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Abstract: Australia is a unique continent, surrounded by the ocean, and the majority of its catchments
flow to the coast. Some of these catchments are gauged and others are ungauged. There are
405 gauged catchments covering 2,549,000 km2 across the coastal regions of 12 drainage divisions
in Australia, whereas there are 771 catchments conceptualised as ungauged covering additional
835,000 km2. The spatial and temporal distribution of mean annual rainfall and potential evaporation
(PET) vary significantly from one drainage division to another. We developed a continuous daily
streamflow time series of all gauged and ungauged catchments from 1993 onwards. We applied the
daily GR4J lumped conceptual model to these catchments. The performance of gauged catchments
was analysed through (i) visual inspection of daily hydrographs, flow duration curves, and daily
scatter plots; and (ii) performance metrics, including NSE and PBias. Based on the NSE and PBias,
performance ratings of 80% and 96% of the models, respectively, were found to be ‘good’. There
was no relationship found between the catchment area and the model performance. The ungauged
catchments were divided into four categories based on distance from potential donor catchments,
where observed data are available for GR4J model calibration, and Köppen climate zone. The total
ungauged catchments represent 24.7% of the total drainage division areas. The streamflow from
ungauged catchments was estimated using the GR4J model based on the parameters of their donor
catchments. Overall, runoff ratios from ungauged catchments were found to be higher compared to
their donor-gauged catchments, likely driven by their higher rainfall and less PET. This tendency
was particularly evident in two drainage divisions—the Carpentaria Coast (CC) and the Tanami–
Timor Sea Coast (TTS)—where ungauged areas comprised 51% and 43%, respectively. The mean
gauged annual streamflow varied significantly across drainage divisions—230 gigalitres (GL) from
the South Australian Gulf (SAG) to 146,150 GL in TTS. The streamflow from all ungauged catchments
was estimated at 232,200 GL per year. Overall, the average streamflow from all drainage divisions,
including gauged and ungauged areas, across the coastal regions of Australia was estimated at
419,950 GL per year. This nationwide estimate of streamflow dataset could potentially enhance our
understanding of coastal processes and lead to improvements in marine modelling systems and tools.

Keywords: GR4J model; coastal discharge estimates; ungauged catchments; streamflow simulations;
inverse distance weighting; parameter transfer; Australia

1. Introduction

Water is an integral part of life and impacts directly on most aspects of human life
and the environment. Catchments that supply this water integrate changes due to human
activities and natural processes. Understanding river discharge is an important factor
underpinning water management decisions [1]. Streamflow gauges are the principal
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means of data collection and have been used for centuries. With the Nilometer as a prime
example, stream discharge records are vitally important, and without these records, we
cannot understand, observe, and manage our hydrologic systems for human development.
Streamflow gauges are the most accurately measured component of the hydrological
cycle [2].

As the streamflow measurement gauges can be built only at the finite locations in
the stream network, they can only provide limited information in the space–time con-
tinuum [2]. The establishment and operations of the streamflow measurement gauges
are costly; therefore, their location and operations largely depend upon national or lo-
cal interests or funding from particular projects [3]. Even if the resources are available,
it is not practically possible to build and operate flow measurement gauging stations
at every possible location in the stream network. As a result, streamflow is only moni-
tored in a small fraction of rivers in the world and most catchments remain completely
ungauged [4–6]. This is a common problem prevalent in developed and developing na-
tions, for example, the USA [3], the UK [7], Canada (Environment and Climate Change
Canada: https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html, accessed
on 2 November 2023), Asia [8], and Africa [9]. In Australia, Its Indigenous peoples have
over 65,000 years of connection and understanding of water, and the value of water is
central to their culture [10]. However, streamflow monitoring with gauges formally started
as early as 1865 and expanded continuously till 1965. Since then, the monitoring network
slightly declined [11]. Most of these streamflow measurement gauging stations are located
in high-value water resource catchments, mainly in the coastal regions of Australia.

Australia is a marine nation and uniquely placed on the planet. Its marine state
surrounds the entire continent, covers about 14 million km2, and has a strong impact on
terrestrial climates [12]. Its mainland coastline is approximately 38,910 km long [13] and has
the third largest marine jurisdiction in the world. It is diverse and ranges from the tropics to
the sub-Antarctic. Marine industries currently contribute over AUD 47 billion to Australia’s
economy [12]. The Australian Government’s National Marine Science Plan 2015–2025 has
highlighted challenges and emphasises the need to develop and refine decision-support
tools that translate knowledge and data into useful information for effective decision-
making in relation to these challenges. It also identifies the need for a coordinated national
marine environment and socioeconomic modelling system. In response to these challenges,
the Integrated Marine Observing System (IMOS) was established, and a large number
of marine modelling systems were developed for research and implementation of the
strategy [14,15]. For the further enhancement, accuracy, and efficient operations of these
modelling systems, a nationwide quality-controlled stream discharge dataset of the major
rivers flowing to the coastal regions of Australia will be highly beneficial as it could be taken
as dynamic input to these systems. The nationwide coastal streamflow dataset will also
be useful for ocean climate science research, model development, retrospective analyses,
nowcasting, and forecasting.

