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Abstract: This study focuses on optimizing precipitation forecast induced by tropical cyclones (TCs)
in the Northwest Pacific region, with lead times ranging from 6 to 72 h. The research employs deep
learning models, such as U-Net, UNet3+, SE-Net, and SE-UNet3+, which utilize precipitation forecast
data from the Global Forecast System (GFS) and real-time GFS environmental background data using
a U-Net structure. To comprehensively make use of the precipitation forecasts from these models, we
additionally use probabilistic matching (PM) and simple averaging (AVR) in rainfall prediction. The
precipitation data from the Global Precipitation Measurement (GPM) Mission serves as the rainfall
observation. The results demonstrate that the root mean squared errors (RMSEs) of U-Net, UNet3+,
SE-UNet, SE-UNet3+, AVR, and PM are lowered by 8.7%, 10.1%, 9.7%, 10.0%, 11.4%, and 11.5%,
respectively, when compared with the RMSE of the GFS TC precipitation forecasts, while the mean
absolute errors are reduced by 9.6%, 11.3%, 9.0%, 12.0%, 12.8%, and 13.0%, respectively. Furthermore,
the neural network model improves the precipitation threat scores (TSs). On average, the TSs of
U-Net, UNet3+, SE-UNet, SE-UNet3+, AVR, and PM are raised by 12.8%, 21.3%, 19.3%, 20.7%, 22.5%,
and 22.9%, respectively, compared with the GFS model. Notably, AVR and PM outperform all other
individual models, with PM’s performance slightly better than AVR’s. The most important feature
variables in optimizing TC precipitation forecast in the Northwest Pacific region based on the UNet-
based neural network include GFS precipitation forecast data, land and sea masks, latitudinal winds
at 500 hPa, and vertical winds at 500 hPa.

Keywords: tropical cyclone; precipitation forecast; U-Net; Northwest Pacific

1. Introduction

Tropical cyclones (TCs) are one of the world’s most destructive natural disasters, bring-
ing heavy rainfall, strong winds, and substantial storm surges that endanger the property
and lives of coastal residents [1,2]. They are responsible for 35–50% of the world’s extreme
rainfall, resulting in catastrophic flooding and natural disasters [3]. China, the country most
affected by TC disasters, suffers an annual economic loss of approximately US$6 billion
due to extreme precipitation [1]. Therefore, improving quantitative precipitation estimation
and forecasting TC precipitation are critical for disaster prevention and mitigation [1,4].

Current quantitative precipitation forecasts heavily rely on numerical weather predic-
tions (NWP) [5,6]. To enhance these forecasts, commonly used strategies include resolution
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enhancement, physical parameterization scheme improvement, observation network en-
hancement, and data assimilation enhancement [1]. These techniques have also been used
to improve TC precipitation forecasting. For example, Zhang et al. (2021b) used microwave
radiation assimilation to obtain better hydrometeorological field analysis and more ac-
curate rainfall forecasts [7]. Zhou et al. (2010) discovered that the precipitation analysis
achieved by incorporating atmospheric infrared sounder (AIRS) cloud inversion captures
the heavy precipitation areas associated with TCs better than that without incorporating
AIRS information or using AIRS clear-sky radiation [8]. Ren et al. (2007) used a combined
dynamical–statistical approach to improve TC precipitation forecasts from numerical mod-
els [1]. By using the contiguous rain area (CRA) to assess the systematic error in Australian
Community Climate and Earth System Simulator TC (ACCESS-TC) precipitation forecasts,
Chen et al. (2018) discovered that ACCESS-TC produced more extreme rainfall near the
TC center (eye wall) [9]. Despite the advancements in NWP techniques, predicting the
precipitation associated with a TC remains a challenge [10]. There is a need to enhance
the prediction capability of NWP models, especially in forecasting extreme precipitation
related to TCs [1,11].

In recent years, artificial intelligence has been utilized to optimize quantitative pre-
cipitation forecasts, with deep learning (DL) approaches being the most commonly used
due to their remarkable capacity to mimic nonlinear systems [12]. DL has been widely
employed to improve numerical precipitation forecasts by effectively understanding and
reconstructing geophysical fields [13,14]. For example, training the DL networks of physical
parameterization schemes, such as convective parameterization and cloud microphysical
parameterization, might enhance model precipitation projections [13,14]. DL can also be
used in conjunction with the NWP model for bias correction. Sun et al. (2023) proposed
a data augmentation U-Net with batch normalization (DABU-Net) for improving winter
precipitation forecasting in Southeastern China [15]. Similarly, Hu et al. (2021) proposed a
deep learning-based data-driven bias correction method for Yin–He global spectral model
(YHGSM) reforecasting [16]. The U-Net-based model can reduce the root mean square
error (RMSE) and improve the threat score (TS), particularly for heavy precipitation.

