by the
photo-Fenton treatment was favored by high H2O2 concentrations (25 times higher than the mass of
iron), while these concentrations were significantly lower for PVC (11 and 15 times for the Fenton
and photo-Fenton treatment, respectively), suggesting that scavenging activity occurs.

Keywords: microplastics; low-density polyethylene; polypropylene; poly(vinyl chloride); advanced
oxidation; Fenton-based processes

1. Introduction

The global development of human society has undoubtedly increased the quality
of human life, which is mainly reflected in the prolongation of human life [1,2] and the
increase in the world population [3]. On the other hand, this development has led to
excessive environmental pollution [4,5], which is a threat to all living organisms, including
human beings. One anthropogenic pollutant that has recently become the focus of scientific
interest is plastic, especially plastic particles smaller than 5 mm, known as microplastic
(MP) particles or simply microplastics (MPs) [6,7]. MPs have so far been detected in various
parts of the environment, including in the air [8], soil [9], and water [10]. Because of the
high bioavailability of MPs in aquatic medium [11], contamination of this environment is
of particular interest to scientists. MP particles can be easily ingested by aquatic organisms
and, thus, enter the food chain. Particles bellow 150 µm can be absorbed by biota tissue,
organs, and even cells [12]. This leads to a bioaccumulation effect. While it is suspected
that there should also be a biomagnification effect, the studies conducted to date have not
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been able to confirm this [11,13,14]. The adverse potential of MPs has been demonstrated
in numerous studies [12,15–17], so it is not surprising that MPs are considered an emerging
contaminant [18].

In recent decades, scientists have conducted intensive research into methods that effec-
tively remove MPs from the environment. Of the approaches tested, biological treatment
is considered the most environmentally friendly. However, due to the extreme stability
of plastics and the hydrophobicity of their surface, it is difficult to find organisms that
degrade plastics quickly and efficiently [19]. Another approach is to use membrane pro-
cesses. However, it has been shown that the removal of MPs using membrane technology is
still incomplete [20], and there is also a problem with membrane maintenance and sludge
disposal. Recently, the applicability of advanced oxidation processes (AOPs) has been
increasingly investigated as an additional option for treating water contaminated with MPs.
The basis of AOP treatments is the formation of extremely reactive radicals (strong oxidiz-
ing agents), which ensure rapid reaction rates in the degradation of recalcitrant organic
pollutants. This approach has a low selectivity and can, therefore, be used for the simultane-
ous degradation of different pollutants [21]. AOP treatment can lead to partial degradation
or, ideally, complete mineralization of the pollutants. Partial degradation usually results
in the formation of less complex chemical forms that are more susceptible to other treat-
ment approaches, especially biodegradation, which is the most environmentally friendly
approach. For this reason, AOPs are often used in combination with biodegradation as a
pretreatment step [22,23].

The AOP studies available in the literature generally do not report complete min-
eralization of the MPs and focus the discussion on the degree of polymer degradation
achieved. Ortiz et al. [24] investigated the effect of Fenton treatment on various MPs
samples (polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), polyethy-
lene terephthalate (PET), and expanded polystyrene (EPS)) in a size range of 150–250 µm
obtained from commercially available plastic products. The initial mass of the MPs was
100 mg, the iron concentration was 10 mg/L, and the H2O2 concentration was 1000 mg/L.
The treatment lasted 7.5 h. During the treatment, additional amounts of iron and H2O2
were added to the system at regular intervals to recover the consumed reagents. After the
treatment under environmental conditions (pH and temperature) showed no changes in
the samples, they decided to perform the treatment under more extreme conditions: an
acidic medium with a pH of 3 and elevated temperature (80 ◦C). This treatment resulted in
a mass loss of about 8 to 12%. Lang et al. [25] investigated the effect of Fenton treatment
(7 days, room temperature, pH 4) on the adsorption of heavy metals on the surface of
PS MPs and reported that the applied treatment contributes to the aging of MPs. Piazza
et al. [26] studied the environmental aspects of a photo-Fenton treatment of PP and PVC
MPs (the samples had a size of 155 and 73 µm, respectively). The treatment involved
visible light irradiation and the application of ZnO nanorods coated with a SnOx layer
and decorated with Fe0 nanoparticles. The authors monitored the changes in the FTIR
spectra to determine the percentage of degradation of the MPs. After 7 days of treatment, a
degradation efficiency of 94–96% was observed. Miao et al. [27] reported a 56% mass loss of
PVC microparticles with a size of 100–200 µm and a 75% dechlorination after 6 h treatment
with an electro-Fenton-like system based on a TiO2/graphite cathode. They also observed
a significant positive contribution of temperature increase to the degree of dechlorination.
In addition, the literature also reports on the investigation of the applicability of numerous
other AOP treatments [28–35].

