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Abstract: Geothermal water is the product of deep circulation within the crust, and the understand-
ing of its hydrogeochemical process can provide effective information for integrated research on its
circulation pattern and formation mechanism. Based on the geothermal geological conditions of the
Yanggao geothermal field, this study analyzed water samples from thermal springs and geothermal
wells in the geothermal field, ascertaining their hydrochemical components, along with their hydro-
gen and oxygen isotopes. Using methods like piper diagrams, ionic component ratio characterization,
Na–K–Mg equilibrium diagrams, and reverse path simulations, this study elucidated the recharge
source of geothermal water in the study area, revealed the water–rock interactions the geothermal
water experienced, and evaluated the geothermal reservoir temperatures. The results show that the
geothermal water has hydrochemical types of Na–Cl–HCO3 and Na–HCO3–Cl, and is primarily
recharged by the atmospheric precipitation in the northern mountainous area. The geothermal water
has experienced extended water runoff and deep thermal circulation, and its hydrochemical composi-
tion primarily results from the weathering and dissolution of silicate rocks and evaporites. The major
hydrogeochemical processes of the geothermal water involve the dissolution of calcite, dolomite,
gypsum, and kaolinite. In addition, the canon-exchange also changes the chemical component of
the geothermal water. The SiO2 Geothermometer, a multimineral equilibrium diagram, and the
silica–enthalpy model reveal the presence of deep and shallow geothermal reservoirs in the study
area, which exhibit temperatures of 73 ◦C and ranging from 125 to 150 ◦C, respectively. The open
geothermal reservoir environment results in the mixing of geothermal water and cold water, with
shallow and deep geothermal water mixing with cold water at ratios of 57% and 76%, respectively.

Keywords: geothermal water; hydrochemistry; water–rock interaction; hydrogen and oxygen
isotopes; reservoir temperature; evaporite minerals

1. Introduction

Geothermal resources, as renewable and clean energy sources within the Earth, are
characterized by low carbon emissions, great exploitation and utilization potential, and
wide applications [1,2]. With the increasingly prominent global energy crisis, there is an
urgent need for the exploitation and utilization of renewable, clean energy to replace or
reduce the use of conventional energy [3,4]. Since geological settings play a vital role in
the exploitation of geothermal energy, it is especially essential to understand the formation
mechanism of geothermal energy for its sustainable and effective exploitation [5,6]. As a
product of deep circulation within the Earth’s crust, geothermal water reflects abundant
hydrogeochemical information, which provides valuable insights into the comprehensive
research on the circulation pattern and formation mechanism of deep geothermal water.
The commonly employed methods for geothermal water include hydrogeochemical and
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isotopic methods [7,8]. Hydrogeochemical methods focus on identifying the evolutionary
process of geothermal water, while isotopic methods are primarily employed to determine
the source and the storage and transport duration of geothermal water [9,10].

The study area lies in the northwestern part of Shanxi Province, China. Tectonically,
it is located in the northwestern part of the Yanggao–Tianzhen fault [11]. With abundant
geothermal resources, the study area is an important research focus for moderate- to low-
temperature geothermal resources [12–15]. The geothermal resources produced in this area
exhibit temperatures of 28–45 ◦C, indicating moderate- to low-temperature geothermal
resources, which are primarily used for thermal spring bathing. Previous studies mainly
focused on the formation background and the structural and hydrochemical characteristics
of the Yanggao geothermal field, while rarely involving the interrelationships among these
aspects [16–18].

Controlled by unique geological conditions, the surface geothermal manifestation and
genetic mechanisms of geothermal systems show specific characteristics. Geothermal sys-
tems can be divided into convective hydrothermal systems and conduction hydrothermal
systems, according to the movement conditions and heat source mechanism. In convective
hydrothermal systems, hot water flows up along the high-permeability zone formed by
the intersection of tectonic faults and emerges as hot springs. In conductive hydrothermal
systems, the heat source is simply vertical heat conduction through the Earth’s crust [4].

Shanxi Province, situated in the Loess Plateau in the western portion of Northern
China, boasts abundant geothermal resources with a relatively concentrated spatial distri-
bution. These geothermal resources primarily occur in the Fen-Wei rift zone [19] and are
“Low medium temperature geothermal systems of conduction type”, serving as a major
target in the research on low- to moderate-temperature geothermal resources. The Yanggao
geothermal field, located in the Datong Basin, northern Shanxi Province, has produced
geothermal resources with temperatures ranging from 28 to 45 ◦C. These resources are
Neogene and Quaternary low-temperature geothermal resources, and are primarily used
for bathing. Based on the analysis of geological conditions, seismic activity, volcanic activity,
terrestrial heat flow, and thermal springs, as well as geophysical exploration, it is proposed
that the Datong Basin enjoys favorable geological conditions for geothermal resources
and exhibits significant research value [18,20]. As regards the Yanggao geothermal field,
its geological, structural, and cap rock distribution characteristics have been identified
through geophysical exploration [19], and the hydrochemical characteristics and other
general properties of its geothermal water have been analyzed [16,17]. However, limited
studies have been conducted on the hydrogeochemical characteristics of geothermal water
in the study area, along with their formation and evolution. Furthermore, there is a lack
of unified understanding of the occurrence environment, migration patterns, and genetic
mechanism of geothermal fluids. All these hinder the rational and effective exploitation
and utilization of geothermal resources.