Most of the river systems in Australia discharge into the coastal regions. There are
only a limited number of gauging stations recording the discharge, and most of the rivers
are ungauged (Figure 1). Without a consistent and comprehensive nationwide record of
streamflow dataset, we are unable to improve our understanding of coastal processes and
improve our marine modelling systems and tools. Therefore, the extension of the existing
streamflow records and estimation of ungauged streamflow is vital for creating a complete
nationwide dataset. At present, the dataset is not available, as no previous research has been
undertaken to create this dataset. There are different procedures for estimating ungauged
streamflow, as detailed in Section 4.3. In this study, we used a spatial proximity approach,
which has not been previously attempted, with the following key objectives:

• Apply GR4J [16] daily rainfall–runoff models at all the coastal gauged catchments and
evaluate their performance;

• Identify, cluster, and classify ungauged catchments into different categories;
• Transfer and apply GR4J models to all ungauged catchments and assess performance;

https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html
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• Estimate daily and annual streamflow and create a nationwide coastal streamflow
dataset for all gauged and ungauged catchments.
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Figure 1. Location of gauged and ungauged catchments discharging to the entire Australian coastline.

2. Australia’s Coastal Regions

More than 80% of Australians live within the coastal regions [7,17]. These includes
cities and support important industries such as agriculture, fisheries, and tourism. A
significant number of important environmental, biological, and heritage sites are situated
within the coastal regions, including wetlands, estuaries, mangroves, and coral reefs.
Almost all of the major river systems discharge into the coastal regions, which enrich
environmental assets and support the livelihood of most Australians.

2.1. Weather and Climate

Droughts, floods, and bushfires are very common in Australia as it is the driest
inhabited continent on earth, receiving only 450 mm mean annual rainfall [18]. The rainfall
also varies spatially and temporarily across the country, with approximately 70% of the
landmass being arid or semi-arid, receiving less than 475 mm per year [19]. Australia’s
climate zones were defined via Köppen climate classification [20] and have equatorial,
tropical, and subtropical regions in the north and temperate regions in the south (Figure A1
in Appendix A). The southeastern and southwestern parts of Australia have temperate
climates, and the north has a tropical climate [20]. The eastern and southeasten coastal
regions have mountain ranges. Annual rainfall is higher and more reliable in coastal
regions, with the exception of the mid-west coastal regions of Western Australia (Figure A2
in Appendix A). Landscape elevation influences the amount and distribution of rainfall,
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with mountainous areas such as northeast Queensland, southeast Australia, and western
Tasmania receiving higher rainfall [21].

Australia’s river system was divided into 13 drainage divisions (Figure 1). Rivers
in all drainage divisions discharge into coastal waters and oceans, with the exception of
Lake Eyre. The mean annual rainfall of these drainage divisions varies significantly. The
mean annual potential evapotranspiration (PET) exceeds the mean annual rainfall except
for Tasmania (Figure A2 in Appendix A). The water-limited environment [22] generally
controls the streamflow generation processes. The within-year distribution pattern of
rainfall, streamflow, and potential evapotranspiration across different drainage divisions in
the coastal regions vary widely. The wet season starts in November–December and ends in
March–April in the northern part, while in the southern part of the continent, it begins in
June–July and ends in December–January, respectively.

2.2. Streamflow Measurements

There are approximately 4800 streamflow gauging stations in Australia [23]. These
gauging stations are predominantly located in the catchments which have high economic,
environmental, social, and cultural significance. At first, we considered all streamflow
gauged and ungauged catchments from all 12 drainage divisions draining into the Aus-
tralian coastline, with the exception of the Lake Eyre drainage division. Our primary
focus was on the catchments discharging into the marine environment, which impacts
the entire Australian coastline. Most gauging stations are located on the eastern coast of
Australia, whereas most of the ungauged catchment area is located on the northern and
southern coasts of Australia (Figure A3 in Appendix A). As our primary objective is to
create continuous streamflow data at the coastal river nodes (ungauged catchment outlets)
located across Australia, we selected gauges based on the following:

• Distance from the coast in the catchment to avoid tidal effects and minimising the
ungauged area;

• The availability of data from 1993 onwards with at least 5 years of operational observed
streamflow data.