In this study, the potentials of three Fenton-based AOPs, namely Fenton, photo-Fenton,
and Fenton-like processes were evaluated for the degradation of MP particles of low-density
PE (LDPE), PP, and PVC. The influence of the pH of the medium, the quantity of added
oxidizing agents, and the MPs concentration on the degradation process was investigated,
and the optimum treatment conditions were determined.
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2. Fenton-Based Processes

AOPs based on the Fenton reaction are widely used for the oxidation of organic macro-
and micropollutants [36]. Some of the main advantages of Fenton-based processes are the
relatively simple process equipment, relatively inexpensive and environmentally friendly
reagents, and a relatively simple treatment procedure. In addition, these processes are
conducted at room temperature and atmospheric pressure, which provides an additional
economic advantage. Fenton-based processes are known to be highly resistant to ma-
trix interferences and typically result in high mineralization rates for recalcitrant organic
pollutants [37–39].

The basis of Fenton-based processes is the generation of the highly reactive hydroxyl
radical (•OH) with a standard redox potential of E0(•OH/H2O) = 2.730 V [40]. The
oxidation activity of the hydroxyl radical is related to the pH of the solution (Equation (1)),
so that the redox potential of the system increases with decreasing pH.

•OH + H+ + e− → H2O (1)

In the classical Fenton process (Figure 1, case A), the Fenton reagent is responsible
for the formation of hydroxyl radicals. The Fenton reagent is a mixture of aqueous so-
lutions of an iron(II) salt and H2O2, in which hydroxyl radicals are formed according to
Equation (2) [41].

Fe2+ + H2O2 + H+ → Fe3+ + •OH + H2O (2)
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The formation of hydroxyl radicals can be negatively affected by an excess of H2O2
or Fe2+ ions in the bulk (Equations (3) and (4)) [37,39], causing an undesirable scavenging
effects, like the one described by Equation (5) [42].

•OH + H2O2 → HO2•+ H2O (3)

•OH + Fe2+ + H+ → Fe3+ + H2O (4)

HO2•+ •OH → H2O2 + O2 (5)
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An alkaline medium is not suitable for carrying out the Fenton process because it
reduces not only the oxidizing power of the hydroxyl radical but also the activity of the
Fenton reagent. More specifically, at a high pH, the concentration of Fe2+ ions in the solution
is negatively affected by the formation of iron(II) hydroxide precipitate. In addition, high
pH values favor the decomposition of H2O2. However, very low pH values are also not
beneficial for the activity of the Fenton reagent. This is because at very low pH values, the
active H2O2 concentration is affected by the formation of stable H3O2

+ ions [43]. Therefore,
in order to avoid or minimize undesirable scavenging effects and to increase the efficiency
of the treatment, the process conditions must be optimized. Due to the specificity of the
system to be treated, optimization should be performed for each system.

The inclusion of ultraviolet or visible light irradiation in the classical Fenton process
leads to a photo-Fenton process (Figure 1, case B) in which hydroxyl radicals are increas-
ingly produced due to a two-step reaction. First, the iron(III) ions from Equation (2) are
hydrolyzed, leading to the formation of the Fe(OH)2+ complex (Equation (6)), which subse-
quently undergoes photo-induced reduction and generates hydroxyl radical
(Equation (7)) [44,45].

Fe3+ + H2O → Fe(OH)2+ + H+ (6)

Fe(OH)2+ + hν → Fe2+ + •OH (7)

In addition, UV irradiation can cause photolysis of H2O2, which also increases the
production of hydroxyl radicals (Equation (8)) [43].

H2O2 + hν → 2(•OH) (8)

Despite the advantage of the increased production of hydroxyl radicals and the corre-
sponding expected higher efficiency in the degradation of organic pollutants, the photo-
Fenton process has some disadvantages. First and foremost, it requires irradiation during
treatment, which results in high energy consumption. In addition, high concentrations of
organic pollutants in a treated system can significantly reduce the absorption of irradiation
by the Fe(OH)2+ complex, resulting in an increase in irradiation time. All this makes
photo-Fenton treatment much more expensive than classical Fenton treatment.

