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Abstract: A correct determination of irrigation water requirements necessitates an adequate estima-
tion of reference evapotranspiration (ETo). In this study, monthly ETo is estimated using artificial
neural network (ANN) models. Eleven combinations of long-term average monthly climatic data
of air temperature (min and max), wind speed (WS), relative humidity (RH), and solar radiation
(SR) recorded at nine different weather stations in Tunisia are used as inputs to the ANN models to
calculate ETo given by the FAO-56 PM (Penman–Monteith) equation. This research study proposes to:
(i) compare the FAO-24 BC, Riou, and Turc equations with the universal PM equation for estimating
ETo; (ii) compare the PM method with the ANN technique; (iii) determine the meteorological parame-
ters with the greatest impact on ETo prediction; and (iv) determine how accurate the ANN technique
is in estimating ETo using data from nearby weather stations and compare it to the PM method. Four
statistical criteria were used to evaluate the model’s predictive quality: the determination coefficient
(R2), the index of agreement (d), the root mean square error (RMSE), and the mean absolute error
(MAE). It is quite evident that the Blaney–Criddle, Riou, and Turc equations underestimate or overes-
timate the ETo values when compared to the PM method. Values of ETo underestimation ranged from
1.9% to 66.1%, while values of overestimation varied from 0.9% to 25.0%. The comparisons revealed
that the ANN technique could be adeptly utilized to model ETo using the available meteorological
data. Generally, the ANN technique performs better on the estimates of ETo than the conventional
equations studied. Among the meteorological parameters considered, maximum temperature was
identified as the most significant climatic parameter in ETo modeling, reaching values of R and d
of 0.936 and 0.983, respectively. The research showed that trained ANNs could be used to yield
ETo estimates using new data from nearby stations not included in the training process, reaching
high average values of R and d values of 0.992 and 0.997, respectively. Very low values of MAE
(0.233 mm day−1) and RMSE (0.326 mm day−1) were also obtained.

Keywords: reference evapotranspiration; artificial neural network; Blaney–Criddle; Riou; Turc

1. Introduction

Adequate prediction of ETo is a key factor in the correct estimation of crop water
requirements [1]. According to [2,3], “ETo is the sum of two different ways of water being
lost: water loose from soil, called “evaporation,” and water loose from plants, called
“transpiration”. As suggested by [4], ETo can be defined as “the rate of evapotranspiration
from a hypothetical reference crop with an assumed crop height (12 cm), a fixed crop
surface resistance (70 s m−1), and albedo (0.23), closely resembling the evapotranspiration
from an extensive surface of green grass cover of uniform height, actively growing, and
completely shading the ground with adequate water”.
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The installation of reference evapotranspiration lysimeters in a monitored crop area
can be used to measure ETo in situ through the determination of water balance com-
ponents [3]. High construction and maintenance costs are required for the application
of this method. To remedy this issue, (1) fully physically based combination models;
(2) semi-physically based models; and (3) black-box models were developed [5]. The
fully physically based combination models account for mass and energy conservation
principles [5]. Physical models of evapotranspiration use the principles of physics to de-
scribe how energy and mass are transferred during the evapotranspiration process [6].
These models leverage fundamental physical laws, such as the conservation of energy and
mass, to provide a detailed understanding of the mechanisms involved in the exchange
of energy and water vapor between the Earth’s surface and the atmosphere. By incorpo-
rating factors such as solar radiation, temperature gradients, and atmospheric dynamics,
these models aim to offer a more mechanistic and physically grounded representation of
evapotranspiration phenomena.

The semi-physically based models deal with either mass or energy conservation [5].
These models incorporate aspects of both empirical and physical approaches, combin-
ing theoretical foundations with observed data. The consideration of mass conservation
involves accounting for the movement and distribution of water within the system, en-
compassing factors such as soil moisture dynamics and plant water uptake. On the other
hand, energy conservation-based models focus on the quantification of energy exchanges
within the system, accounting for factors like solar radiation, temperature gradients, and
atmospheric conditions. By integrating these principles, semi-physically based models aim
to provide a more comprehensive and accurate representation of the processes governing
ETo. Among the semi-physically based models used for ETo estimating, we can cite the
PM equation, the Riou equation, the Turc model, and the Blaney–Criddle model [3,7–9].
The PM equation is the most recommended method for ETo estimation [1]. This equation
could also be used to evaluate the effectiveness of other equations in predicting ETo [1].
The black-box models are based on artificial neural networks, empirical relationships, and
fuzzy and genetic algorithms [5]. The author [10] used machine learning approaches for
the prediction of the combined terrestrial evapotranspiration index (CTEI) over the large
river basin.

During the past decades, there has been a particular emphasis on the application of
artificial neural networks (ANNs) in various fields of study [11]. ANNs can be defined as
an imitation of the biological nervous systems in the human brain [12,13]. ANNs are made
up of interconnected nodes, called artificial neurons, which are arranged into layers. There
is an input layer, one or more hidden layers, and an output layer that formats these layers.
Each connection between neurons has a weight, which determines how much influence
one neuron has on another. The author [14] mentioned that ANNs are a powerful tool able
to resolve complex problems that are difficult to define mathematically.

Various studies on application of ANNs in the area of reference evapotranspiration
modeling have been published recently [14–21]. Other applications of ANN in relation to
ETo have been reported, such as irrigation scheduling [22–24], water management [25,26],
and weather prediction [27,28]. Nearly all of these studies checked how accurate their
ETo ANN estimates were against FAO-56 PM estimates [29–32]. Conventional methods
of ETo estimating were also used to compare the ETo estimates by ANN [33–35]. Various
studies looked at how accurate ANN models were at predicting ETo using data from nearby
weather stations that were not used in the training process [36–39].

Artificial neural network models have already been used in several studies for estimat-
ing ETo in arid, semi-arid, and hyper-arid regions [40–42]. This technique has demonstrated
significant efficiency in estimating evapotranspiration (ETo) from a minimal set of climatic
data [20,40,43–45] concluded that using limited input variables (three or two) for training
the ANN results in ETo values with slightly lower accuracy for a weather station in north-
ern Greece. The author [43] pinpointed that when taking into account just the maximum
and minimum air temperatures, it is possible to estimate ETo in Campos dos Goytacazes.
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ANNs are also employed to estimate ETo for the purpose of addressing climate change
impacts [46]. The results disclosed that ANN can efficiently predict future ETo in the Girne
and Larnaca regions of Cyprus.

Recently, Tunisia has been dealing with water scarcity, highlighting the pressing chal-
lenges linked to the limited availability of water in the country. The effects of climate
change make the situation worse by escalating the problems related to water scarcity [47].
As a conclusion, threats to irrigated agriculture continue to rise; there is an increasing
demand for the precise determination of water requirements for irrigated crops. Unfor-
tunately, the lack of scientific research addressing the most suitable formula, particularly
with limited input data, for estimating ETo in the Tunisian context remains a significant
gap. Additionally, the utilization of ANN for ETo estimation in Tunisia is an area where
research is currently lacking. The determination of the accurate ETo estimation formula
could contribute to the development of accurate and region-specific water management
strategies. On the other hand, the exploration of advanced methods, such as ANN for ETo
estimating, could enhance the precision of water resource assessments and contribute to
more effective and sustainable agricultural practices in the region.