DL is also frequently employed in TC forecasting [17], however, the primary study
topics are track and intensity forecasting [18]. Feng et al. (2023) used a DL prediction
model to make clever seasonal predictions of TC track density in the Northwest Pacific
region during the typhoon season, and the results showed that the TC track distributions
were predicted better than the best weather prediction models [19]. Pradhan et al. (2017)
suggested a deep convolutional neural network (CNN) for TC intensity classification based
on a long time series of TC infrared cloud images. The model achieved an RMSE of 10.18 kt
for intensity estimation [20]. Although DL has been widely used in precipitation and
TC forecasting, little research has explored its application in improving TC precipitation
forecasting [21,22].

Among the DL models used in precipitation forecasting, the U-Net model has achieved
significant success [23–25]. U-Net, a CNN-based network, can simulate nonlinear functions
flexibly and efficiently [26,27]. Larraondo et al. (2019) compared various methods for
calculating total precipitation and found that U-Net significantly outperformed other
models, such as random forests, visual geometry group (VGG)-16, and segmentation
network (SegNet) [28]. Similarly, Dupuy et al. (2020) discovered that U-Net surpassed
other classical machine-learning approaches, such as random forests and logistic quantile
regression [29]. Singh et al. (2021) demonstrated that a U-Net model based on residual
learning can reveal the physical relationships that lead to target precipitation [30].

U-Net’s performance can be improved by modifying the neural network structures [31–33].
One potential enhancement strategy is the use of a squeeze-and-excitation U-Net (SE-
UNet), which combines SE-Net with U-Net [31–33]. The squeeze-and-excite modules
activate helpful features and deactivate useless features in an adaptively weighted manner,
resulting in a significant improvement in network capacity with only a few additional
parameters and memory costs [34]. Another enhancement, UNet3+, employs full-scale
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skip connections to combine low-level detail with high-level semantics from feature maps
at different scales, maximizing the use of full-scale feature maps. This approach has
demonstrated promise in weather monitoring applications [35–37]. Despite their potential,
there have been few studies conducted on the application of SE-UNet and UNet3+ in
improving precipitation forecasting.

In this study, we employ deep learning models, including U-Net, UNet3+, SE-Net, and
SE-UNet3+, to forecast TC precipitation in the Northwest Pacific region, a region known
for its frequent and impactful TC activities. These models are based on the U-Net structure
and are trained using Global Forecast System (GFS) precipitation forecast data and real-
time GFS data. To comprehensively make use of the precipitation forecasts from different
models, we additionally utilize probabilistic matching (PM) and simple averaging (AVR).
The remainder of this paper is structured as follows. Section 2 describes the dataset, data
preprocessing method, and the experimental setup. Section 3 details model performance
and analysis, while Section 4 presents the conclusions.

2. Data and Methods
2.1. Data

A total of 236 TCs from 2015 to 2022, which are obtained from the China Meteorological
Administration’s (CMA) TC best track dataset, are employed in this study [38]. The best
track dataset provides the longitude and latitude of the TC center, the minimum central
pressure, and the maximum sustained wind speed around the TC center, with a time
interval of 3 h or 6 h (Since 2017, for TC making landfall in China, the time-frequency of
the best track has been increased to every 3 h within the 24 h before its landfall). There
are altogether 2084 TC point samples for these 236 TCs in the Northwest Pacific region
(100–130 E, 10–40 N). These samples are classified as tropical depression (TD), tropical
storm (TS), severe tropical storm (STS), typhoon (TY), severe typhoon (STY), and super
typhoon (SuTY) according to their real-time intensities. Due to the relatively small number
of TC point samples for SuTY and STY compared with the other TC categories, these
samples are combined and referred to as SSTYs in this study [39]. A total of 1844 TC point
samples from 2015 to 2021 are selected for training the neural network model, and 240 TC
point samples in 2022 are selected for model testing. Table 1 shows the quantities of TC
point samples for different intensities, while Figure 1 depicts the locations of these TC point
samples, with different colors to denote their varying intensities.