In addition to the photo-Fenton process, there are numerous other modifications of
the classical Fenton process, commonly referred to as Fenton-like processes. Fenton-like
processes are divided into heterogeneous and homogeneous processes. In heterogeneous
Fenton-like processes, the Fe2+ ion in the Fenton reagent is replaced by a solid catalyst, while
homogeneous Fenton-like processes refer to processes in which a different metal ion is used
in place of the iron ion in combination with H2O2 [46]. Among heterogeneous Fenton-like
systems, systems triggered by zero-valent iron, especially in the form of nanoparticles, are
very popular, mainly because of their large specific surface area and high reactivity [43,47].
The process starts with the reaction between zero-valent iron and H2O2, leading to the
formation of Fe2+ ions (Equation (9)), which are crucial for the formation of the hydroxyl
radical (Equation (2)).

Fe0 + H2O2 + 2H+ → Fe2+ + 2H2O (9)

The Fe3+ ions formed in the reaction described by Equation (2) additionally contribute
to the formation of the Fe2+ ions (Equation (10)) [43].

Fe0 + 2Fe3+ → 3Fe2+ (10)

It should be noted, however, that there is concern in the scientific community about
the potential adverse effects that the presence of nanoparticles of zero-valent iron may
cause in the environment [48,49].
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3. Materials and Methods
3.1. Reagents and Solutions

The plastic material was purchased in the form of granules as OKITEN® 245 A (Dioki
d.d., Zagreb, Croatia), GF10 (Xiamen Keyuan Plastic Co., Ltd., Xiamen, China), and GS-
28 (Drvoplast d.d., Buzet, Croatia) for LDPE, PP, and PVC, respectively. Ferrous sulfate
heptahydrate (FeSO4·7H2O; ≥99%; Sigma-Aldrich, Burlington, MA, USA), elemental iron
(≥95%; Carlo Erba Reagents, Milan, Italy), 30% H2O2 solution (1.11 g cm−3; Gram-Mol
d.o.o., Zagreb, Croatia), 0.1 M NaOH solution (Lach-Ner s.r.o., Naratovice, Czech Republic),
and H2SO4 solution (Kemika, Zagreb, Croatia) at concentrations of 0.1 and 5 M were used
for the AOP treatments. Ultrapure water (18.2 MΩ cm; Milli-Q, Millipore, Burlington, MA,
USA) was used for all experiments.

3.2. Preparation and Characterisation of Microplastics

The purchased plastic granules were crushed in a cryo-mill (Retsch, Haan, Germany)
with liquid nitrogen at an operating temperature of −196 ◦C. After grinding, the MPs were
dried at room temperature (25.0 ± 0.2 ◦C) for 48 h before sieving. The ground plastic was
sieved on stainless steel sieves (AS 200 jet, Retsch, Hann, Germany) to obtain MPs in the
size range of 25–100 µm, which were then used for the experiments.

FTIR-ATR analysis (FTIR-8400S, Shimadzu, Kyoto, Japan, and MIRacle™ Single Reflec-
tion ATR, PIKE Technologies, Madison, WI, USA) was used to characterize the untreated
MP particles and the MP particles after AOP treatments.

To gain additional insight into the MPs’ degradation, the untreated MP particles and
the MP particles treated under optimal conditions were analyzed by scanning electron
microscopy (SEM) using a Tescan Vega Easyprobe 3 microscope (Brno, Czech Republic).
Imaging was performed in secondary electron mode (SE) and backscattered electron mode
(BSE) at an accelerating voltage of 10 kV and a working distance of about 8 mm. Prior to
imaging, Pd/Au was sputtered onto the samples using a Quorum Technologies SC7620
sputter coater (Lewes, UK) at 18 mA for 60 s.

3.3. AOP Treatments

The experimental design for the AOP treatments (Table 1) followed the full factorial
methodology with three variables tested at three levels, resulting in a total of 27 trials for
each AOP treatment applied. The variables tested were pH, mass ratio of MPs to Fe, and
mass ratio of H2O2 to Fe. Although it would be appropriate to express the amounts of
iron and peroxide in the reaction system as a molar concentration (due to the fact that
the potential of the system depends on the molar concentration of the substance), the
AOP experiments were performed in such a way that we could only estimate the molar
concentrations of these substances. Although it is known that the volume of the reaction
mixture does not deviate too much from 80 mL, i.e., from the amount of added water,
we cannot know the true volume of the reaction mixture because we also add a certain
quantity of MPs, Fe, and H2O2 to the system and adjust the pH of the reaction mixtures
at the beginning of the experiment. Therefore, we decided to express the amounts of the
mentioned substances in the reaction system in terms of their mass instead of their molar
concentration. The range of tested values (i.e., levels) was selected based on the information
available in the literature [50,51]. The required masses of iron species and H2O2 volumes
were calculated based on the mass of MPs, which was 55 mg for all experiments.