As we mentioned previously, carrying out experiments to measure ETo requires high
construction and maintenance costs for specific equipment. Several authors indicated
that without any assumptions or knowledge about the underlying principles, ANN is an
effective tool for modeling nonlinear processes, as it requires few inputs and is able to
precisely extract the generalized relationship between input and output data without any
understanding of the physical process involved [48–50]. Other methods, such as linear
regression, may struggle to capture non-linearity and complex relationships in the data.
The decision tree technique is a simple method to understand and can model complex
interactions, but it is sensitive to noise in the data and may not generalize well. The support
vector machine (SVM) technique is effective in high-dimensional spaces and works well in
complex domains, but it is computationally intensive and requires a careful selection of
hyperparameters. With ANNs, the accuracy increases with increasing available data [51,52].
Furthermore, ANNs are known for their ability to adapt to complex patterns and learn
complicated relationships within the data, especially in situations where the underlying
processes are not well understood. With proper training and regularization, ANNs can
generalize well to unseen data, addressing concerns related to overfitting. Additionally,
ANNs are very effective for large datasets and suitable for a wide range of applications,
such as evapotranspiration estimation.

The main objectives of this research were (i) to compare the BC, Riou, and Turc
equations with the universal FAO-56 PM equation for estimating ETo; (ii) to compare
the FAO-56 PM method with the ANN technique; (iii) to determine the most influential
meteorological parameter on ETo estimation; and (iv) to determine how accurate the ANN
technique is in estimating ETo using data from nearby weather stations and to compare it
to the PM method.

2. Materials and Methods
2.1. Research Area

The research has been conducted in nine different locations in the center and north
of Tunisia, positioned between 35.00◦ and 36.85◦ N in latitude and 8.08◦ and 11.1◦ in
longitude (Table 1). Among the nine studied locations (Figure 1), three of them are used
for training and testing phases, and the remaining are used for estimating ETo in nearby
weather stations (production phase), as listed in Table 1. The studied regions are char-
acterized by agricultural activities with irrigated and rainfed crops. The most important
irrigated crops in these regions are arable crops (wheat and barley), orchards (citrus fruits,
peach, olive, grapevine, etc.), and vegetable crops (tomato, potato, chili, etc.). Livestock
farming also exists in the studied regions, which relies on the cultivation of irrigated
alfalfa and maize crops for feeding the animals. These agricultural activities require an



Water 2024, 16, 602 4 of 29

adequate determination of water requirements, which necessitates a correct estimation of
reference evapotranspiration.

Table 1. Geographic coordinates (latitude, longitude, and altitude), Emberger’s index, and the
bioclimatic zone of the nine used weather stations.

Name Latitude
(◦)

Longitude
(◦) Altitude (m) Annual Rainfall

(mm) Emberger’s Index Bioclimatic Zone

Training and testing phase
Jendouba 36.48◦ N 08.80◦ E 143.0 451.2 34.9 Semi-arid
Kairouan 35.66◦ N 10.10◦ E 60.0 293.1 24.1 Arid
Kélibia 36.85◦ N 11.08◦ E 29.0 535.9 60.9 Semi-arid

Production phase
Beja 36.73◦ N 09.23◦ E 158.0 553.9 42.1 Semi-arid
Le Kef 36.13◦ N 08.23◦ E 518.0 477.9 36.7 Semi-arid
Tunis 36.85◦ N 10.23◦ E 4.0 473.0 41.1 Semi-arid
Bizerte 37.25◦ N 09.08◦ E 3.0 617.6 52.5 Semi-arid
Siliana 36.07◦ N 09.34◦ E 443.0 441.5 34.2 Semi-arid
Sidi Bouzid 35.00◦ N 09.48◦ E 354.0 248.5 19.5 Arid
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The studied regions are characterized by rainfall variability ranging from 248.5 mm
in the Sidi Bouzid regions to 617.6 mm in the Bizerte region (Table 1). In these regions,
seventy-seven percent (77%) of rainfall falls during the wet season (from October to April),
with the highest rainfall typically falling in January (an average of 14% of total average
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annual rainfall). To describe the climate of the considered regions of this study, we have
calculated the Emberger quotient (Q2) [53] as follows:

Q2 =
2000 × P
M2 − m2

(1)

where P is the average annual precipitation (mm), M is the average maximum temperature
of the hottest month (◦K) (T + 273 ◦K), and m is the average minimum temperature of the
coldest month (◦K) (T + 273 ◦K).

Results showed that most of the studied regions belong to the semi-arid bioclimatic
level or zone, with values of Q2 ranging from 34.2 to 60.9, except the regions of Kairouan
and Sidi Bouzid, with values of Q2 of 24.1 and 19.5, respectively (Table 1) [53]. The values
of Q2 shown by Kairouan and Sidi Bouzid are a little bit close to those characterizing the
semi-arid bioclimatic zone.

2.2. Meteorological Data Overview

Monthly climate data from the weather stations is used, including wind speed (WS),
solar radiation (SR), relative humidity (RH), maximum temperature (Tmax), and minimum
temperature (Tmin). The climatic data used in the study is sourced from the National
Institute of Meteorology in Tunisia (NIM), which provides reliable meteorological data.
To ensure accuracy, the NIM has installed different kinds of sensors for measuring air
temperature (thermometer), relative humidity (hygrometer), wind speed (anemometer),
and solar radiation (pyranometer) in a controlled environment covered with grass as a
reference crop. These sensors, installed 2.0 m above the ground, continuously register
these climatic parameters at an hourly interval, and the collected data are transmitted
to a computing system. The Penman–Monteith formula is then applied to calculate the
daily ETo values (24 h), providing a robust and scientifically grounded foundation for our
study. The 24 h calculation time step has proven to be relatively consistent and accurate for
estimating ETo [8,54,55]. The author [54] recommended that no changes are suggested for
the FAO-56 PM method for daily (24-h) time steps, where the use of surface resistance of
70 s m−1 should continue. Some weather stations are equipped with a Class A Evaporation
Pan, which is a standardized measurement of water loss through evaporation.

We should indicate that these climatic parameters are commonly recognized as im-
portant factors influencing evapotranspiration processes. Wind speed plays a crucial role
in determining the rate of evaporation by affecting the exchange of moisture between the
land surface and the atmosphere. Higher wind speeds generally enhance evaporation rates,
as they promote faster moisture transfer and reduce the resistance of the boundary layer.
Temperature (minimum and maximum) affects the rate of evapotranspiration through its
impact on both evaporation and transpiration. Higher temperatures generally increase the
vapor pressure deficit, leading to higher evapotranspiration rates. The mean temperature
represents the average temperature over a specific period and provides a measure of the
overall thermal conditions. It helps capture the cumulative effect of temperature on evapo-
transpiration. Solar radiation is a key driver of evapotranspiration, as it provides the energy
required for water phase changes. It affects the availability of energy for evaporation and
influences the vapor pressure deficit. Relative humidity represents the amount of moisture
present in the air relative to its capacity at a given temperature. It influences the vapor
pressure deficit and thus affects the potential for evaporation. By including these specific
parameters in the ANN model, the study aims to account for the key climatic factors that
contribute to evapotranspiration processes. The selection of the input parameters used in
the ANN model was also based on data availability and a literature review. The availability
of historical climatic data for the study area is essential. The literature review and references
provide us with guidance and recommendations about the most important parameters that
can be used for reference evapotranspiration modeling.