This study uses cumulative precipitation with lead times of 6, 12, 18, 24, 30, 36, 42, 48,
54, 60, 66, and 72 h within a 20 × 20 degree region around the TC point locations as the
predictands, which is provided by the Global Precipitation Measurement (GPM) Mission
with a resolution of 0.25 degrees [40]. The predictors include real-time environmental
background data and cumulative precipitation forecast data with the lead times within
the 20 × 20 degree region around the TC point locations, which is provided by GFS [41].
Predictive modeling in this study is implemented using UNet-based neural networks.

Table 1. Quantities of TC point samples for each intensity level.

Intensity Test Set Training Set

TD 73 651
TS 56 545

STS 31 232
TY 34 151

SSTY 46 265
all 240 1844
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Figure 1. TC point sample positions are denoted by “×” for model training and “+” for model testing.
The colors of symbols “×” and “+”, ranging from light to dark, represent the TC intensity from weak
to strong. The red line refers to the track of TC Ma-on.

GFS is an atmospheric circulation model developed and maintained by the National
Oceanic and Atmospheric Administration (NOAA) of the United States. The GFS data
have a spatial resolution of 0.25 degrees and a temporal resolution of 6 h. The TC point
samples are selected from the best track dataset at 00, 06, 12, and 18 UTC to align with the
daily GFS model forecast runs. To forecast the cumulative precipitation for a given time
frame, the following steps are taken to process the GFS data for creating the input field of
neural networks.

(1) Calculate the coordinate range of 10 latitudes and longitudes around the TC point
based on its coordinates and time to select a 20 × 20 degree region whose center is the TC
point location.

(2) Select cumulative precipitation forecast data corresponding to the specific lead
time, and real-time environmental field data consisting of 24 atmospheric factors, based on
the coordinate range. Table 2 displays the names and physical meanings of the cumulative
precipitation forecast data and real-time environmental field data of 24 atmospheric factors,
each with a data size of 80 × 80 (20 degree/0.25 degree resolution).

(3) Integrate the data into a 25 × 80 × 80 array, constituting the neural network’s
input field for a TC point with a specific lead time. Each input field for a TC point includes
cumulative precipitation forecast data with a size of 80 × 80 and real-time environmental
field data with a size of 24 × 80 × 80.
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Table 2. Variable names and their corresponding physical meanings.

Variable Name Physical Meaning

gfs_precipitation GFS cumulative precipitation prediction
Gust Gust intensity
Sp Sea pressure

Cape Convective available potential energy
Cin Convective inhibition

Pwat Precipitable water
500t 500 hPa temperature
700t 700 hPa temperature
850t 850 hPa temperature
500r 500 hPa relative humidity
700r 700 hPa relative humidity
850r 850 hPa relative humidity
500w 500 hPa vertical velocity
700w 700 hPa vertical velocity
850w 850 hPa vertical velocity
500u 500 hPa zonal wind speed
700u 700 hPa zonal wind speed
850u 850 hPa zonal wind speed
500v 500 hPa meridional wind speed
700v 700 hPa meridional wind speed
850v 850 hPa meridional wind speed

500absv 500 hPa absolute vorticity
700absv 700 hPa absolute vorticity
850absv 850 hPa absolute vorticity

Lsm Land and sea mask (1 means land, 0 means sea)

For instance, if the coordinates of a TC point are 120 E and 20 N at a particular moment,
and the specific lead time for the predictand is 24 h, we use GFS real-time data corresponding
to 24 atmospheric factors in the coordinate range of 110–130 E and 10–30 N at that moment.
Additionally, we use the future 0–24 h GFS cumulative precipitation forecast data in the
coordinate range of 110–130 E and 10–30 N. The real-time environmental field data and 24-h
GFS cumulative precipitation forecast data are integrated into a 25 × 80 × 80 size.

The precipitation observation data provided by the GPM [40] have a resolution of
0.25 degrees. For a TC point, the predictand is an 80 × 80 single-channel image that includes
the cumulative precipitation data of a 20 × 20 degree region surrounding the TC point
location. The GPM is an international satellite mission jointly operated by the National
Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration
Agency (JAXA). It utilizes multi-sensor, multi-satellite, and multi-algorithm data, along
with a satellite network and rain gauge inversion, to obtain highly accurate precipitation
data. Using microwave and infrared technology, the GPM provides global rain and snow
data products, including up to 3 h of microwave-based data and half-hourly microwave-
infrared-based data [40,42]. As a result, it is frequently used as a source of precipitation
observation data [42].