The experimental procedure was similar for all three AOP treatments. The predefined
mass of 55 mg of an MPs sample was added to the reactor together with 80 mL of water.
The pH was adjusted to the desired value with 0.1 M H2SO4, 5 M H2SO4, or 0.1 M NaOH,
after which a certain amount of iron in a suitable form was also added to the reactor. In the
Fenton and photo-Fenton treatments, ferrous ion (Fe2+) was used, which was added in the
form of FeSO4·7H2O. For the Fenton-like process, elemental iron (Fe0) was used. In the final
step, an appropriate amount of 30% H2O2 was added to initiate the treatment. In the photo-
Fenton treatment only, the reaction mixture was exposed to UV-C irradiation of 254 nm
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(mercury lamp Pen-Ray® 11SC-1, UVP, Upland, CA, USA). All AOP experiments lasted
60 min, with continuous mixing at 150 rpm using a magnetic stirrer (high speed magnetic
stirrer MS-3000, Biosan SIA, Riga, Latvia). After each experiment, the MPs were separated
from the aqueous phase by vacuum membrane filtration through a sterile 0.45 µm cellulose
nitrate membrane filter (ReliaDiscTM membrane filter, Ahlstrom, Helsinki, Finland). The
MPs were then washed with water and air-dried for 24 h prior to FTIR-ATR analysis.

Table 1. Experimental design for Fenton, photo-Fenton, and Fenton-like processes.

No. pH m(MPs):m(Fe) m(H2O2):m(Fe) No. pH m(MPs):m(Fe) m(H2O2):m(Fe) No. pH m(MPs):m(Fe) m(H2O2):m(Fe)

1 3.0 10:1 5:1 10 4.5 10:1 5:1 19 6.0 10:1 5:1
2 3.0 10:1 15:1 11 4.5 10:1 15:1 20 6.0 10:1 15:1
3 3.0 10:1 25:1 12 4.5 10:1 25:1 21 6.0 10:1 25:1
4 3.0 25:1 5:1 13 4.5 25:1 5:1 22 6.0 25:1 5:1
5 3.0 25:1 15:1 14 4.5 25:1 15:1 23 6.0 25:1 15:1
6 3.0 25:1 25:1 15 4.5 25:1 25:1 24 6.0 25:1 25:1
7 3.0 50:1 5:1 16 4.5 50:1 5:1 25 6.0 50:1 5:1
8 3.0 50:1 15:1 17 4.5 50:1 15:1 26 6.0 50:1 15:1
9 3.0 50:1 25:1 18 4.5 50:1 25:1 27 6.0 50:1 25:1

3.4. Determination of Optimal Conditions

The optimal conditions for the degradation of LDPE, PP, and PVC MPs by the three
applied Fenton-based AOPs were determined using the response surface modeling (RSM)
approach. The RSM approach involves a series of mathematical techniques aimed at
building an empirical model that describes the relationship between the input variables
(i.e., the independent variables) and one or more dependent variables (i.e., the response) [52].
Based on our experience in the field of optimization of pollutant degradation in the aquatic
environment [53,54], we have assumed that a quadratic model represented by Equation (11)
should be sufficient to describe the system with three independent variables and one
dependent variable.

y = a0 + a1x1 + a2x2 + a3x3 + a4x1x2 + a5x1x3 + a6x2x3 + a7x1
2 + a8x2

2 + a9x3
2 (11)

The model coefficients are denoted by a, while x1 to x3 represent the values of the three
process parameters tested: pH, mass ratio of MPs to iron, and mass ratio of H2O2 to iron. In
addition to the linear (x1, x2, x3) and quadratic (x1

2, x2
2, x3

2) contributions, the model also
includes the interaction terms (x1x2, x1x3, x2x3) to cover the possible combined effects of the
parameters tested, which, as we knew from experience [53–57], are not uncommon in such
systems. The area of a broad FTIR band that occurred in the spectral range 3000–3600 cm−1

was used as the response, i.e., as the dependent variable y.
Statistical analysis of developed model was performed using Design-Expert 10.0

software (StatEase, Minneapolis, MN, USA).