Table 2 presents the statistical parameters for each variable, such as the mean (Xmean),
standard deviation (Sx), coefficient of variation (Cv), skewness coefficient (Csx), minimum



Water 2024, 16, 602 6 of 29

(Xmin), and maximum (Xmax). In order to detect the meteorological parameters that most
contribute to variations in ETo, we performed a correlation analysis between the FAO-56
PM ETo estimates and each input meteorological parameter (Table 2). The results displayed
that the highest correlation coefficients were for Tmax (R = 0.937), followed by SR (R = 0.900)
and Tmin (R = 0.817). Wind speed showed a very low value of R, with an average value
of 0.030. Relative humidity (RH) displayed a negative coefficient of correlation averaging
−0.797, which means that reference evapotranspiration decreases when RH increases. The
higher the temperatures rise, the more solar radiation received by the vegetation canopy
increases. According to [3], evaporation and transpiration rates increase to satisfy the
higher demand for water from the surrounding air. Figure 2 shows the seasonal variation
of reference evapotranspiration with respect to elevation.

Table 2. The monthly statistical parameters of each data set for each training weather stations.

Data Tmin
(◦C)

Tmax
(◦C)

RH
(%)

WS
(m s−1)

SR
(MJ m−2 d−1)

EToPM
(mm d−1)

Jendouba weather station
Xmean 5.8 32.9 66.4 5.3 7.2 6.9
Xmin −4.0 16.6 40.0 2.5 2.7 1.8
Xmax 18.6 48.5 84.0 8.9 12.9 15.7

SX 5.8 8.6 9.8 1.0 2.0 3.4
CV 0.99 0.26 0.15 0.19 0.28 0.50
CSX 0.34 0.02 −0.51 0.79 0.23 0.49

R 0.84 0.96 −0.92 0.28 0.88 1.00
Kairouan weather station

Xmean 9.4 33.4 59.5 4.6 17.5 6.8
Xmin −3.1 18.2 39.0 2.5 7.8 2.0
Xmax 21.8 48.1 79.0 10.6 28.3 13.3

SX 6.3 7.8 7.0 0.9 6.0 2.7
CV 0.67 0.23 0.12 0.20 0.34 0.40
CSX 0.25 0.03 −0.03 1.22 0.04 0.34

R 0.81 0.94 −0.80 0.08 0.91 1.00
Kélibia weather station

Xmean 10.1 26.5 73.8 5.2 16.9 4.4
Xmin −1.0 15.2 64.0 3.3 6.8 1.8
Xmax 21.0 42.0 82.0 8.6 28.1 9.1

SX 5.4 5.9 3.1 0.9 6.5 1.7
CV 0.53 0.22 0.04 0.17 0.38 0.38
CSX 0.23 0.26 −0.37 0.50 0.06 0.50

R 0.80 0.91 −0.67 −0.27 0.91 1.00
Xmean = mean value, Xmin = minimum value, Xmax = maximum value, SX = standard deviation, CV = coefficient of
variation, CSX = skewness coefficient, Tmin = minimum temperature, Tmax = maximum temperature, RH = relative
humidity, WS = wind speed, SR = solar radiation, and EToPM = Penman–Monteith reference evapotranspiration.

It seems that there is a significant variation in the values of ETo based on the region’s
altitude. The results indicate a positive correlation between altitude and evapotranspiration
for the spring and summer seasons, while the correlation is less pronounced in the fall and
practically absent in the winter. During the summer, ETo values increase with altitude,
indicating a positive relationship. This could be attributed to factors such as a decrease in
average temperature and a reduction in potential evaporation at higher altitudes. The high
correlation coefficient (0.56) suggests a moderate relationship between altitude and ETo in
the summer. During the spring, the positive correlation (R = 0.51) also indicates an increase
in ETo with altitude in the spring. However, it is crucial to analyze other potential variables
influencing this relationship, such as variations in solar radiation and relative humidity. For
the fall season, although the correlation is positive (R = 0.38), it is less pronounced. Seasonal
factors that are specific to a given region, such as less precipitation and cooler temperatures,
may help to explain this. The very low correlation in winter (R = 0.03) suggests an almost
non-existent relationship between altitude and ETo during this season. Seasonal variations
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specific to winter, such as the presence of snow or reduced sunlight, might influence
these results.
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2.3. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) are an imitation of the structure and function of
biological nervous systems [12,13]. This study used a modular feed-forward neural network
(MFFNN), which is a type of ANN and the simplest form of neural network. In an MFFNN
neural network, the information flows in one direction from input to output (Figure 3).
MFFNN consists of one input layer, one or more hidden layers, and one output layer [56].
The hidden layer is composed of several neurons, also called nodes. The number of PEs
was determined empirically by trial and error. The NeuroSolution software (version 5.0) is
used in this study [57]. MFFNNs are trained using the Momentum learning algorithm.
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A total of 396 monthly climate data points were collected for the regions, and they
were divided into three groups. Fifty percent (50%) for training the MFFNN (from January
1974 to June 1990), 25% for cross-validation (from July 1990 to September 1998), and
25% for testing (from October 1998 to December 2006). Figure 4 represents the flowchart
of ANN, which is a visual roadmap, delineating the sequential processes from input
reception to output generation and providing a clear and systematic representation of the
ANN’s functioning.
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For training the MFFNN, only the data from three weather stations was used, as listed
in Table 1. The three weather stations belong to different locations in Tunisia. Jendouba
is in the northwest, Kairouan is in the center, and Kélibia is situated in a coastal region of
Tunisia. The underlying idea was to train MFFNN for these three distinct locations. By
using these pre-trained models, the goal was to estimate ETo for other regions with the
same climatic characteristics without going through the entire training process, which is
a time-consuming process. The MFFNN trained for the weather station in Jendouba was
used to estimate ETo for the Beja and Le Kef weather stations. During the training process,
the option of the use of genetic algorithm (GA) for optimizing the weights of connections
between neurons was used. By leveraging the GA, we systematically explored and adjusted
the weights, biases, and potentially the architecture of the ANN. This iterative optimization
aimed to discover the most effective combination of parameters that would minimize the
prediction error and enhance the overall performance of the model. The use of the GA
provided a systematic and efficient approach to navigate the complex parameter space,
contributing to the improved accuracy and reliability of the optimized model.

The MFFNN trained for the weather station in Kairouan was used to estimate ETo for
the Siliana and Sidi Bouzid weather stations. The MFFNN trained for the weather station
in Kélibia was used to estimate ETo for Tunis and Bizerte weather stations. This approach
allowed for generalizing the estimates to diverse geographical locations without the need
to repeat the training process.

To improve the generalization capacity of the ANN, a normalization process was
applied to both the input and output data. This normalization was carried out to scale the
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data values within a specific range, which in this case was set to range from 0 to 1. The
normalization process followed this equation:

Xnorm =
Xi − Xmin

Xmax − Xmin
(2)

where Xnorm is the normalized value of the data point; Xi is the original value of the data
point; Xmin is the minimum value in the data set; and Xmax is the maximum value in the
data set.

To make a correct comparison between the FAO-56 PM and MFF neural network
models for ETo estimation, the same data set used to apply the FAO-56 PM equation was
also applied to train MFF neural network models. The calculated values of ETo, using
the FAO-56 PM equation, were employed as desired data for NeuroSolution software
(Version 5.0) execution. The most effective set-up was identified using 1 and 2 hidden
layers, from 1 to 30 PE in each hidden layer, and 1000 to 10,000 iterations.

2.4. Modular Feedforward Neural Network Combinations (MFF)

Different combinations of the input parameters were used to train the MFFNN models
to estimate daily ETo. A total of eleven (11) combinations are constructed and are listed
in Table 3. The first six MFF are one-variable models that each use one parameter inde-
pendently designed to study the influence of each parameter on the estimation of ETo.
The remaining five MFF models each use combinations of two or more meteorological
parameters to study how they interact with each other to impact ETo estimation.

Table 3. The input variables used in the modular feed-forward (MFF) neural network models.