Based on water samples from the Yanggao geothermal field, this study has qualitatively
analyzed the mineral sources and water–rock interactions of the geothermal water during
its circulation. In addition, it has quantitatively analyzed the mineral transfer of the
geothermal water, providing a theoretical basis for further investigating the formation
mechanism of the Yanggao geothermal field. This study will assist in the exploration and
exploitation of geothermal resources in the study area and in gaining a deep understanding
of the origin of geothermal resources in North China.

2. Geological Background

The Datong Basin is located in the central portion of the North China Craton, at the
intersection of the central zone of the North China Block and the Inner Mongolia suture zone.
It is a Cenozoic faulted basin [21] that has undergone multi-stage tectonic movements since
the Late Mesozoic, subjected to local lithospheric modification and thinning. The Yanggao
geothermal field resides in the Yanggao–Tianzhen basin, a sub-basin in the northeastern
Datong Basin. The entire sub-basin extends in the NEE direction. The structures in the
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sub-basin are dominated by faults, followed by folds, with a dominant tectonic direction of
NE. The Yanggao geothermal field, the study area, is located in the northeastern part of the
Cathaysian Block. The geothermal field lies in the Yanggao–Tianzhen Basin in northern
Shanxi Province. It is a secondary basin in the northern Datong Basin, distributed in a NEE
direction [12–15,19].

The NE-trending Yunmen piedmont fault, also known as the Yanggao fracture zone,
which is composed of several parallel high-angle normal faults, is the primary fault in the
study area. Controlling the Yanggao geothermal field, this fault is a transpressive fault
extending for about 35 km within Shanxi Province [12]. This fault serves as a boundary
between a rift basin and the bedrock, with large-area Cenozoic strata extending to the
south and the exposed bedrock of the Archaean Sanggan Group occurring to the north.
Owing to fracturing, the fault zone commonly exhibits kaolinization and limonitization [22].
According to field observations, the Quaternary sediments in the study area, dominated by
alluvial sediments, include sandy gravel layers consisting of sandy loam soil, clay loam,
and clayey soil, with thicknesses ranging from 40 to 98 m. The Tertiary sediments are
dominated by mudstones and limestones, with thicknesses ranging from 50 to 535 m and
multiple reticulate gypsum layers interbedded. The Archean Sanggan Group, dominated
by plagioclase gneisses, shows moderately to thickly laminated textures and contains
minerals dominated by plagioclase, biotite, and quartz. The study area has experienced
intense magmatic activity, with relatively developed magmatic rocks dominated by Archean
diabase dykes and Yanshanian quartz porphyries, followed by pre-Sinian metamorphic
granites and a few pyroxene dykes.

The Datong Volcanic Group, which formed during the Quaternary and is situated
35 km southwest of the study area, is derived from the upwelling of molten materials in
the upper mantle. Non-erupting magma migrated to the northeast along tectonic fissures,
providing a heat source for the geothermal water in Yanggao County.

Thermal springs are primarily located in the vicinity of the Yunmen piedmont fault,
indicating that this fault plays a significant role in the formation of the Yanggao geothermal
zone [18]. A thermal spring is exposed in the study area, showcasing a geothermal water
temperature of 39.5 ◦C and a flow rate of 8 m3/h. The geothermal wells exhibit depths
between 106 and 600 m, with wellhead water temperatures ranging from 28.7 to 37.2 ◦C
and single-well water yields between 30 and 60 m3/h, suggesting low- to moderate-
temperature geothermal resources. Besides this, there is no correlation between the well
depth and temperature.

3. Sampling and Methods

This study conducted a sampling campaign in 2022, with 15 sets of water samples
collected, including five sets from geothermal wells, one set of thermal spring water, five
sets of shallow groundwater, two sets of spring water, and one set of rainwater (Table 1).
Additionally, three sets from geothermal wells collected in a previous study were obtained.
Figure 1 and Table 1 depict the sampling locations and the hydrochemical characteristics of
the water samples, respectively.

Physicochemical parameters of water, including temperature, pH, and total dissolved
solids (TDS) content, were measured in the field using a handheld instrument (HQ40D,
manufactured by Hach in Loveland, CO, USA). This device was calibrated using a standard
solution prior to use.

All the samples were filtered through 0.45 µm membranes and stored in high-density
polyethylene bottles rinsed with groundwater. For SiO2 analyses, the water samples were
diluted to 10% of their initial concentrations using deionized water. For metallic and cation
element analyses, samples were acidified using HNO3 until the pH was 1. As a result,
the rate of biological or chemical reactions was reduced. Inorganic anions in the samples
were analyzed before adding reagents. All samples were stored at 4 ◦C and tested within
two weeks.
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Table 1. Geochemical compositions of water samples from the Yanggao geothermal field.