2.2. U-Net-Based Models

The U-Net and UNet3+ architectures, provided by Ronneberger et al. (2015) and
Huang et al. (2020), respectively, form the basis of most of the neural network models
described in this study (see Figure 2) [27,43]. The U-Net design comprises an encoder and
a decoder. The encoder uses double convolution and max pooling operations to extract
features, while the decoder uses the same layers for upsampling [29]. U-Net employs a
pixel-to-pixel mapping technique between the input and output images. UNet3+ is an
improved version of the U-Net model that utilizes full-scale jump connections to merge
low-level information with high-level semantics from feature maps of varying sizes, thereby
optimizing the usage of full-scale feature maps [35–37].
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SE-UNet and SE-UNet3+ are U-Net and UNet3+ models that incorporate attention
modulation. This modulation directs the network towards task-relevant aspects by sup-
pressing feature responses in irrelevant settings [32,33]. Various attention strategies have
been proposed to improve neural network performance [44,45]. In this study, we aim to
improve precipitation prediction accuracy by incorporating Squeeze-and-Excitation (SE)
modules into the U-Net family of networks. Figure 2 illustrates the incorporation of an
SE module behind each encoder layer, resulting in the SE-UNet and SE-UNet3+ models.
For comparison, the U-Net and UNet3+ models, lacking an SE module, are also used in
this study. Additionally, we develop a neural network using the VGG16 architecture to
compare the generalizability of neural networks with varying architectures. The structure
of VGG is illustrated in Figure S1 (see Supplementary Materials for further details).

The neural network generates an 80 × 80 single-channel image, representing the
cumulative precipitation forecast for various lead times. To assess the model’s performance
against GPM precipitation observation, we use the mean square error between GPM
observation and model precipitation forecast as the neural network’s loss function, as
demonstrated in Formula (1).

Loss =
1
N ∑N

i=1 (yi − ỳi)
2 (1)
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where yi is the GPM precipitation observation and ỳi is the model precipitation forecast.
The adaptive moment estimation (Adam) optimizer is used to optimize the network pa-
rameters [46].

2.3. Ensemble Method for TC Precipitation Forecasts

To comprehensively make use of the precipitation forecasts from different models, i.e.,
U-Net, UNet3+, SE-UNet, and SE-UNet3+, we use various ensemble methods to enhance
the TC precipitation forecast accuracy. The TC precipitation forecast in this study can
be considered a quantitative precipitation forecast (QPF). A simple ensemble strategy to
improve QPF is to average over all members at each grid point to generate an overall mean
(AVR) [47–49]. This mean value emphasizes the common qualities of individual members
while significantly reducing the maximum intensity [50]. Additionally, several studies have
demonstrated that the AVR greatly underestimates reported precipitation intensities while
increasing the spatial coverage of drizzle [51–53].

Another ensemble method to improve QPF outcomes is the probability matching
(PM) strategy. Ebert (2001) first applied this technique to QPF outcomes [52], assuming
that the most likely spatial representation of the rain field is given by the AVR, while the
best frequency distribution of rain rates is given by the ensemble of model QPFs. The
PM approach has been frequently used to improve the performance of QPF ensembles,
outperforming individual QPF members [54–57].

The following steps are followed for performing probabilistic matching:
(1) Compute the ensemble average at each grid point by taking the simple arithmetic

average of all members.
(2) Record the rank and location of each value by sorting the ensemble mean values

from lowest to highest.
(3) Sort the ensemble members’ values from lowest to highest and consider every n

(n = number of members) values as a group.
(4) Select the groups from lowest to highest and insert the median of each group into

the position where the mean set is sorted from lowest to highest. For example, substitute
the grid point with the largest precipitation amount in the ensemble mean with the median
of the highest n value in the ensemble member distribution.

2.4. Evaluation Metrics

The performance of the neural network is evaluated using the mean average error
(MAE) (Formula (2)) and the root mean square error (RMSE) (Formula (3)) for TC precipita-
tion on the test set. In Formulas (2) and (3), yi represents the GPM precipitation observation
and ŷi represents the model precipitation forecast.

RMSE =

√
1
N ∑N

i=1 (yi − ŷi)
2 (2)

MAE =
1
N ∑N

i=1 (yi − ŷi) (3)

However, it is important to note that reducing the RMSE and MAE does not always
result in an increase in the threat score (TS) [58], which is another commonly used metric for
evaluating precipitation forecast skills. The TS objectively determines whether the intensity
of precipitation will exceed a certain threshold and is calculated using the following formula:

TS = A/(A + B + C) (4)

where A represents the number of correct occurrence forecasts (hits), B represents the
number of wrong occurrence forecasts (false alarms), and C represents the number of
incorrect non-occurrence forecasts (misses). Different precipitation forecast thresholds
correspond to different TS scores. In this study, we primarily evaluate the TS scores
using precipitation thresholds of 10 mm/day, 25 mm/day, 50 mm/day, and 100 mm/day.
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Furthermore, we calculate the spatial correlation between the precipitation forecasts and
observations to identify the precipitation forecast model that best matches the spatial
distribution of precipitation forecasts to the observations.