4. Results and Discussion

First, the untreated MP samples were characterized by FTIR-ATR spectroscopy. The
recorded spectra (Figure 2) clearly show the absorption bands characteristic of the polymers
LDPE, PP, and PVC. The spectrum of untreated PVC (Figure 2C) contains an unexpected
peak in the spectral range of 1715–1750 cm−1, which corresponds to the stretching of the
carbonyl group [58]. This peak obviously represents an additive present in the PVC sample
tested, as pure PVC has no carbonyl groups in its structure.

Each treated sample was also analyzed by FTIR-ATR to detect changes in the intensity
of the bands related to the vibrations of the groups formed during the degradation of the
MPs. The formation of carbonyl species is one of the most important indicators of the
oxidative degradation of MPs, and the quantification of the formed carbonyl groups by
infrared spectroscopy has been the method of choice for many years due to the strong
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absorption in the spectral range of 1715–1750 cm−1, which is related to the stretching of the
carbonyl group [58–61]. However, since the untreated PVC samples showed a peak in this
region (Figure 2C), we decided not to use this band as an indicator of MPs’ degradation, but
rather a broad band that appeared in the spectral range 3000–3600 cm−1, with a maximum
at about 3370 cm−1. The appearance of the band in this region indicates side reactions,
such as the substitution of chloride by hydroxide [33,62] and the formation of the terminal
C≡C–H group [33]. According to Liu [58], the band of OH stretching is expected in the
range of 3200–3600 cm−1, but the width and position of the band strongly depend on the
amount of hydrogen bonding [63]. We have found several reports on the occurrence of
this band during the degradation of plastics [33,62,64,65]. The stretching of the terminal
C≡C–H group is expected in the range of 3250–3350 cm−1 [58] and may, therefore, be
hidden in a broad band of OH stretching.
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After analyzing the obtained FTIR spectra, it was found that some of the applied treat-
ments, especially the Fenton-like treatment, did not result in significant spectral changes
that can be associated with the degradation of MPs (Table 2). This is not so surprising, since
the MPs studied are composed of polymers that do not have hydrolysable groups in their
structure and are, therefore, less susceptible to degradation [66]. PP samples remained
unaffected by all three treatments applied. For LDPE, only the photo-Fenton treatment
led to observable changes in the intensity of the monitored band, which is apparently
due to the introduction of UV-C irradiation in the treatment. Apart from the fact that
the introduction of UV-C irradiation increases the production of radicals compared to the
conventional Fenton process, UV-C irradiation alone may also have a significant impact
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on the degradation of MPs [67]. Of the three MPs tested, PVC was found to be the most
susceptible to Fenton-based treatments, with changes in the intensity of the monitored
band observed for the Fenton and photo-Fenton treatments. The reason for this is most
likely the chlorine atom contained in the PVC structure, which facilitates the oxidation and
decomposition of PVC [66]. According to the available information, the first step of PVC
decomposition should be dechlorination or dehydrochlorination, during which various
chlorinated compounds can be formed [27,68]. Furthermore, dehydrochlorination leads to
the formation of labile internal allyl chloride structures [69], which dissociate into chlorine
radicals, Cl•, and polyene radicals, R• (Equation (12)).

R − Cl → R•+ Cl• (12)

Polyene radicals react with oxygen from the environment and form peroxy radicals
(ROO•), which can react with –CH2– or –CH–Cl groups and, thus, contribute to the further
degradation of PVC [68].

Table 2. Comparison of the experiments performed with regard to the changes observed in the
FTIR bands.

Polymer
Treatment

Fenton Photo-Fenton Fenton-like

LDPE NO YES NO
PP NO NO NO

PVC YES YES NO

Considering what is discussed above, we report here only the RSM models developed
for the treatment cases that resulted in observable changes in the intensity of the monitored
band. Statistical analysis of these models (Tables 3–5) confirmed their significance for
describing the influence of the three variables tested. The adequacy of the models is
further confirmed by the fact that 87.06 to 93.40% of the variance in the response (i.e., the
independent variable), according to the R2 values, can be explained by the variability of
the values of the tested (i.e., dependent) variables. The negative values of the coefficient a1
for all three models clearly indicate a positive influence of a more acidic environment on
the efficiency of the applied treatments. The negative values of coefficient a2 obtained for
the treatments of PVC samples indicate the positive influence of a higher concentration of
Fe2+ ions in the system, while the negative values of coefficient a3 indicate an unfavorable
influence of increased H2O2 concentrations, suggesting the potential scavenging effect of
H2O2 during PVC treatment. No such effects were observed in the case of LDPE treatment.