Water Type Sample PH
Ca2+ Mg2+ K+ Na+ Cl+ SO42− HCO3− NO3− F− Hydrochemical

Type(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

Thermal
spring water WQ01 8.21 13.43 2.25 11.82 177.9 145.7 103.9 135.2 4.1 5.17 Na–Cl–HCO3

Geothermal
well water

DR02 8.36 13.3 2.28 5.48 109.5 75.28 63.62 129 1.79 3.79 Na–Cl–HCO3

DR01 8.87 6.49 0.62 4.38 79.17 39.92 34.02 98.31 2.47 4.4 Na–HCO3

DR03 8.18 17.5 1.25 5.23 111 69.7 67 155 0.53 2.87 Na–HCO3–Cl

DR04 8.37 14.4 1.87 4.29 112 69.7 70.9 133 0.56 2.87 Na–HCO3–Cl

DR05 8.29 25.4 6.06 8.16 81.2 57.4 70 145 4.02 1.1 Na–HCO3–Cl

Well water

GW01 8.06 71.62 19.58 2.87 16 26.61 47.33 221.2 38.07 0.29 Ca–Mg–HCO3

GW02 7.37 31.82 26.19 1.19 15.87 8.05 22.5 209.5 18.18 0.64 Ca–Mg–HCO3

GW03 7.85 41.14 31.98 1.91 47.11 30.81 34.03 288.8 28.64 0.97 Ca–Mg–HCO3

GW04 7.88 38.49 29.81 2.02 47.41 26.61 32.94 279.6 26.01 1.11 Na–Ca–HCO3

GW05 7.83 53.1 20.88 2.7 98.98 51.12 53.17 374.2 2.14 1.36 Na–Ca–HCO3

Spring water
Q01 7.52 72.48 24.71 3.48 12.58 5.95 97.62 240.3 13.82 0.3 Ca–HCO3

Q02 8.47 25.45 54.7 2.88 16.46 5.6 75.34 271.6 5.31 0.47 Ca–HCO3

Rain water YS01 7.15 20.1 1.97 2.54 1.56 4.2 23.96 30.72 14.56 0.55 Ca–HCO3
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The sample tests were conducted following the guidelines of the Methods for Ex-
amination of Drinking Natural Mineral Water [23] and Groundwater Test Methods [24]
at the Key Laboratory of Groundwater Sciences and Engineering of the Institute of Hy-
drogeology and Environmental Geology, Chinese Academy of Geological Sciences. The
cations and trace elements in the samples were detected using ICP-AES (ICAP6300) and
ICP-MS (7500C, manufactured by Agilent in Santa Clara, CA, USA). Anions and HCO3

− in
the samples were detected through ion chromatography (DX120) and alkalinity titration,
respectively. The charge balance error was less than 3%. The hydrogen and oxygen isotopes
in the samples were measured using the MAT 253 stable isotope ratio mass spectrome-
ter(manufactured by Beijing Aotao Science & Technology Co., Ltd., Beijing, China) with
analytical precisions of ±0.1‰ and ±1‰, respectively, for δ18O and δ2H.
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4. Results and Discussion
4.1. Hydrochemical Characteristics

Water samples from geothermal wells exhibited temperatures of 28.7–40 ◦C, TDS con-
tents of 282–486 mg/L, and pH levels of 8.18–8.87, indicating weakly alkaline–alkaline wa-
ter; thermal spring water samples had a temperature of 39.5 ◦C, TDS contents of 580 mg/L,
and pH levels of 8.21, indicating weakly alkaline water; shallow groundwater samples had
temperatures of 10.3–15 ◦C and pH levels of 7.37–8.06; spring water samples showed pH
levels of 7.52–8.47 and TDS contents of 358–480 mg/L.

As shown in Figure 2, compared to geothermal water samples, the geothermal water
samples showed significantly higher Na+, Cl−, and F− contents but lower Mg2+, Ca2+,
SO4

2−, and HCO3
− contents. As revealed by the Piper diagram (Figure 3), the geothermal

water samples primarily fall within the lower right zone, with cations dominated by Na
and K+ and anions primarily consisting of Cl−. Furthermore, the cold water samples
(including samples of well water, spring water, and rainwater) mainly fall within the left
zone, with ions dominated by Ca2+, Mg2+, and HCO3

−. As indicated by the composition of
primary elements, the geothermal water samples primarily showed hydrochemical types of
Na–Cl–HCO3 and Na–HCO3–Cl, while the cold water samples exhibited a hydrochemical
type of Ca–HCO3.
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The results show that the geothermal water samples had significantly lower Ca2+

contents than the cold water samples. This is mainly due to the low solubility of Ca2+

and the strong exchange and adsorption of cations in geothermal water. Additionally,
the geothermal water samples had significantly higher Na+ and Cl− contents than the
cold water samples, indicating that the geothermal water underwent relatively adequate
leaching during migration.