Model Denomination Input Variables

MFF-1 WS
MFF-2 Tmin
MFF-3 Tmax
MFF-4 Tmean
MFF-5 SR
MFF-6 RH
MFF-7 Tmax and SR
MFF-8 Tmax, SR and Tmin
MFF-9 Tmax, SR, Tmin and RH
MFF-10 Tmax, SR, Tmin, RH and WS
MFF-11 Tmean, SR and RH

• The MFF-1 model utilizes WS as its main input. This model focuses on analyzing and
interpreting WS data, which can be crucial in various applications such as in sprinkler
irrigation network design;

• The MFF-2 model is centered on the input variable of minimum temperature (Tmin).
It is specifically designed to analyze the variations in Tmin, making it suitable for
studying nighttime weather conditions and frost risks;

• The MFF-3 model is based on the input variable of maximum temperature (Tmax), and
it will also be used to make a comparison with the Turc equation for ETo estimation [8];

• The MFF-4 model focuses on the input variable of mean temperature (Tmean), and it
is used to make a comparison with the FAO 24 Blaney–Criddle model [9];

• The MFF-5 model is based on the input variable of solar radiation (SR). It is specif-
ically designed to analyze and interpret SR levels, which can be relevant in solar
energy applications;

• The MFF-6 model is centered on the input variable of relative humidity (RH). It is
tailored to analyze and interpret relative humidity levels, which can be important in
fields such as agriculture, meteorology, or human health;
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• The MFF-7, MFF-8, MFF-9, and MFF-11 models involve combinations of multiple input
variables, and they were designed to study the influence or the interaction between
climatic parameters;

• The MFF-10 model has all the parameters that CropWat 8.0 needs to figure out ETo
using the FAO-56 PM equation.

2.5. Models’ Performance

The predictive quality of the models was assessed using four statistical criteria: (i) the
coefficient of correlation (R), the index of agreement (d), the mean absolute error (MAE),
and the root mean square error (RMSE).

The coefficient of correlation (R) is a statistical measure of the strength of the relation-
ship between the observed and forecasted data [58]. Values of R approaching 1.0 indicate
strong model performance.

R =
∑n

i=1
(
Xi − X

)
×

(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2 × ∑n
i=1

(
Yi − Y

)2
(3)

The index of agreement (d) is a statistical measure of the degree of agreement between
two continuous variables varying from 0.0 to 1.0 [59]. Index of agreement values close to
1.0 indicate a good fit between measured and predicted ETo.

d = 1 − ∑n
i=1(Yi − Xi)

2

∑n
i=1

(∣∣Yi − X
∣∣+ ∣∣(Xi − X

)∣∣)2 (4)

The root mean square error (RMSE) assesses the disparity among measured and
predicted data [60]. Lower values of RMSE mean good model performance.

RMSE =

√
∑n

i=1(Xi − Yi)
2

n
(5)

The mean absolute error (MAE) measures the average absolute discrepancy between
measured and predicted values in a dataset. Values of MAE can range from 0 to infinity,
and lower values indicate greater predictive accuracy of the model [61].

MAE =
1
n
×

n

∑
i=1

|Xi − Yi| (6)

where Xi is the measured value, Yi is the estimated value, n is the number of observations,
X is the average measured value, and Y is the average estimated value.

3. Results and Discussion
3.1. Comparison of ETo Conventional Estimation Equations

Table 4 provides the statistical results of the most commonly used ETo estimation
models used in Tunisia (the Blaney–Criddle, Riou, and Turc models) during the period
of 1974–2006 for the weather stations of Jendouba, Kairouan, and Kélibia. The results
have been contrasted with the universal ETo estimation method of Penman and Monteith
(EToPM). A quotient between the ETo of the evaluated model (EToModel) and the EToPM
model has been calculated to evaluate the degree of estimation.
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Table 4. Statistical results of ETo empirical estimation models during the period of 1974–2006 for the
weather stations of Jendouba, Kairouan, and Kélibia.

Region Model R2 d MAE
(mm d−1)

RMSE
(mm d−1) ETo (mm y−1) EToModel/EToPM

Jendouba

EToPM - - - - 2434.7 -
EToBC 0.88 0.88 1.58 2.09 1901.3 0.781

EToRIOU 0.85 0.94 1.13 1.48 2389.4 0.981
EToTURC 0.90 0.64 3.59 4.13 1177.4 0.484

Kairouan

EToPM - - - - 2399.3 -
EToBC 0.87 0.99 0.85 1.10 2229.2 0.929

EToRIOU 0.82 0.99 0.88 1.15 2421.6 1.009
EToTURC 0.89 0.91 3.14 3.43 1305.6 0.586

Kélibia

EToPM - - - - 1563.1 -
EToBC 0.91 0.98 1.16 1.40 1954.1 1.250

EToRIOU 0.89 0.99 0.57 0.71 1705.7 1.091
EToTURC 0.92 0.98 1.14 1.25 1178.1 0.754

For the region of Jendouba, it is clear that the three evaluated models underesti-
mated the reference evapotranspiration compared to the PM model (Figure 5). The per-
centage of underestimation varies widely from one model to another (21.9% for EToBC,
1.9% for EToRIOU, and 66.1% for EToTURC). With performance metrics of 0.850 (R2),
1.130 mm day−1 (MAE), and 1.480 mm day−1 (RMSE), the Riou model exhibited outstand-
ing results.
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Figure 6a shows that the underestimation of EToRIOU was concentrated principally
during the dry season. On the other hand, it was clear that the Turc model could not
estimate the real value of ETo for the region of Jendouba. The performance analysis
revealed that the EToTURC model demonstrated comparatively inferior results, with R2,
MAE, and RMSE values of 0.90, 3.59 mm day−1, and 4.13 mm day−1, respectively. Figure 6a
reveals that the underestimation of EToTURC is distributed throughout the entire period of
study (1974–2006) and becomes more pronounced during the dry season.

Regarding the region of Kairouan, the BC and Turc models underestimated the value
of ETo compared to the PM model, with percentages of underestimation of 7.1% and 45.6%,
respectively (Figure 5). The Riou model overestimated the value of ETo compared to the
PM model with a percentage overestimation of 0.9%. Contrary to this, the BC model
showcased superior performance statistics, achieving values of 0.87 for R2, 0.85 mm day−1

for MAE, and 1.10 mm day−1 for RMSE. The underestimation of EToBC is evenly distributed
throughout the entire study period (1974–2006) (Figure 6b), with an average value of
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0.5%. Regarding the Jendouba region, the EToTURC model demonstrated less favorable
performance statistics, registering values of 0.89 for R2, 3.14 mm day−1 for MAE, and
3.42 mm day−1 for RMSE. Figure 6b reveals that the underestimation of EToTURC is
distributed throughout the entire period of study (1974–2006) and becomes two to three
times higher during the dry season.

Water 2024, 16, x FOR PEER REVIEW 12 of 31 
 

 

 

 

 

Figure 6. Monthly reference evapotranspiration calculated with different methods for the Jendouba 
(a), Kairouan (b), and Kélibia (c) weather stations. 

Table 4. Statistical results of ETo empirical estimation models during the period of 1974–2006 for 
the weather stations of Jendouba, Kairouan, and Kélibia. 

Region Model R2 d MAE 
(mm d−1) 

RMSE 
(mm d−1) ETo (mm y−1) EToModel/EToPM 

Jendouba 
EToPM - - - - 2434.7 - 
EToBC 0.88 0.88 1.58 2.09 1901.3 0.781 

EToRIOU 0.85 0.94 1.13 1.48 2389.4 0.981 

Figure 6. Monthly reference evapotranspiration calculated with different methods for the Jendouba
(a), Kairouan (b), and Kélibia (c) weather stations.