2.5. Feature Importance Analysis

A crucial aspect of evaluating a model is analyzing the importance of its features.
This analysis enables us to identify elements that require optimization. To assess feature
importance, we employ the permutation feature importance (PFI) approach [59]. In this
study, we evaluate the impact of 25 input variables on model fitting by sequentially shuffling
the variables in each of the 25 input channels and independently estimating the loss increase
due to each shuffling. In this study, we examine the relative importance of 25 variables,
calculated as the absolute importance divided by the sum of the absolute importance of
all variables.

The absolute feature importance is calculated using the following steps:
(1) Denote the loss on the neural network test set without shuffling as loss1. Then,

choose one variable and randomly disrupt the data in the neural network’s input field of
the test set corresponding to the channel of that variable. Finally, feed it into the neural
network to calculate the loss after disruption, which is denoted as loss2. To determine the
increase in loss, calculate the difference between loss2 and loss1, denoted as loss3. This step
is referred to as 1 permutation.

(2) Complete 500 permutations for this variable and calculate the mean value of the
500 loss3s. This mean value is referred to as the feature importance of this variable.

2.6. Case Study

We choose TC Ma-on, known for causing heavy precipitation [60,61], as a case study
to evaluate the neural network’s performance in predicting precipitation. TC Ma-on made
landfall at approximately 113 E, 20.5 N, with a central wind speed of 35 m/s at 18:00 on
24 August 2022. The analysis period spans from 00:00 on 21 August 2022, to 12:00 on
25 August 2022. During this period, we calculate the mean value of TC Ma-on’s GFS
cumulative precipitation forecast, the neural network’s precipitation forecast, and observed
precipitation. The track of TC Ma-on is denoted by the red line in Figure 1.

3. Results

The aim of this study is to utilize neural network models to predict TC precipitation in
the Northwest Pacific region using real-time GFS data and GFS precipitation forecast data.
The evaluation of the neural network’s effectiveness in forecasting TC precipitation is based
on its performance on the test set, the TS score for predicting precipitation, the performance
of the precipitation simulation for individual TC cases, and the feature importance. The
following sections describe the results in detail.

3.1. Basic Performance

Figure 3 displays the RMSEs for various models at different lead times. The results
indicate that the RMSE increases with longer lead times, potentially attributed to the
increased uncertainty associated with longer forecasts. Specifically, the VGG model has the
highest overall RMSE, followed by the GFS model. Notably, the median RMSEs of the two
ensemble models, AVR and PM, are consistently the lowest at each lead time.