Although trace elements do not determine the type of groundwater, they can provide
insights into the water–rock interactions and sources of groundwater. The dissolved silica
content was 27.46–51.85 mg/L in the geothermal water samples and 6.66–18.45 mg/L
in the water samples from wells and springs. The F− content was 1.1–5.17 mg/L in the
geothermal water samples and 0.29–1.11 mg/L in the samples from wells and springs. The
Li+ content was 0.05–0.16 mg/L in geothermal water samples and 0.006–0.008 mg/L in
the water samples from wells and springs. The Sr2+ content was 0.08–0.69 mg/L in the
geothermal water samples and 0.43–0.67 mg/L in the water samples from wells and springs.
The cold water samples yielded extremely low contents of trace elements. Hydrothermal
activity and water–rock interactions jointly enhanced the reactions between geothermal
water and the surrounding rocks of reservoirs, thus enriching trace elements [25]. The low
Sr2+ content in geothermal water may be related to the lithology (metamorphic rocks with
few strontium-bearing minerals) of geothermal reservoirs in the study area [26].

Gibbs charts can help to intuitively and qualitatively determine the sources and origins
of hydrochemical components [27–29]. Samples falling within the lower right, upper right,
and middle zones of the Gibbs chart imply that the sources of hydrochemical components
were primarily regional precipitation, evaporation and concentration, and water–rock
interactions. In this study, both geothermal and cold water samples fell within the zone
controlled by water–rock interactions, indicating that the hydrochemical components were
derived mainly from water–rock interactions (Figure 4).

The hydrochemical parameters of groundwater can reflect its sealing degree and
metamorphism (Table 2). The γ(Na+)/γ(Cl−) ratio is commonly used to determine the
origin of groundwater. A γ(Na+)/γ(Cl−) ratio of close to or greater than 1 suggests
a leaching origin, while a γ(Na+)/γ(Cl−) ratio less than 0.86 indicates a sedimentary
origin [30–32]. In this study, all samples had γ(Na+)/γ(Cl−) ratios of greater than 1,
which were 1.88–3.06, 2.3–2.98, and 3.26–4.54 for the geothermal water samples, the water
samples from pumping and domestic wells, and spring water samples, respectively. These
ratios suggest a dominant leaching origin. Besides halite, other Na+ sources, such as the
dissolution of sodium minerals including albite (NaAlSi3O8), and reverse cation exchange
and adsorption, also affect geothermal areas.

The desulfurization coefficient, γSO4
2− × 100/γCl−, can reveal the oxidizing-reducing

conditions of deep geothermal water, and then determine the sealing performance of
the geothermal reservoir environment [33]. Generally, the γSO4

2− × 100/γCl− value is
inversely proportional to the sealing degree of the geothermal fluid environment. In this
study, the γSO4

2− × 100/γCl− values of the geothermal water samples, water samples
from wells, and spring water samples were 25.8–44.2, 37.7–64.4, and 487–594, respectively,
indicating an open geothermal water environment.

The calcium–magnesium coefficient, γCa2+/γMg2+, can reflect the metamorphic de-
gree of deep geothermal fluids. Generally, this coefficient correlates positively with the
retention time of the geothermal fluids. A longer geothermal fluid retention time cor-
responds to a higher metamorphic degree, and thus, a higher γCa2+/γMg2+ ratio [34].
This study shows that the geothermal water samples and cold water samples exhibited
γCa2+/γMg2+ ratios of less than 3 or greater than 3, respectively. These results suggest
that the geothermal water exists in a reducing geothermal reservoir environment, and is
characterized by a long retention time and intense cation exchange and adsorption.
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Table 2. γNa/γCl−, rSO4
2− × 100/rCl, and rCa2+/rMg2+ ratios of water samples from the Yanggao

geothermal field.

Water Type Sample γNa+/γCl− γSO42− × 100/γCl− γCa2+/γMg2+

Thermal water WQ01 1.88 25.83 3.58

Geothermal well water

DR02 2.25 30.61 3.5

DR01 3.06 30.87 6.28

YG1 2.46 34.82 8.4

YG2 2.48 36.85 4.62

YG6 2.18 44.18 2.51

Well water

GW01 0.93 64.43 2.19

GW03 2.36 40.01 0.77

GW04 2.75 44.84 0.77

GW05 2.99 37.68 1.53

Spring water
Q01 3.26 594.33 1.76

Q02 4.54 487.35 0.28

Rain water YS 0.57 206.65 6.12

The Ca2+/Na+, Mg2+/Na+, and HCO3
−/Na+ ratios are commonly used to inves-

tigate water–rock interactions (Figure 5), reflecting the source relationships of different
materials involved in groundwater processes such as migration, evaporation, and con-
centration [35,36]. The geothermal water in the study area is primarily controlled by the
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weathering and dissolution of silicate rocks and evaporite rocks, while the cold water is
mainly influenced by the weathering and dissolution of silicate rocks and carbonate rocks.
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Evaporite rocks are a type of precipitate formed by the evaporation of saline water.
The significant correlation (r = 0.96) between Na+ and Cl− indicates the dissolution of
evaporate minerals, such as halite. Thus, a high concentration of Na+ in geothermal water
in the studied area might be the result of the dissolution of evaporite rocks, and evaporative
rocks are mainly composed of halites [37–39].