Water 2024, 16, 602 13 of 29

For the region of Kélibia, the results show that the BC and Riou models overestimated
the ETo values compared to the PM model, with percentages of overestimation of 25.0% and
9.1%, respectively (Figure 5). On the other hand, the Turc model continues to underestimate
ETo values with a percentage of 24.6%. In terms of performance metrics, the Riou model
showcased the most favorable outcomes, recording 0.89 for R2, 0.57 mm day−1 for MAE,
and 0.71 mm day−1 for RMSE. The overestimation of the EToRIOU values is more or less
evenly distributed throughout the study period (1974–2006), with an average value of 0.4%,
and becomes more accentuated during the dry season, as shown in Figure 6c. The same
conclusion can be drawn for the Turc model as for the Jendouba and Kélibia regions, with
an ETo underestimation of 24.6%.

The evaluation suggests that both EToBC and EToRIOU equations can be used for
estimating evapotranspiration in the given regions. EToRIOU generally performs slightly
better than EToBC in terms of MAE and RMSE, indicating higher accuracy. However,
EToBC tends to have slightly higher R2 values, indicating a better fit with the data. For the
three studied regions, the statistical performance of the EToTURC model compared to the
PM model does not encourage its use for estimating ETo.

Overall, the choice of ETo calculation method appeared to influence the accuracy of ETo
estimation in the evaluated regions. These findings highlight the importance of selecting
an appropriate ETo calculation method based on regional characteristics and the desired
level of accuracy in estimating evapotranspiration. These region-specific factors in Tunisia
can contribute to the observed differences in the performance of the EToBC and EToRIOU
formulas across different localities. It is important to consider these regional parameters
when choosing the most appropriate method for estimating reference evapotranspiration
in each Tunisian region.

3.2. Hiding Layers and Neurons Determination

According to the study by [15], it is possible to determine the nonlinear complex
relationship for ETo by using a single hidden layer (HL). In this study, we seek to further
investigate the effectiveness of model performance by employing a configuration with two
HLs. The selection of the HL’s neurons was accomplished through a process of trial and
error. ANNs were trained by varying the number of PEs, ranging from 1 to 20. Following
each training iteration, the RMSE, the MAE, and the R2 were computed exclusively using
the test dataset. This iterative approach aimed to identify the most suitable number of
hidden nodes that resulted in optimal model performance. Two configurations of modular
feed-forward neural networks were tested: a first configuration with only one hiding layer
(1 HL) and a second configuration with two hiding layers (2 HL).

Figure 7 illustrates how altering the number of PE within the HL impacts the accuracy
of the network. In this research, the ideal number of PE within the HL was determined
to be nineteen (19) for the “1 HL” configuration. This determination was reached by
considering the criteria of minimizing RMSE and MAE while simultaneously maximizing
R2. The model attained an R2 value of 0.995, a MAE of 0.183 mm day−1, and a RMSE
of 0.323 mm day−1. When using two hiding layers, the best configuration was found to
have seven PEs, which gave excellent performance metrics of 0.997 for R2, 0.139 mm day−1

for MAE, and 0.209 mm day−1 for RMSE. Comparing the first configuration, there is a
decrease in MAE and RMSE by 24.6% and 35.3%, respectively. On the other hand, there
is a small increase in the R2 value of 0.2%. Therefore, the model configuration featuring
two hidden layers and seven neurons (2-7-1) was selected as it yielded the most favorable
outcomes, and this configuration was subsequently employed to accurately model the ETo.
Subsequently, the research conducted a comparison between the estimated ETo obtained
through the modular feed-forward neural network (MFF) and the values calculated using
the FAO-56 Penman–Monteith (PM) model.
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Several research studies have used the FAO-56 PM method to figure out ETo using the
ANN technique. They found that the best ANN configuration usually has more than one
HL and less than ten PE [13,19,29,38,43,62]. The author [43] used multilayer perceptron
ANN (MLP) for estimating ETo as a function of the maximum and minimum temperatures
of the air. They found that the best network configuration is 4-6-1 with six PE in the HL and
R2 values ranging from 0.81 to 0.84. The author [19] developed a generalized ANN (GANN)
corresponding to the FAO-56 PM estimation method. They determined that the optimal
GANN architecture is 6-7-1, consisting of seven neurons in each hidden layer, achieving
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an impressive R2 value of 0.94 when comparing observed and predicted ETo estimates.
In a similar vein, the author [29] constructed an ANN for ETo estimation, utilizing eight
neurons in each hidden layer and achieving low RMSE values of 0.223 mm day−1.

3.3. Most Influential Meteorological Parameters on ETo Modeling

The study uses MFF models with different combinations of six meteorological param-
eters as inputs (Table 3) to find out how much these parameters affect the estimate of ETo.
The first six MFF models each use one parameter independently. The remaining five MFF
models each use combinations of two or more parameters.

Table 5 presents the accuracy of the MFF models during the testing period for Jendouba,
Kairouan, and Kélibia weather stations. Each model is evaluated based on its R2, d, MAE,
and RMSE values. Figures 8–10 show a comparison of ETo estimates predicted using the
MFF (ETo_MFF) and FAO-56 PM (ETo_PM) methods for the weather stations in Jendouba,
Kairouan, and Kélibia, respectively.

Table 5. The performance of the models during the testing period for Jendouba, Kairouan, and Kélibia
weather stations. The coefficient of determination (R2), the index of agreement (d), the mean absolute
error (MAE, mm day−1) and the root mean square error (RMSE, mm d-1) are calculated.

Model Inputs R2

(-)
d
(-)

MAE
(mm day−1)

RMSE
(mm day−1)

Jendouba

MFF-1 WS 0.069 0.449 2.869 3.407
MFF-2 Tmin 0.670 0.886 1.580 1.989
MFF-3 Tmax 0.936 0.983 0.704 0.894
MFF-4 Tmean 0.868 0.964 1.005 1.252
MFF-5 SR 0.789 0.939 1.280 1.620
MFF-6 RH 0.846 0.956 1.050 1.359
MFF-7 Tmax and SR 0.962 0.989 0.552 0.726
MFF-8 Tmax, SR and Tmin 0.961 0.988 0.572 0.779
MFF-9 Tmax, SR, Tmin and RH 0.967 0.991 0.496 0.682

MFF-10 Tmax, SR, Tmin, RH and WS 0.993 0.998 0.209 0.293
MFF-11 Tmean, SR and RH 0.961 0.988 0.572 0.779

Kairouan
MFF-1 WS 0.020 0.424 2.303 2.865
MFF-2 Tmin 0.685 0.901 1.208 1.531
MFF-3 Tmax 0.919 0.978 0.632 0.784
MFF-4 Tmean 0.844 0.957 0.877 1.101
MFF-5 SR 0.847 0.955 0.909 1.121
MFF-6 RH 0.613 0.879 1.335 1.686
MFF-7 Tmax and SR 0.945 0.983 0.588 0.724
MFF-8 Tmax, SR and Tmin 0.950 0.986 0.541 0.659
MFF-9 Tmax, SR, Tmin and RH 0.955 0.987 0.508 0.638

MFF-10 Tmax, SR, Tmin, RH and WS 0.993 0.997 0.229 0.284
MFF-11 Tmean, SR and RH 0.921 0.977 0.669 0.836