Figures 3–5 contain graphical representations of the response surfaces corresponding
to the models whose parameters are listed in Tables 3–5, while the optimal conditions for
each treatment, estimated from the maxima of the response surfaces, are listed in Table 6.
Visualizing the response surface of a system that has four dimensions (three independent
and one dependent variable) is a challenge. Therefore, for the sake of simplicity, we decided
to visualize the response surfaces at fixed values of one of the independent variables,
namely pH. In this way, we enabled a transparent analysis of the behavior of the response
by plotting three surfaces. In the first place, the surface trends can be seen based on the
variation in the parameters m(MPs):m(Fe) and m(H2O2):m(Fe). Secondly, by comparing
three response surfaces, it is possible to see what happens to the response due to the
variation in pH. The area, A, of a broad FTIR band in the spectral range 3000–3600 cm−1

represents the response. The red areas on the surfaces show the most favorable conditions
for performing a Fenton or photo-Fenton treatment, while the blue areas represent the
least favorable conditions. The response surfaces confirm some of our conclusions derived
from the statistical analysis of the RSM models. For example, the most intense red areas
are obtained at a pH of 3. Furthermore, the response surfaces show that a high amount of
added iron (small ratio m(MPs):m(Fe2+)) is beneficial not only for PVC treatment but also for
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LDPE treatment. This is in line with some other reports claiming that a high concentration
of Fe2+ ions is required for the degradation of organic pollutants by the homogeneous
Fenton process [26,70]. Finally, in the case of LDPE treated with the photo-Fenton process
(Figure 3), a positive effect of increased H2O2 concentrations is observed, with the optimal
amount of added H2O2 being 25 times higher than the amount of added Fe (Table 6). In the
case of PVC treatment, the red areas cover low to medium H2O2 concentrations, regardless
of whether we analyze the Fenton or the photo-Fenton response surface. The optimal
amounts of added H2O2 are estimated to be 11 and 15 times the amount of added Fe for
the Fenton and photo-Fenton treatments, respectively.

Table 3. Statistical analysis of the fitted response surface model (Equation (11)) for the case of LDPE
MPs treated with the photo-Fenton process. The analysis was performed with a significance of
p < 0.050.

Model Coefficients Influential Variables 1

R2 R2
adj F p Value p x1 x2 x3

0.8706 0.8021 12.71 <0.0001

a0 = 4.51 -

a1 = −2.63 <0.0001 YES

a2 = 0.55 0.1534

a3 = 1.14 0.0061 YES

a4 = 2.52 <0.0001 YES YES

a5 = −0.30 0.5109

a6 = 0.13 0.7692

a7 = 2.51 0.0010 YES

a8 = −1.02 0.1247

a9 = −0.28 0.6640

Note: 1 x1 = pH; x2 = m(MPs):m(Fe); x3 = m(H2O2):m(Fe).

Table 4. Statistical analysis of the fitted response surface model (Equation (11)) for the case of PVC
MPs treated with the Fenton process. The analysis was performed with a significance of p < 0.050.

Model Coefficients Influential Variables 1

R2 R2
adj F p Value p x1 x2 x3

0.8994 0.8462 16.89 <0.0001

a0 = 18.42 -

a1 = −4.64 <0.0001 YES

a2 = −7.12 <0.0001 YES

a3 = −1.76 0.0289 YES

a4 = 0.44 0.6347

a5 = 0.64 0.4879

a6 = 0.86 0.3531

a7 = −1.70 0.2009

a8 = 0.35 0.7878

a9 = −3.90 0.0071 YES

Note: 1 x1 = pH; x2 = m(MPs):m(Fe); x3 = m(H2O2):m(Fe).
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Table 5. Statistical analysis of the fitted response surface model (Equation (11)) for the case of PVC
MPs treated with the photo-Fenton process. The analysis was performed with a significance of
p < 0.050.