Chloro-alkaline indices 1 and 2 (i.e., CAI-1 and CAI-2) can be employed to assess the
role of cation exchange and adsorption [40,41]. They are calculated as follows:

CAI1 =
Cl−−(Na++K+)

Cl−

CAI2 =
Cl−−(Na++K+)

HCO−
3 +SO2−

4 +CO2−
3 +NO−

3

(1)

Negative CAI-1 and CAI-2 values indicate positive cation exchange and absorption
in groundwater, whereas positive values reflect reverse cation exchange and absorption.
Most of the water samples from the study area fell within the lower left zone of Figure 6,
indicating that positive cation exchange and adsorption predominate hydrochemical re-
actions. This finding implies that the Ca2+ and Mg2+ dissolved in water were replaced
by the Na+ and K+ in surrounding rocks, increasing the Na+ and K+ contents in water.
Furthermore, Ca2+ and Mg2+ were adsorbed on the surfaces of water-bearing medium
particles, decreasing their contents and concentrations in water. This result suggests that
Ca2+ and Mg2+ at the sampling sites exchanged with Na+ and K+ in surrounding rocks
during the runoff process, releasing Na+ and K+ in plagioclase and potassium feldspar
minerals into the water.

4.2. Geothermometer-Based Temperature Estimates

In research on the origin mechanism and potential evaluation of geothermal resources,
geothermal reservoir temperature is a crucial parameter for classifying the genetic mecha-
nism of geothermal systems and for assessing the geothermal resource potential [42–46].
One of the most cost-effective and efficient methods used to determine this parameter is
chemical geothermometers. The most widely used geothermal geothermometers consist of
two types: SiO2 geothermometers (quartz and chalcedony geothermometers) and cation
geothermometers (Na–K, K–Mg, and Na–K–Ca geothermometers).
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4.2.1. Geothermometer Selection

A cation geothermometer estimates the temperatures of deep geothermal reservoirs
based on the relationship between the soluble chemical composition of groundwater and the
temperature of geothermal water. Its theoretical basis lies in the fact that deep geothermal
reservoirs and surrounding rock minerals reach chemical equilibrium under certain temper-
ature conditions. Therefore, it is necessary to ascertain the equilibrium state of geothermal
water and surrounding rocks and test the reliability of the selected geothermometers before
estimating the temperatures of deep geothermal reservoirs using geothermometers. This
study employed a Na–K–Mg ternary diagram [45], which incorporates Na/K and K2/Mg
geothermometers, to determine the equilibrium condition of samples. Cation geother-
mometers are not applicable to samples that are not in equilibrium (or at least partially in
equilibrium). The Na–K–Mg ternary diagram allows for a more intuitive comparison of the
calculated results obtained using Na–K and K2–Mg geothermometers. In the Na–K–Mg
ternary diagram, the K–Mg and Na–K oblique lines represent the temperatures obtained
using K2–Mg and Na–K geothermometers, respectively. This diagram can be used to
estimate the maximum geothermal reservoir temperature. The hot water points located
in the partially equilibrated water zone exhibited overall high K2–Mg geothermometer-
derived temperatures between 100 and 120 ◦C, which were much higher than the Na–K
geothermometer-derived temperatures, between 160 and 180 ◦C. When projecting the
Na+, K+, and Mg2+ contents in the geothermal water samples into the Na–K–Mg ternary
diagram, all the geothermal water samples fell within the immature water zone (Figure 7).
This indicates the possible participation of meteoric water. Therefore, the temperatures of
geothermal reservoirs in the study area estimated by cation geothermometers would be
subjected to deviations, which can be used as reference for this study [47].

4.2.2. SiO2 Geothermometers

SiO2 geothermometers can predict reservoir temperatures based on the dissolution
balance of SiO2 in geothermal water. The solubility of silica minerals is a function of
temperature, and the changes in pressure and salinity slightly affect the solubility of quartz
and amorphous silicon below 300 ◦C. Therefore, the silica concentration in geothermal water
can be used as a geothermometer to calculate the temperatures of geothermal reservoirs [48].

Various silica minerals arise in nature, with quartz, chalcedony, and amorphous silica
frequently involved in geothermal research (Table 3). According to the log (SiO2) vs. log
(K2/Mg) chart, these silica minerals can help identify the minerals controlling the mass
concentration of SiO2 in geothermal fluids [49].
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Table 3. Formulae of geothermometers for geothermal reservoir temperature.