Kélibia
MFF-1 WS 0.015 0.253 1.410 1.709
MFF-2 Tmin 0.706 0.900 0.737 0.930
MFF-3 Tmax 0.833 0.950 0.597 0.703
MFF-4 Tmean 0.795 0.937 0.639 0.775
MFF-5 SR 0.840 0.955 0.569 0.702
MFF-6 RH 0.604 0.856 0.910 1.089
MFF-7 Tmax and SR 0.968 0.991 0.245 0.312
MFF-8 Tmax, SR and Tmin 0.975 0.992 0.237 0.294
MFF-9 Tmax, SR, Tmin and RH 0.984 0.994 0.213 0.261

MFF-10 Tmax, SR, Tmin, RH and WS 0.994 0.998 0.110 0.146
MFF-11 Tmean, SR and RH 0.964 0.991 0.259 0.324
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For the three studied regions and within the individual MFF evaluated models (from
MFF-1 to MFF-6), the maximum temperature (Tmax), evaluated by the MFF-3, was the most
influential meteorological parameter on ETo estimation (Table 5). The MFF-3 statistical
performance results ranged from 0.883 to 0.936, 0.950 to 0.983, 0.597 to 0.704 mm day−1,
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and 0.703 to 0.894 mm day−1 for, respectively, R2, d, MAE, and RMSE. Among the six mete-
orological parameters considered in this case study, Tmax is the most accurate predictor of
ETo. However, adding solar radiation to the MFF-7 input combination made the model
work much better, with R2 and d average values going up by 7.1% and 1.8%, respectively. A
decrease in MAE and RMSE average values was also noted (29.2% and 27.4%, respectively).
The author [11] also found that Tmax was the most influential parameter for accurate
estimation of ETo at three weather stations (Santa Monica, Claremont, and Pomona).

On the other hand, according to the MFF-1’s evaluation, wind speed (WS) had the least
impact on ETo estimation (Table 5). Actuating individually, WS caused the highest values
of MAE and RMSE, ranging from 1.410 to 2.869 mm day−1 and 1.709 to 3.407 mm day−1,
respectively. The values of R2 and d were the lowest and ranged from 0.015 to 0.069 and
0.253 to 0.449, respectively. The addition of WS to the input combination of the MFF-10
model improves its accuracy compared to the MFF-9 model, as evidenced by the 2.6% and
0.7% increases in R2 and d values, respectively. Whereas, the values of MAE and RMSE
diminished significantly by 53.7% and 56.3%, respectively. This may be due to the advection
effect of wind speed on ETo [11]. The author [28] used the generalized regression neural
networks (GRNNs) technique to model ETo, obtained using the FAO-56 PM equation, to
study the effect of SR, T, RH, and WS on ETo. The author found that using wind speed as a
unique input to ANN is insufficient for modeling ETo.

It was quite clear that the Tmin and RH meteorological parameters do not have any
effectiveness in improving the predictive quality of MFF-8 with respect to MFF-7 (insertion
of Tmin into MFF-7) and of MFF-9 with respect to MFF-8 (insertion of RH into MFF-8).
Hence, the average values of R2 and d registered the lowest increments, with values of 0.5%
and 0.2%, respectively. It was also found by the author [63] that adding relative humidity
as an input to ANNs for estimating ETo in the Bobo Dioulasso region of Burkina Faso
does not make the models more accurate. These authors used the FAO-56 PM equation as
an estimation method to feed ANNs. They obtained very low RMSE and MAE values of
0.048 mm day−1 and 0.033 mm day−1, respectively.

The mean temperature meteorological parameters (Tmean) influence the estimation of
ETo differently from one region to another. The MFF-4’s evaluation of the mean temperature
(Tmean), which reached values of R2 and d of 0.868 and 0.964, respectively, estimated ETo
for the Jendouba region better than the other remaining meteorological parameters, with
the exception of Tmax. For the regions of Kairouan and Kélibia, it seems that solar radiation
(SR), evaluated by the MFF-5, performed better than Tmean in the estimation of ETo,
despite the fact that the statistics were very close with minimal differences. Several studies
found that solar radiation significantly enhanced the predictive quality of ANN for ETo
modeling [12,64,65]. These authors used climatic parameters on daily and monthly time
steps as inputs to ANN models to predict ETo given by the FAO-56 PM method.

MFF-10 was found to be the most accurate model in terms of MAE and RMSE
(0.183 mm day−1 and 0.241 mm day−1, respectively) and the highest R2 and d (0.993
and 0.998, respectively) average statistics. This model integrates almost all the meteoro-
logical parameters as inputs (Tmax, Tmin, WS, SR, and RH). This result indicates that the
more climate variables are incorporated into the neural networks, the more the predictive
quality of the models significantly improves. This suggests that the inclusion of the Tmax,
Tmin, SR, RH, and WS parameters is indispensable for enhancing the modeling of reference
evapotranspiration. The author [11] also found that the estimation of ETo using ANN is
more accurate when all of the meteorological parameters considered for the three tested
weather stations were used as inputs. The author [66] used ANN to forecast ETo from daily
climatic parameters (Tmax, Tmin, WS, SR, and RH) for sustainable irrigation scheduling. In
this case study, the FAO-56 PM equation was used as the reference method for comparison
purposes. The authors concluded that the robustness and accuracy of the forecasted models
may help farmers, water resource managers, and irrigation planners with improved and
sustainable water management at the basin level and irrigation scheduling at the farm or
field level.
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Average monthly estimated ETo values obtained by the MFF-10 model for Jendouba,
Kélibia, and Kairouan weather stations were compared with average monthly observed
values of ETo. Figure 11 compares average monthly ETo estimates predicted by the MFF-10
model with average monthly observed values for the respective weather stations in Jen-
douba, Kairouan, and Kélibia. The observed ETo values were measured directly using the
PAN method. The correlation results between the estimated monthly mean values of ETo by
the MFF-10 model and the observed monthly mean values of ETo for the three regions were
0.935, 0.935, and 0.912 for, respectively, Jendouba, Kélibia, and Kairouan (Figure 11). These
correlation coefficients indicate a strong positive relationship between the ETo estimates
provided by the MFF-10 model and the observed ETo values for each respective region. The
high correlation values near 1.0 suggest that the model’s estimations closely align with the
observed data, reinforcing the reliability and accuracy of the MFF-10 model in predicting
annual mean ETo values for the Jendouba, Kélibia, and Kairouan regions.
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Figure 11. Relationship between average monthly estimates ETo estimated with the MFF-10 model
and average monthly observed ETo for the weather stations of Jendouba, Kélibia, and Kairouan.

Based on these results, it is clear that Tmax is the most significant weather factor
for accurately simulating the complicated and nonlinear process of evapotranspiration in
the Jendouba, Kairouan, and Kélibia regions. The integration of SR and WS parameters
improves the accuracy of the models and could be classified as sensitive meteorological
parameters in the estimation of ETo. The SR and WS inputs were also found to be the most
influential climatic parameters in the modeling of ETo [67]. The author [68] observed that
for accurate estimation of ETo using an ANN, temperature and radiation data are the most
crucial inputs. Another case study revealed that wind speed contributes more significantly
to errors in ETo than solar radiation [69]. The authors [11] found that RH and WS had the
greatest influence on ETo estimation, which is different from our results. All these authors
used the FAO-56 PM equation to generate ETo observed measurements from climatic data
in order to use it as the desired target to train and test constructed ANN models.

3.4. Comparison ETo Estimation Models and ANNs Models

This section compares the FAO-56 PM, the FAO-24 BC, the Riou, and the Turc empirical
equations with the corresponding MFF-10, MFF-4, MFF-11, and MFF-3, respectively. Table 6
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presents a comparison between MFF neural network models and the corresponding ETo
estimation model.