Model Coefficients Influential Variables 1

R2 R2
adj F p Value p x1 x2 x3

0.9340 0.8990 26.72 <0.0001

a0 = 22.29 -

a1 = −5.35 <0.0001 YES

a2 = −7.00 <0.0001 YES

a3 = −0.76 0.2249

a4 = −0.92 0.2265

a5 = −0.43 0.5969

a6 = 1.06 0.1690

a7 = −1.80 0.1022

a8 = −0.11 0.9185

a9 = −4.25 0.0008 YES

Note: 1 x1 = pH; x2 = m(MPs):m(Fe); x3 = m(H2O2):m(Fe).
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Table 6. Optimal conditions for the treatment of MPs samples.

Polymer Treatment pH m(MPs):m(Fe) m(H2O2):m(Fe)

LDPE Photo-Fenton 3 12:1 25:1

PVC
Fenton 3 10:1 11:1

Photo-Fenton 3 10:1 15:1

For final confirmation of the results obtained, all three treatments of MPs (LDPE with
Fenton and PVC with Fenton and photo-Fenton treatments) were performed under optimal
conditions. The FTIR spectra and SEM images of the MPs samples after the treatments
were recorded and compared with those of the untreated samples (Figures 6–8).
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Figure 6. Comparison of FTIR spectra obtained before and after treatment under optimal conditions.
The cases show (A) LDPE MPs and (B) PVC MPs.

When analyzing the FTIR spectra obtained, in addition to a clear increase in the
intensity of the band in the spectral range of 3000–3600 cm−1 as a result of the treatments,
a decrease in the intensity of the characteristic bands of LDPE and PVC polymers can
also be seen. Also, a new peak appeared at 1620 cm−1 for all three treated samples. The
peak in this region is mainly related to C=C stretching, which also indicates polymer
degradation [27,71]. In the case of LDPE, the appearance of C=C structures indicates
dehydrogenation as one of the degradation reactions; we found that dehydrogenation
during PE degradation has also been confirmed in some other treatments [72,73]. The
formation of carbonyl groups was confirmed by a new peak at 1715 cm−1 (Figure 6A).



Water 2024, 16, 673 12 of 17

Water 2024, 16, x FOR PEER REVIEW 12 of 18 
 

 

as one of the degradation reactions; we found that dehydrogenation during PE degrada-
tion has also been confirmed in some other treatments [72,73]. The formation of carbonyl 
groups was confirmed by a new peak at 1715 cm−1 (Figure 6A). 

The decrease in the intensity of the bands of C–Cl stretching (834 cm−1 [74,75]), CH 
wagging (1427 cm−1 [75]), and CH2 wagging (964 cm−1 [75]) in the case of treated PVC sup-
ports our assumption that dehydrogenation or dehydrochlorination are the initial steps 
of PVC degradation. Moreover, this corresponds to the formation of the C=C peak at 1620 
cm−1, since dehydrochlorination leads to the formation of polyene structures [68,76]. The 
comparison of the intensities of the monitored band for the PVC treatments shows the 
higher efficiency of the photo-Fenton treatment compared to the classical Fenton treat-
ment; the apparent reason for this is the introduction of UV-C radiation into the treatment. 
PVC is considered to be more sensitive to photo-treatment compared to the other two 
polymers investigated, especially in the wavelength range of 253–310 nm [68], where the 
irradiation used in this study is located. 

In the SEM analysis, we imaged the MPs samples in SE and BSE mode (Figures 7 and 
8). Most of the morphologically and texturally relevant changes on the surface of the pol-
ymer samples could be evidenced with the SE detector, while compositionally (chemi-
cally) relevant changes could be observed with the BSE detector. Drastic changes in the 
chemical composition were unlikely, but BSE images could indicate relevant areas of deg-
radation. Textural changes were expected. 

 
Figure 7. SEM micrographs of LDPE samples—untreated sample scanned in (a) SE and (b) BSE 
mode, and photo-Fenton-treated sample scanned in (c) SE and (d) BSE mode. 

As can be seen in Figure 7a, the untreated LDPE microparticles have a low surface 
roughness, and no agglomerates or aggregates are present. Figure 7b shows that the phase 
composition was highly homogeneous. The photo-Fenton treatment of the LDPE sample 
led to an increase in surface roughness with additional morphological defects (Figure 7c). 
The BSE image (Figure 7d) potentially depicts a gradient, indicating a change in compo-
sition compared to the reference. 

Figure 7. SEM micrographs of LDPE samples—untreated sample scanned in (a) SE and (b) BSE mode,
and photo-Fenton-treated sample scanned in (c) SE and (d) BSE mode.