Geothermometer Empirical Formula

Quartz (conduction cooling) T = [1309/(5.19 − lgS)] − 273

Chalcedony T = [1032/(4.69 − lgS)] − 273

According to the calculation results of SiO2 geothermometers, the temperatures es-
timated using a quartz geothermometer in the Yanggao geothermal field were 73–97 ◦C,
which are 47–68 ◦C higher than the wellhead temperatures. In contrast, temperatures
estimated using a chalcedony geothermometer were 53–65 ◦C, which are 13–36 ◦C higher
than the wellhead temperatures.

As shown in Figure 8, data points of geothermal water were distributed between
the lines of quartz and chalcedony, indicating that both quartz and chalcedony species
occurred in geothermal water. The reservoir temperatures indicated by the plot of log
(SiO2) versus log (K2/Mg) data for geothermal water and thermal water were mainly
distributed in the range of 70–100 ◦C, which overlaps with the temperature calculated
by quartz geothermometers. Hence, the measurement of quartz geothermometers may
provide more reliable results than other silica geothermometers [50].

Above, T is the reservoir temperature acquired using a chalcedony geothermometer
(◦C) and S is the silica (SiO2) (mg/kg).

4.2.3. Multimineral Equilibrium Diagram

To enhance the calculation accuracy of geothermal reservoir temperatures, this study
estimated the heat exchange equilibrium temperatures of non-fully equilibrated water using
the multimineral equilibrium method [51]. This study simulated the saturation indices
[log(Q/K)] of 10 common hydrothermal minerals under different temperatures using
the PHREEQC 3.6.2 software, establishing the relationships between the log(Q/K) and
temperature of multiple minerals [52,53]. As revealed by the curves of these relationships,
geothermal water in the study area reached equilibrium with minerals in surrounding
rocks including quartz, chalcedony, calcite, plagioclase, fluorite, kaolinite, and dolomite,
exhibiting high convergence. These curves also show that the geothermal reservoirs in
the Yanggao geothermal field have temperatures of 80–90 ◦C(Figure 9), which are slightly
higher than the calculated results yielded by SiO2 geothermometers, and might be related
to the mixing of cold water.
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4.2.4. Mixing Fraction of Shallow Groundwater

According to the above analysis, the geothermal water in the study area may be
affected by the mixing of cold water. The silica–enthalpy model can be employed to estimate
the fraction of mixed cold water, and to correct the estimation reservoir temperature [54,55].

The equations used are presented below:

Scx + Sh(1 − x) = Ss (2)

SiO2cx + SiO2h(1 − x) = SiO2s (3)

where Sc is the enthalpy of the shallow groundwater, Sh is the initial enthalpy of geothermal
water, Ss is the final enthalpy of geothermal water mixed with shallow groundwater, SiO2c
is the SiO2 concentration of the shallow groundwater, SiO2h is the initial SiO2 concentration
of geothermal water, SiO2s is the final SiO2 concentration of geothermal water mixed with
shallow groundwater, and x is the fraction of mixed shallow groundwater.

In Equations (2) and (3), only the fraction of shallow groundwater mixture and
the fraction of initial enthalpy of the deep geothermal water are unknown. The dia-
grammatic method can be used to simplify the calculation procedure. According to
Equations (2) and (3), the solutions of the shallow groundwater mixing fraction X can
be obtained as follows [56]:
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X1 = (Sh − Ss)/(Sh − Sc) (4)

X2 = (SiO2h − SiO2s)/(SiO2h − SiO2c) (5)

where X1 and X2 are the two solutions of the mixture fraction of groundwater to deep
geothermal water. The point of intersection shows the initial temperature of the reservoir
and the mixed fraction of groundwater.

The shallow groundwater had a temperature of 20 ◦C and a SiO2 concentration of
7 mg/L, according to the measurements of the cold water samples from the study area.
Each of the enthalpies and SiO2 concentrations corresponding to the various temperatures
in Table 4 were substituted into Equations (4) and (5) to produce the mixing proportion of
groundwater and to plot the diagram in Figure 10. The intersection points are the solutions
of Equations (4) and (5), showing the reservoir temperature and groundwater mixing
faction of corresponding geothermal water.

Table 4. Enthalpies of liquid water and the corresponding quartz solubility.

Temperature
(◦C)

Pressure
(Bars)

Enthalpy
(cal/g) SiO2 Content (mg/L)

50 0.12 50 13.5

75 0.39 75 26.6

100 1.01 100.1 48

125 2.32 125.4 80

150 4.76 151 125

175 8.92 177 185

200 15.54 203.6 265

225 25.48 230.9 365

250 39.73 259.2 486

As shown in Figure 10, two temperature ranges can be obtained using the silicon–
enthalpy model. The curves of the plot of thermal spring water-dissolved silica and
enthalpy intersect at the point with a groundwater mixing ratio of 57% and a temperature
of 73 ◦C, indicating the temperature of the shallow reservoir. The curves of other plots
of geothermal water-dissolved silica and enthalpy intersect at points with a cold water
mixing ratio of 76% and a temperature of 125–150 ◦C, indicating the temperature of the
deep reservoir.