Table 6. Comparison MFF models with the corresponding ETo model estimation during the testing
period for Jendouba, Kairouan, and Kélibia weather stations. The coefficient of determination (R2),
the index of agreement (d), the mean absolute error (MAE, mm day−1), and the root mean square
error (RMSE, mm day−1) are calculated.

Model Inputs R2

(-)
d
(-)

MAE
(mm day−1)

RMSE
(mm day−1)

Jendouba
FAO-56 PM Tmax, SR, Tmin, RH and WS 0.993 0.998 0.209 0.293

MFF-10
FAO 24 BC Tmean 0.884 0.877 1.582 2.085

MFF-4 0.868 0.964 1.005 1.252
Turc Tmean, SR and RH 0.903 0.637 3.591 4.133

MFF-11 0.961 0.988 0.572 0.779
Riou Tmax 0.846 0.936 1.130 1.482

MFF-3 0.936 0.983 0.704 0.894
Kairouan

FAO-56 PM Tmax, SR, Tmin, RH and WS 0.993 0.997 0.229 0.284
MFF-10

FAO 24 BC Tmean 0.870 0.994 0.854 1.095
MFF-4 0.919 0.978 0.632 0.784
Turc Tmean, SR and RH 0.889 0.906 3.142 3.428

MFF-11 0.921 0.977 0.669 0.836
Riou Tmax 0.822 0.994 0.879 1.154

MFF-3 0.919 0.978 0.632 0.784
Kélibia

FAO-56 PM Tmax, SR, Tmin, RH and WS 0.994 0.998 0.110 0.146
MFF-10

FAO 24 BC Tmean 0.911 0.983 1.155 1.400
MFF-4 0.795 0.937 0.639 0.775
Turc Tmean, SR and RH 0.918 0.977 1.140 1.245

MFF-11 0.964 0.991 0.259 0.324
Riou Tmax 0.887 0.995 0.565 0.708

MFF-3 0.833 0.950 0.597 0.703

3.4.1. Jendouba Weather Station

The FAO-24 BC method appears to have a slightly higher R2 value of 0.884, indicating
a slightly better fit to the data compared to MFF-4 (R2 = 0.864). However, MFF-4 has a
lower MAE and RMSE of 1.005 mm day−1 and 1.252 mm day−1, respectively. This result
suggests that MFF-4 may provide more accurate estimates overall, despite a slightly lower
R2 value. MFF-11 clearly outperforms the Turc method in terms of R2, MAE, and RMSE,
reaching values of 0.961, 0.572 mm day−1, and 0.779 mm day−1, respectively. This result
implies that MFF-11 provides better estimates of evapotranspiration in this context. The
MFF-3 model does much better than the Riou method. It has higher R2, MAE, and RMSE
values of 0.936, 0.704 mm day−1, and 0.894 mm day−1, respectively. This means that the
MFF-3 model gives more accurate estimates of ETo than the Riou equation in this case.

In summary, based on these findings, MFF-4 appears to perform slightly better than
FAO-24 BC, MFF-11 outperforms the Turc method, and MFF-3 demonstrates high accuracy
compared to the Riou method in the estimation of ETo. The choice between these methods
may depend on specific application requirements and data availability.

3.4.2. Kairouan Weather Station

MFF-4 outperforms the FAO-24 BC method in terms of R2 and RMSE (0.919 and
0.784 mm day−1, respectively). It can be deduced from these findings that MFF-4 provides
better estimates of evapotranspiration in this context. Both methods have similar MAE
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values. MFF-11 significantly outperforms the Turc method in terms of R2, MAE, and
RMSE, with an increment value of 3.6% for R2 with respect to the Turc equation and a
high decrease in MAE and RMSE values of 78.8% and 75.6%, respectively, compared to the
Turc model. These results point to the fact that MFF-11 provides more accurate estimates
of evapotranspiration compared to Turc in this particular scenario. MFF-3 outperforms
the Riou method in terms of R2 and RMSE, with values of 0.919 and 0.784 mm day−1,
respectively. It appears from these findings that MFF-3 provides more accurate estimates
of evapotranspiration compared to Riou in this particular scenario. Both methods have
similar MAE values.

In summary, based on the results of the Kairouan weather station, MFF-4 appears to
perform better than FAO-24 BC, MFF-11 outperforms the Turc method, and MFF-3 is more
accurate than the Riou method in estimating evapotranspiration. The choice between these
methods may depend on specific application requirements and data availability.

3.4.3. Kélibia Weather Station

The FAO-24 BC method appears to have a moderately higher R2 value, indicating a
slightly better fit to the data compared to MFF-4 (0.911 and 0.795, respectively). However,
MFF-4 has a lower MAE and RMSE, with an average of 45% difference compared to the
FAO-24 BC method. These findings pinpointed that MFF-4 may provide more accurate
estimates overall, despite a moderately lower R2 value. MFF-11 significantly outperforms
the Turc method in terms of R2, MAE, and RMSE, indicating that MFF-11 provides more
accurate estimates of evapotranspiration compared to Turc in this particular scenario. Riou
outperforms MFF-3 in terms of R2 and RMSE, indicating that Riou provides slightly better
estimates of evapotranspiration compared to MFF-3 in this specific context. However, both
methods have similar MAE values.

In summary, based on the provided data, FAO-24 BC performs better than MFF-4
in terms of R2 values. In terms of MAE and RMSE statistics, MFF-4 performs better in
the estimates of ETo compared to the FAO-24 BC model. MFF-11 outperforms the Turc
method, and Riou has a slight edge over MFF-3 in estimating evapotranspiration. The
choice between these methods should consider specific application requirements and
data availability.

Generally, for the Jendouba region, MFF-3 and MFF-4 seem to be the preferred methods
for estimating ETo, as they outperform conventional methods like FAO-24 BC and Turc. In
the case of the Kairouan region, MFF-4 and MFF-11 offer better ETo estimates compared to
FAO-24 BC and Turc. And finally, for the Kélibia region, FAO-24 BC performs well, and
MFF-11 outperforms Turc, while Riou is competitive with MFF-3. In general, the choice of
the most suitable method for estimating ETo should consider the specific region’s climate
characteristics and data availability. MFF-4 and MFF-11 often provide accurate estimates
across multiple regions, but the performance of conventional methods like FAO-24 BC and
Turc may also vary depending on the location. It is essential to select the method that best
suits the local conditions and data quality.

Similar conclusions were also obtained by several researchers when comparing the
performance of ANN in estimating ETo with respect to conventional methods. For example,
the authors [33,34] found that the radial basis function neural network model performed
better estimates of ETo than the Turc and Blaney–Criddle models in different agro-climatic
zones. Corresponding results were also achieved by [14] when comparing the predictive
accuracy of backpropagation neural network methodology in evapotranspiration fore-
casting in the Dédougou region (western Burkina Faso) with the conventional method
of Blaney–Criddle. The authors [35] investigated the ability of the M5 model tree (M5T),
adaptive neuro-fuzzy inference system (ANFIS), and support vector machines (SVM) for
modeling daily reference evapotranspiration for the De Soto County station located in
Florida. They arrived at the robust conclusion that using computational models such
as ANN for ETo estimation yielded better results than conventional methods such as
empirical equations.
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3.5. Reference Evapotranspiration Estimation of Nearby Weather Stations

To assess the transferability of trained artificial neural networks (ANNs) from one
weather station to nearby stations, we evaluated the performance of MFF-10 models
trained for the three previous weather stations: Jendouba, Kairouan, and Kélibia. These
models were employed to estimate reference evapotranspiration at six other weather
stations, each one of them using distinct input variables. Specifically, the MFF-10 model
trained for Jendouba was utilized to estimate ETo at the Béja and Kef weather stations.
Simultaneously, the MFF-10 model trained for Kairouan was applied to estimate ETo at the
Siliana and Sidi Bouzid weather stations. Lastly, the MFF-10 model constructed for Kélibia
was employed to estimate ETo at the Tunis and Bizerte weather stations. The estimation
performance is presented in Table 7, and the statistics were calculated with respect to the
FAO-56 PM equation.