Figure 4 illustrates the mean RMSEs for various models used to forecast precipitation
induced by TC points with varying intensities. The mean RMSEs of all TC points are
presented in Figure 4a. The VGG model produces the highest average RMSE across all
TC levels, followed by the GFS model. Figure 4b–f demonstrate that UNet-based models
consistently produce lower RMSEs than GFS models at different TC levels. Specifically, the
GFS models have mean RMSEs of 20.51 mm, 32.29 mm, and 41.07 mm at lead times of 24 h,
48 h, and 72 h, respectively. In contrast, the UNet-based models exhibit lower mean RMSEs
at the same lead times: U-Net 19.25 mm, 29.65 mm, 37.78 mm; UNet3+ 18.61 mm, 29.10 mm,
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37.30 mm; SE-UNet 18.31 mm, 29.11 mm, 37.93 mm; SE-UNet3+ 18.24 mm, 28.93 mm, 37.56
mm; AVR 18.17 mm, 28.74 mm, 36.87 mm; PM 18.16 mm, 28.72 mm, 36.84 mm. On average,
the RMSEs of precipitation forecasts by U-Net, UNet3+, SE-UNet, SE-UNet3+, AVR, and
PM are lower by 8.7%, 10.1%, 9.7%, 10.0%, 11.4%, and 11.5%, respectively, compared with
the GFS model’s precipitation forecasts. This result suggests that the neural network model
based on the U-Net structure effectively reduces the RMSE of precipitation predictions
compared with the GFS model. Notably, the UNet3+, SE-UNet, and SE-UNet3+ models
with improved U-Net structures reduce the RMSE more effectively than the standard U-Net
model. Additionally, the ensemble models, AVR and PM, exhibit lower RMSE than any
separate precipitation prediction models.
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Figure 3. Boxplots of RMSEs for different models with various lead times. The box plot shows the
median (line inside the box) and the upper and lower quartiles (top and bottom of the box), while the
whiskers extend to the minimum and maximum non-outlier values. Outliers are indicated by dots
beyond the whiskers.
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Based on Figure 4, the PM model has a lower average RMSE compared with other
models, and therefore we use it for comparison with the GFS model. Figure 5 illustrates
the spatial distribution of RMSEs for both PM and GFS models at different lead times.
Comparing Figure 5a–c with Figure 5d–f, we observe that the high RMSE areas for both
models are concentrated near the TC center, which may be associated with heavy precip-
itation in that area. The RMSEs for PM models at lead times of 24 h, 48 h, and 72 h are
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18.16 mm, 28.72 mm, and 36.84 mm, respectively, lower than the RMSEs for GFS mod-
els at the same lead times, which are 20.51 mm, 32.29 mm, and 41.07 mm, respectively.
Figure 5g–i illustrate the difference between the average RMSEs for PM and GFS models,
consistently showing lower RMSEs for PM models in most regions. The average differences
are 2.35 mm, 3.57 mm, and 4.33 mm at lead times of 24 h, 48 h, and 72 h, respectively,
increasing with longer lead times. The higher RMSE difference between PM and GFS
models near the TC center, as shown in Figure 5g–i, implies that the PM model primarily
optimizes precipitation prediction RMSE in that area.
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Figure 5. The spatial distribution of precipitation prediction RMSE (mm) by PM and GFS models with
different lead times: (a) PM with 24 h, (b) PM with 48 h, (c) PM with 72 h, (d) GFS with 24 h, (e) GFS
with 48 h, (f) GFS with 72 h. The spatial distribution of the RMSE (mm) difference in precipitation
prediction between GFS model and PM model with different lead times: (g) 24 h, (h) 48 h, and (i) 72 h.

Similar to the RMSE analysis, the MAE analysis (Figures S2 and S3 in the Supplemen-
tary Materials) reveals that the UNet-based models outperform the GFS model in reducing
MAE. The PM models consistently exhibit the lowest average MAE compared with other
models, aligning with the RMSE calculation results. The spatial distribution of MAE further
emphasizes the PM model’s effectiveness in reducing MAE in precipitation prediction,
particularly near the TC center.
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Figure 6 illustrates the TSs for different models to forecast precipitation with different
thresholds at various lead times, while Figure 7 displays the mean TS variations at different
lead times. The figures demonstrate that the VGG model produces the lowest TSs for all
thresholds, followed by the GFS model. There is a significant decrease in TSs for all models
as the lead time increases, particularly at higher precipitation thresholds (50 mm/day and
100 mm/day) (Figures 6c,d and 7c,d).
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Figure 7a shows that when the precipitation threshold is 10 mm/day, the mean TSs
for GFS models are 0.52, 0.55, and 0.55 at lead times of 24 h, 48 h, and 72 h, respectively.
These values are lower than most of the mean TSs for UNet-based models at the same
lead times. Similarly, when the precipitation thresholds are 25 mm/day, 50 mm/day, and
100 mm/day, UNet-based models produce higher TSs than GFS models at most lead times.
On average, the TS scores of U-Net, UNet3+, SE-UNet, SE-UNet3+, AVR, and PM are raised
by 12.8%, 21.3%, 19.3%, 20.7%, 22.5%, and 22.9%, respectively, when compared with the
GFS model. The models with improved U-Net structures, namely UNet3+, SE-UNet, and
SE-UNet3+, show a more effective improvement in TS scores than the standard U-Net
model. Meanwhile, the integrated models, AVR and PM, exhibit higher TS scores than any
separate precipitation prediction models.