As presented in Table 5, the reservoir temperatures of the geothermal water calculated
using the multimineral equilibrium model and silica–enthalpy model differ from each
other. The multimineral equilibrium model did not consider that groundwater could mix
during the rise of geothermal water. The estimated temperature corresponds to the new
equilibrium after groundwater mixing. On the contrary, the silica–enthalpy model removed
the effect of groundwater mixing, yielding a more reasonable temperature for the deep
reservoir. The results show that the shallow heat storage temperature was 73 ◦C and the
deep heat storage temperature was 125–175 ◦C.

Table 5. Calculated geothermal reservoir temperatures of the geothermal field in the study area
(T in ◦C).

Tgw TQ TC TMul TS-E

WQ-01 39.5 73.79 53.36 85 80

DR-02 40 87.52 68.49 98 120
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Table 5. Cont.

Tgw TQ TC TMul TS-E

DR-01 38.4 91.26 73.21 72 135

YG1 28.7 95.02 78.42 90 175

YG2 30 92.54 74.91 79 172

YG6 34 89.56 71.01 82 145
Note(s): Tgw denotes the temperature of geothermal water from wells. TQ denotes the temperature determined
by a Quartz geothermometer. TC denotes the temperature determined by a Chalcedony geothermometer. TMul
denotes the temperature estimated according to the solubility equilibrium of the mineral–geothermal water
system. TS-E denotes the reservoir temperature determined using the silica–enthalpy model.
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4.3. Recharge Sources of Geothermal Water

Table 1 shows the analytical results of stable isotopes. The geothermal water samples
yielded δ2H and δ18O values of −10.6–−9.5‰ and −82–−74‰, respectively. As shown in
the δ2H vs. δ18O plot (Figure 11), all the geothermal and cold water samples fell along the
meteoric water line (δ2H = 5.938δ18O − 17.14) [46], indicating that all kinds of water in the
study area originate from meteoric water [46].
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The effect of elevation on δ18O can be used to evaluate the recharge elevation of
groundwater according to the following equation:

H = (δGw − δPw)/K + Ew (6)

where H is the elevation of a geothermal water recharge area (m); Ew is the elevation of
a geothermal water sampling site (m); δGw is the δ18O (or δ2H) value of the geothermal
water (‰); δPw is the δ18O (or δ2H) value of the meteoric water near the sampling site (‰);
K is the gradient of the δ18O (or δ2H) value of meteoric water, varying with the elevation.
Based on the relationships between the elevation and the stable hydrogen and oxygen
isotopes in meteoric water, this study determined the K value of δ18O as −0.26‰/100 m.
The δ2H and δ18O values of river samples were −54.31‰ and −6.39‰, respectively [57].
Based on regional geographical characteristics, the recharge elevations in the Yanggao
geothermal field were about 1129–1156 m (Table 6), and the recharge meteoric water might
originate from the Beishan Mountain, which is 5 km to the north.

Table 6. δ2H and δ18O values of water samples from the Yanggao geothermal field.

Water Type Sample δ2HVSMOW
(‰)

δ18OVSMOW
(‰)

Elevation
(m a.s.l.)

Recharge
Elevation
(m a.s.l.)

Thermal water WQ-01 −81 −10.4 1069 1134

Geothermal
well water

DR-02 −82 −11 1069 1136

DR-01 −86 −11.7 1087 1157

YG1 −80 −10.4 1065 1130

YG2 −82 −10.6 1064 1129

YG6 −74 −9.5 1083 1144
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4.4. Water–Rock Interactions

The PHREEQC software is effective in building a water–rock interaction model. Using
this software, this study established a model that could be used to invert the geochemical
characteristics of geothermal water in the study area [58–60]. For this model, rainwater was
taken as the starting point, while a thermal spring and the deepest geothermal well (WQ01
and DR01) acted as the starting and ending parts, respectively.

Potential mineral phases were determined based on the above analysis results of
water–rock interactions and the stratum lithologies in the study area. The Quaternary
strata in the study area primarily include sandy gravel layers consisting of sandy loam
soil and clayey soil. The Tertiary strata are dominated by mudstones and limestones,
interbedded with multiple reticulate gypsum layers. Their primary minerals include halite,
gypsum, mica, calcite, and dolomite. The primary minerals of plagioclase gneiss include
albite, potassium feldspar, biotite, chalcedony, and quartz, accompanied by kaolinite
due to varying degrees of alterations. Hence, the rocks in the study area are dominated
by albite, potassium feldspar, calcite, chalcedony, dolomite, muscovite, gypsum, halite,
and kaolinite, all of which participated in the simulated reaction. Based on the rock
mineral composition and geothermal conditions in the study area, the optimal solution
was selected from the PHREEQC simulation results (Table 7). As the recharge water
migrated and transitioned into geothermal water, its hydrochemical composition changed
due to the precipitation of minerals such as calcite, dolomite, gypsum, and kaolinite,
and the dissolution of albitite, potassium feldspar, chalcedony, halite, and muscovite.
Meanwhile, cation exchange occurred, with Na+ from the solution replacing the Ca2+ in
surrounding rocks.