Table 7. The performance of the MFF-10 during the production phase. The coefficient of determination
(R2), the index of agreement (d), the mean absolute error (MAE, mm day−1), and the root mean
square error (RMSE, mm day−1) are calculated.

Region R2 d MAE
(mm day−1)

RMSE
(mm day−1)

Beja 0.992 0.997 0.233 0.326
Le Kef 0.992 0.997 0.259 0.347

Sidi Bouzid 0.979 0.992 0.321 0.483
Siliana 0.982 0.994 0.352 0.494
Bizerte 0.933 0.967 0.494 0.831
Tunis 0.923 0.964 0.514 0.869

The results indicate that reference evapotranspiration can be estimated with high
accuracy using trained ANNs for other weather stations with different input variables.
Figure 12 shows the scatter plots of ETo as estimated by MFF-10 and FAO 56 PM at Béja
and Kef (MFF-10 trained at Jendouba station), Sidi Bouzid and Siliana (MFF-10 trained
at Kairouan station), and Bizerte and Tunis (MFF-10 trained at Kélibia station). Figure 13
shows a visual comparison of the MAE and RMSE evaluation metric for the different
regions. In general, it should be noted that all the tested regions presented high statistical
performance, with values of R2 and d ranging from 0.923 to 0.992 and from 0.964 to
0.997, respectively. On the other hand, MAE and RMSE statistics presented very low
values ranging from 0.233 mm day−1 and 0.514 mm day−1 and from 0.326 mm day−1 to
0.869 mm day−1, respectively (Figure 13). These results indicated that ANNs could be a
powerful tool to estimate ETo values for nearby stations without the need for training and
testing procedures. The close-to-perfect R2 and d values suggest that the MFF-10 model
accurately captures the variability of ETo in all regions, making it a highly reliable tool for
ETo estimation for nearby weather stations. These findings underscore that the MFF-10
model holds promise as a reliable instrument for ETo estimation, offering valuable insights
for irrigation management and water resource planning.

Several research studies tested their trained ANN for stations that were not included
during the training process [11,19,29,40,41,62,70–72]. The majority of these authors used
the standard FAO-56 PM method to calculate ETo values used as targets to train and test
ANN models [3]. All the researchers found that ANN with high ETo predictive quality
could be applied to yield ETo estimates from other data sets that were not included in
the training process. For example, the author [19] developed ANNs trained with respect
to the FAO-24 BC ETo estimation method. The findings revealed that the trained ANN
models could be applied to produce ETo estimates without any additional input data. The
author [71] constructed an ANN using data from three stations and then tested it on five
stations that were not included during the training process. He also found that there is no
need for additional calibration to estimate ETo in new locations. The author [41] concluded
that ANNs can be used with relatively good accuracy for water resource management,
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irrigation scheduling and management, and environmental assessment when data are not
enough to use trained ANNs from another location. The author [40] pinpointed that ANNs
with good predictive quality could be generalized to estimate ETo values for areas with
similar climatic characteristics.
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Our findings represent a significant advancement in our understanding of reference
evapotranspiration dynamics in semi-arid bioclimatic regions. By harnessing the power
of ANNs, this study not only refines our ability to forecast reference evapotranspiration
accurately but also contributes valuable insights into the intricate relationships governing
climatic and environmental variables in these regions. The knowledge generated through
this research extends beyond its immediate focus, offering a blueprint for similar studies
in semi-arid zones globally. The applications of our findings hold promise for enhancing
water resource management, optimizing agricultural practices, and bolstering climate
change adaptation measures in diverse semi-arid contexts. As such, this research serves as
a pivotal resource, bridging gaps in our current understanding and laying the groundwork
for practical, data-driven solutions with relevance on a broader, international scale.
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This research offers valuable insights and practical tools that can be applied to im-
prove water management and agricultural planning not only in the studied regions but
also in other semi-arid bioclimatic regions across the country. The transferability of our
methodology and findings provides a foundation for sustainable practices in the face of
evolving environmental conditions. The results can be used to improve water resource
management through the accurate estimation of reference evapotranspiration. The accurate
estimation of ETo is essential for optimizing irrigation practices and determining crop water
requirements. This has implications for crop yield optimization and resource sustainability.
Our research contributes to the development of robust models that can be instrumental in
adapting water management and agricultural practices to changing climate conditions in
regions facing similar challenges.

4. Conclusions

Adequate estimation of ETo is a key factor in the correct calculation of irrigation water
needs at the field and district scales. In this paper, the climatic data of nine weather stations
was used to estimate ETo using the approach of ANN. Among these weather stations, three
of them were used to train and test MFFNN, and the remaining were used to estimate
ETo using pre-trained MFFNN without going through the entire training process. The
following conclusions can be drawn:

• Both the EToBC and EToRIOU equations attest to being suitable for estimating ETo
in the studied regions when compared to the FAO-56 PM model. Conversely, the
EToTURC model consistently underestimated ETo values;

• It has been demonstrated that ANNs are an effective technique for modeling reference
evapotranspiration;

• It was found that Tmax is the most influential meteorological parameter in ETo modeling;
• However, using only WS as an ANN input was determined to be insufficient for

ETo modeling;
• Nevertheless, inserting WS in the input combinations leads to improved estimation

accuracy, primarily because of its influence on ETo through advection effects;
• On the other side, the use of SR and Tmean gives much better ETo estimates than those

obtained using RH and Tmin;
• The ANN model integrating Tmax, SR, Tmin, RH, and WS performs the best among

the input combinations tested in this study, which means that all meteorological
parameters are quite important for ETo modeling;
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• It is evident that the use of ANN for estimating ETo consistently provides more
accurate estimates of ETo compared to the conventional formulas of FAO-24 BC, Riou,
and Turc;

• It was found that the trained MFF-10 model, which takes into account all meteorologi-
cal factors, could accurately estimate the ETo for nearby areas when different input
variables were used.

In summary, the ANN technique could be used to enhance water management prac-
tices at field and district scales. This technique can be used to provide real-time or forecasted
information on irrigation scheduling, optimizing water usage, and improving overall ef-
ficiency in agricultural irrigation systems. The study relied on data collected from only
three stations, suggesting that additional research utilizing a broader dataset from diverse
regions may be necessary to strengthen the findings derived from this study. The outcomes
of this research offer valuable insights and contributions to the existing literature on ETo
estimation. The comparative analysis between ETo estimation formulas utilizing limited
input data and the universal FAO-56 PM equation offers a comprehensive insight into their
respective effectiveness in estimating evapotranspiration. Secondly, the comparison be-
tween the FAO-56 PM method and the ANN technique contributes to the ongoing discourse
on the applicability of advanced computational methods for ETo estimation. The identi-
fication of the most influential meteorological parameter on ETo estimation contributes
to the understanding of the key factors driving evapotranspiration processes. Lastly, the
assessment of the accuracy of the ANN technique in estimating ETo using data from nearby
weather stations, offers practical insights into the potential advancements and reliability
of utilizing ANN in refining ETo predictions, thereby advancing the broader literature on
water resource management and agricultural practices.
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