The decrease in the intensity of the bands of C–Cl stretching (834 cm−1 [74,75]), CH
wagging (1427 cm−1 [75]), and CH2 wagging (964 cm−1 [75]) in the case of treated PVC
supports our assumption that dehydrogenation or dehydrochlorination are the initial steps
of PVC degradation. Moreover, this corresponds to the formation of the C=C peak at
1620 cm−1, since dehydrochlorination leads to the formation of polyene structures [68,76].
The comparison of the intensities of the monitored band for the PVC treatments shows the
higher efficiency of the photo-Fenton treatment compared to the classical Fenton treatment;
the apparent reason for this is the introduction of UV-C radiation into the treatment. PVC
is considered to be more sensitive to photo-treatment compared to the other two polymers
investigated, especially in the wavelength range of 253–310 nm [68], where the irradiation
used in this study is located.

In the SEM analysis, we imaged the MPs samples in SE and BSE mode (Figures 7 and 8).
Most of the morphologically and texturally relevant changes on the surface of the polymer
samples could be evidenced with the SE detector, while compositionally (chemically) rel-
evant changes could be observed with the BSE detector. Drastic changes in the chemical
composition were unlikely, but BSE images could indicate relevant areas of degradation.
Textural changes were expected.

As can be seen in Figure 7a, the untreated LDPE microparticles have a low surface
roughness, and no agglomerates or aggregates are present. Figure 7b shows that the
phase composition was highly homogeneous. The photo-Fenton treatment of the LDPE
sample led to an increase in surface roughness with additional morphological defects
(Figure 7c). The BSE image (Figure 7d) potentially depicts a gradient, indicating a change
in composition compared to the reference.
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In contrast to the untreated LDPE MPs, the surface morphology of the untreated
PVC MPs scanned in SE mode (Figure 8a) shows considerable roughness and a grainy
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morphology, while BSE scanning (Figure 8b) reveals a homogeneous phase composition.
Moreover, the influences of the Fenton treatment and the photo-Fenton treatment on the
MPs were more evident in the PVC samples. In the case of the Fenton treatment, an
increase in surface roughness and apparent porosity can be observed (Figure 8c). The BSE
images point to the absence of any compositional phase changes (Figure 8d). In the photo-
Fenton treatment (Figure 8e,f), however, the porosity increases even more, together with
the surface roughness. The BSE image (Figure 8f) shows possible in-depth compositional
phase changes. Figure 8g shows an enlarged view of an area with the most relevant
morphological changes observed in Figure 8f. The extended degradation is visible, i.e., the
porosity extends beyond the surface of the samples.

5. Conclusions

AOPs are an emerging approach for the remediation of environments polluted by
non-biodegradable organic substances [77]. Conventional plastic polymers, especially
in the form of micro- and nanoplastics, are non-biodegradable organic pollutants whose
presence in the environment has become a global environmental problem [78].

In this study, the potential of Fenton, photo-Fenton, and Fenton-like processes for
the degradation of LDPE, PP, and PVC MPs was investigated without going into the
analysis of the degradation mechanisms. The treatments lasted 60 min. PP was the least
sensitive to the treatments, with no significant changes observed in the intensities of the
characteristic FTIR bands. For LDPE, signs of degradation were only observed after the
photo-Fenton treatment. The PVC samples were the most sensitive to the treatments, as
signs of degradation were observed after the Fenton and photo-Fenton treatments, while
the Fenton-like treatment showed no effect. The results indicate that of the three treatments
applied, the photo-Fenton treatment is the most efficient in degrading PVC MPs. The SEM
analysis of the LDPE samples treated with photo-Fenton and the PVC samples treated with
Fenton and photo-Fenton confirmed the changes on the MP surface and even the in-depth
changes in the PVC treated with photo-Fenton.

The Fenton-based processes did not prove to be overly efficient in degrading LDPE,
PP, and PVC MPs at the selected treatment duration of 60 min. It is likely that extending
the treatment would lead to better efficiency, but in this case the question of the economic
viability of the treatment arises. Therefore, investigating the potential of some other AOPs,
e.g., those combining UV-C radiation with other oxidizing agents, such as ozone, peroxide,
or persulfate, seems to be a more promising way to remediate the environment polluted
by MPs. However, since this study has shown that the Fenton treatment of PVC and the
photo-Fenton treatment of LDPE and PVC have led to some changes in MPs, there is a
possibility that these treatments can be efficiently used as pretreatments for biodegradation,
as the observed changes could be very beneficial for microbial colonization of the surface
of MPs.
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