Table 7. Inversed hydrogeochemical simulation results.

Albite Calcite Chalcedony Dolomite Gypsum K-Feldspar Halite Kaolinite Muscovite

WQ01 4.05 × 10−3 −2.23 × 10−3 8.02 × 102 −5.74 × 10−4 −9.69 × 10−4 −4.01 × 102 3.14 × 10−3 −4.01 × 102 4.01 × 102

DR01 2.56 × 10−3 −1.01 × 10−3 4.09 × 102 −3.54 × 10−4 −8.15 × 10−4 −2.05 × 102 5.71 × 10−4 −2.05 × 102 2.05 × 102

4.5. Conceptual Model

The interpretation of the hydrochemical information and stable isotope data from
the geothermal water can yield (1) the reservoir temperature and the hydrogeochemical
characteristics of the geothermal and cold water in the study area; (2) recharge areas and
circulation depth; (3) water–rock interactions along the path of geothermal water runoff, as
reversely simulated using PHREEQC.

Based on the above results, this study built a conceptual model of the origin of the
Yanggao geothermal field to account for the formation mechanism of geothermal water
in the study area (Figure 12). According to this model, the geothermal water in the study
area was formed as follows: (1) The meteoric water infiltrated deep underground along the
piedmont fault in the northern mountainous area. (2) Then, the meteoric water migrated
through bedrock fractures and was heated under the background of high terrestrial heat
flow as it moved from the recharge area to the discharge area in the central basin. Mean-
while, the hydrochemical composition of the water changed due to the weathering and
dissolution of silicate rocks and evaporates. (3) Finally, under the influence of the high-
pressure hydraulic head, the underground hot water upwelled along the high-permeability
pathways at the intersection of the dominant faults of new structures in the uplift area of
the metamorphic basement. Consequently, the hot water was exposed in the Quaternary
fissured geothermal reservoirs. The continuous mixing of the hot water with cold water
during the upwelling of the former led to moderate- to low-temperature geothermal water
resources (28–45 ◦C) being formed. During the migration, heating, and recharge of meteoric
water, water–rock interactions led to the precipitation of calcite, dolomite, gypsum, and
kaolinite, and the dissolution of albite, potassium feldspar, chalcedony, halite, and mus-
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covite, thus changing the hydrochemical composition of the recharge water. In addition,
cation exchange occurred, increasing the Na+ concentration in the geothermal water.
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5. Conclusions

Based on the hydrochemical characteristics, the test results of stable isotopes, and the
geological setting, this study investigated the hydrogeochemical evolution mechanism of
the Yanggao geothermal system through H and O isotope analysis, hydrochemical analysis,
and inverse modeling. The findings allow to the following conclusions:

(1) The geothermal water in the Yanggao geothermal field has temperatures of 28.7–40 ◦C
and TDS contents of 282–580 mg/L. It is mainly of the Na–Cl–HCO3 or Na–HCO3–Cl type,
suggesting lightly alkaline to alkaline water. Furthermore, it has δD and δ18O values from
−82‰ to −74‰ and from −10.6‰ to −9.5‰, respectively;

(2) The combination of suitable classical geothermometers and geothermal simulation
calculations proves to be an effective means of evaluating the temperature of geothermal
reservoirs. The geothermal water in the study area has not reached equilibrium due to the
mixing of cold water in a relatively open environment. A SiO2-chalcedony geothermome-
ter and a multimineral equilibrium diagram indicate the existence of deep and shallow
reservoirs in the study area. The shallow reservoirs exhibit a temperature of 73 ◦C, with a
cold water mixing ratio of approximately 57%. The deep reservoirs display temperatures
ranging from 125 to 150 ◦C, with a cold water mixing ratio of approximately 76%;

(3) As indicated by the hydrochemical composition analysis, the hydrochemical com-
position of geothermal water in the Yanggao area primarily results from the weathering
and dissolution of silicate rocks and evaporites, accompanied by reverse cation exchange
and adsorption. This study evaluated the origin of major ions in the geothermal water
through inverse modeling using PHREEQC. The major hydrogeochemical processes in
the geothermal water involve the dissolution of calcite, dolomite, gypsum, and kaolin-
ite, and weak cation exchange, which together change the hydrochemical composition of
the groundwater;

(4) The isotopic compositions (δD and δ18O) suggest that the geothermal water in
the study area originates from meteoric water recharge at elevations ranging from 1129 to
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1144 m. The meteoric water recharge might originate from the Beishan Mountain, which is
about 5 km to the north.
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