Overall, the neural network model used in this study performs well in reducing the
RMSE and raising the TS of precipitation forecasts. In particular, the U-Net architecture
represents an advancement in deep learning applications for precipitation forecasting [15].
This study further utilizes improved U-Net structures, such as UNet3+, SE-UNet, and
SE-UNet3+, as well as an ensemble of outputs from all these models. Compared with the
GFS model, the traditional U-Net model reduces the RMSE by 8.7% and improves the TS
by 12.8% in precipitation forecasts. In contrast, our best ensemble model, the PM model,
reduces the RMSE by 11.5% and improves the TS by 22.9% in precipitation forecasts.
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3.2. Case Study

Figure 8 presents the MAEs and RMSEs of precipitation forecasts for TC Ma-on by
the GFS and PM models at various lead times, indicating that the PM model exhibits
lower values for both metrics compared with the GFS model. The average cumulative
precipitation for the PM model forecast, GFS model forecast, and GPM observation over
0–24 h are 12.02 mm, 10.87 mm, and 12.76 mm, respectively, indicating that the PM model
effectively corrects the GFS model’s precipitation underestimation within 0–24 h. Similarly,
the average cumulative precipitation for the PM model forecast, GFS model forecast, and
GPM observation over 0–48 h are 21.59 mm, 20.82 mm, and 21.88 mm, and over 0–72 h are
28.94 mm, 28.42 mm, and 28.83 mm, respectively. The PM model’s average precipitation
forecast aligns more closely with GPM observation compared with the GFS model.
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Additionally, we select a TC point where TC Ma-on caused the heaviest 0–24 accu-
mulated precipitation before its landfall and analyze the spatial distribution pattern of
forecasted and observed precipitation at that point. Figure 9 illustrates the TC precipitation
forecasts by the PM and GFS models, along with the GPM precipitation observation, when
TC Ma-on was located at 113 E, 20.5 N, causing heavy precipitation in Hainan province.
The spatial correlations between the precipitation forecasts by the PM model and the GPM
observations over 0–24 h, 0–48 h, and 0–72 h are 0.81, 0.80, and 0.78, respectively, higher
than the spatial correlations between precipitation forecasts by the GFS model and the
GPM observations, i.e., 0.71, 0.70, and 0.69, respectively. Precipitation forecasts by the
PM model are more similar to the GPM precipitation observations in terms of precipita-
tion distribution patterns, indicating an improvement over the GFS model in TC Ma-on
precipitation forecasts.
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Figure 9. Comparison between the accumulated precipitation forecasts (mm) by PM and GFS models
with different lead times, and the precipitation observations by GPM for TC Ma-on at 113◦ E, 20.5◦ N:
precipitation forecasts by PM with different lead times of (a) 24 h, (d) 48 h, (g) 72 h; precipitation
forecasts by GFS with different lead times of (b) 24 h, (e) 48 h, (h) 72 h; accumulated precipitation
observation by GPM within different periods of (c) 24 h, (f) 48 h, (i) 72 h. The red star denotes the TC
Ma-on location.

3.3. Feature Importance Analysis

The feature importance analysis for U-Net, SE-UNet, UNet3+, and SE-UNet3+ models
at lead times of 24 h, 48 h, and 72 h is presented in Figure 10 (showing only the ten most
important features) for 24 h, and Figures S5 and S6 for 48 h and 72 h, respectively (see
details in Supplementary Materials). The results suggest that the GFS precipitation forecast
data is the most important variable among the 25 input variables, followed by the land
and sea mask (lsm), which is a topography-related variable. Additionally, variables 500u
and 500w are among the top ten most critical variables in each model at lead times of 24 h,
48 h, and 72 h, indicating the significance of the GFS precipitation forecast data, lsm, zonal
wind speed at 500 hPa, and vertical speed at 500 hPa in the neural network training for the
U-Net, SE-UNet, UNet3+, SE-UNet3+ models.



Water 2024, 16, 671 15 of 18

Water 2024, 16, x FOR PEER REVIEW 15 of 18 
 

 

3.3. Feature Importance Analysis 
The feature importance analysis for U-Net, SE-UNet, UNet3+, and SE-UNet3+ mod-

els at lead times of 24 h, 48 h, and 72 h is presented in Figure 10 (showing only the ten 
most important features) for 24 h, and Figures S5 and S6 for 48 h and 72 h, respectively 
(see details in Supplementary Materials). The results suggest that the GFS precipitation 
forecast data is the most important variable among the 25 input variables, followed by the 
land and sea mask (lsm), which is a topography-related variable. Additionally, variables 
500u and 500w are among the top ten most critical variables in each model at lead times 
of 24 h, 48 h, and 72 h, indicating the significance of the GFS precipitation forecast data, 
lsm, zonal wind speed at 500 hPa, and vertical speed at 500 hPa in the neural network 
training for the U-Net, SE-UNet, UNet3+, SE-UNet3+ models. 

 
Figure 10. The first 10 significant features for 24 h accumulated precipitation prediction by the 
models of (a) U-Net, (b) SE-UNet, (c) UNet3+, and (d) SE-UNet3+. 

4. Conclusions 
In this study, we employ UNet-based DL methods, including U-Net, UNet3+, SE-Net, 

and SE-UNet3+, to forecast TC precipitation in the Northwest Pacific region based on GFS 
precipitation forecast data and real-time GFS environmental background data. To maxim-
ize the utilization of the precipitation forecasts from these four DL models, we addition-
ally employ two ensemble methods, PM and AVR, for rainfall prediction. GPM precipita-
tion data are applied as the ground truth. 

Compared with the GFS model, the RMSEs of UNet, UNet3+, SE-UNet, SE-UNet3+, 
AVR, and PM are lowered by 8.7%, 10.1%, 9.7%, 10.0%, 11.4%, and 11.5%, respectively, 
while the MAEs are reduced by 9.6%, 11.3%, 9.0%, 12.0%, 12.8%, and 13.0%. The TSs of 
the precipitation forecasts generated by these six models are higher than those of the GFS 
precipitation forecast, indicating that UNet-based models outperform the GFS model. No-
tably, the ensemble models, particularly PM, outperform all other individual models. By 
comparing the spatial distribution of RMSE and MAE for precipitation prediction by PM 
and GFS models, we find that the PM model can effectively improve the precipitation 
forecast accuracy near the TC center, where the GFS encounters significant precipitation 
forecast errors. 

Furthermore, the feature importance analysis of U-Net, UNet3+, SE-UNet, and SE-
UNet3+ reveals that the GFS precipitation forecast data are the most critical variable 
among the 25 input variables, followed by the l sm. Additionally, latitudinal wind speed 
at 500 hPa and vertical wind speed at 500 hPa are also important. 

The study’s innovation lies in adopting the UNet3+ architecture, rarely explored in 
weather prediction research, and pioneering the application of probability matching tech-

Figure 10. The first 10 significant features for 24 h accumulated precipitation prediction by the models
of (a) U-Net, (b) SE-UNet, (c) UNet3+, and (d) SE-UNet3+.

4. Conclusions

In this study, we employ UNet-based DL methods, including U-Net, UNet3+, SE-Net,
and SE-UNet3+, to forecast TC precipitation in the Northwest Pacific region based on GFS
precipitation forecast data and real-time GFS environmental background data. To maximize
the utilization of the precipitation forecasts from these four DL models, we additionally
employ two ensemble methods, PM and AVR, for rainfall prediction. GPM precipitation
data are applied as the ground truth.

Compared with the GFS model, the RMSEs of UNet, UNet3+, SE-UNet, SE-UNet3+,
AVR, and PM are lowered by 8.7%, 10.1%, 9.7%, 10.0%, 11.4%, and 11.5%, respectively,
while the MAEs are reduced by 9.6%, 11.3%, 9.0%, 12.0%, 12.8%, and 13.0%. The TSs
of the precipitation forecasts generated by these six models are higher than those of the
GFS precipitation forecast, indicating that UNet-based models outperform the GFS model.
Notably, the ensemble models, particularly PM, outperform all other individual models.
By comparing the spatial distribution of RMSE and MAE for precipitation prediction by
PM and GFS models, we find that the PM model can effectively improve the precipitation
forecast accuracy near the TC center, where the GFS encounters significant precipitation
forecast errors.

Furthermore, the feature importance analysis of U-Net, UNet3+, SE-UNet, and SE-
UNet3+ reveals that the GFS precipitation forecast data are the most critical variable among
the 25 input variables, followed by the l sm. Additionally, latitudinal wind speed at 500 hPa
and vertical wind speed at 500 hPa are also important.

The study’s innovation lies in adopting the UNet3+ architecture, rarely explored
in weather prediction research, and pioneering the application of probability matching
techniques in TC precipitation forecasting. This hybrid approach, combining traditional
numerical forecasting integration with DL methods, represents a significant advancement
in TC precipitation prediction, offering novel insights and promising ways for future
weather forecasting.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16050671/s1, Figure S1: VGG model structure; Figure S2:
Boxplots of MAE for different models with various lead times; Figure S3: MAEs of different models
for various TC levels; Figure S4: The spatial distribution of precipitation prediction MAE (mm) by
PM and GFS models with different lead times; Figure S5: The first 10 significant features for 48-h
accumulated precipitation prediction; Figure S6: The first 10 significant features for 72-h accumulated
precipitation prediction.
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