Through this process, we selected a total of 405 most-downstream gauged locations
from 12 drainage divisions (Figure 1); other locations which did not meet the above criteria
were rejected and categorised as ungauged catchments. The average data length of all
405 stations was 21 years.

2.3. Developing Gauged and Ungauged Catchments

We considered gauged and ungauged catchments from all 12 drainage divisions drain-
ing into the Australian coastline. First, the Geofabric Australian Hydrological Geospatial
Fabric [24] (Bureau of Meteorology website: http://www.bom.gov.au/water/geofabric/,
accessed on 24 November 2023) layers were used to delineate all gauged and ungauged
catchments. Ungauged catchments were defined as either: (i) the catchments between the
most-downstream gauging station(s) and the coastline, mainly the tidal zone, with an area
greater than 100 km2; and (ii) catchments along the coastline that do not have streamflow
gauging stations directly upstream, with an area greater than 100 km2. The ungauged
catchments were delineated for all 12 drainage divisions along the coastal regions. We
conceptualised the ungauged catchments into four categories (Figure 2):

• Category 1: Ungauged area was downstream of a gauged catchment;
• Category 2: Ungauged catchments where there were nearby gauged catchments within

a radius of up to 50 km;
• Category 3: Ungauged catchments with at least two neighbouring gauged catchments

within a 50 km to 250 km radius and in the same Köppen climate zone (Figure A1 in
Appendix A);

• Category 4: Ungauged catchments with only one or no neighbouring gauged catch-
ments under a 250 km radius but within the same Köppen climate zone.

http://www.bom.gov.au/water/geofabric/
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All the coastal nodes’ gauged and ungauged catchments in all 12 drainage divisions
are shown in Figure A3 in Appendix A.
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3 and 4.

3. Data Quality Control and Gap Filling
3.1. Data Quality Control

The observed streamflow data from 405 gauged locations (Figure 1) were sourced from
operational Bureau of Meteorology data feeds and directly from the partner organisations.
A quality-assurance/quality-control process was required and applied to all datasets used;
specifically, observation time-series of daily streamflow. The quality-assurance process
involved the identification and removal of erroneous data values such as negative, extreme,
and long linear interpolation. The process of detection and removal was automated and
then checked manually. An example of an erroneous dataset is shown in Figure 3. The
process includes the following steps and was performed manually for the datasets obtained
from all the gauged locations:

• Download the time-series dataset and run the QATS (quality assurance of time-series)
tool;

• Manually fill missing values (those unobserved and picked up by the tool) through a
gap-filling heuristic;

• Plot the time series to manually scan for errors not flagged through automation;
• Reapply the above steps until a final dataset is agreed upon.
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Figure 3. An example of the gap-filled streamflow data. The continuous observed streamflow is
shown in blue and red lines, indicating poor quality data captured by the QATS (quality assurance of
time-series) tool. Depicted is a typical catchment from the southwest of Western Australia.
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3.2. Gap Filling

The gap filling of the observed discharge datasets was completed through (i) the
application of the GR4J model [16]; or (ii) the adoption of the interpolation technique
considered most suitable. A gap may constitute missing data, discard erroneous data, or
a constant value, or otherwise be picked up by running the automated quality-assurance
procedure and by means of manual inspection. If the gap was greater than 5 days, we used
the GR4J simulation time series with a simple error correction to fill it. However, if the gap
was less than or equal to 5 days, we adopted a three-step procedure in filling these gaps:

• A linear interpolation was applied where the leading or rising trend of the hydro-
graph appeared to be constant, and little change occurred in the hydrometeorological
information of rainfall and/or potential evapotranspiration (PET).

• The GR4J model was applied where a noticeable change appeared in the leading or
rising trend of the hydrograph alongside evidence of a variation in the hydrometeoro-
logical information of rainfall and/or PET.

• In the case that a linear trend or otherwise was apparent, the gap was checked against
the hydrological model simulations for the relevant durations, and where the trend
was constant or where no noticeable event was simulated by the model, the linear
interpolation technique was adopted or otherwise kept unchanged.

The filling of gaps varied from one catchment to another, i.e., from less than 1% to a
maximum of 5% of the data.

4. Methodology

In this study, our main objective was to generate the continuous, simulated streamflow
time series for gauged and ungauged catchments across the entire coast of Australia using
the GR4J hydrologic model, as detailed in Figure 4. We also assessed the performance of
the model and identified avenues for future research and development.
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4.1. Application of GR4J Model to Gauged Catchments

The GR4J is a simple four-parameters daily rainfall–runoff model [16]. A schematic of
the model is presented in Figure A4 in the Appendix A. It has been included in the Bureau
of Meteorology’s Short-term Water Information Forecasting Tools (SWIFT) [25]. Research
conducted in Australia [16,26–30] has demonstrate that GR4J and its hourly variant (GR4H)
perform well in the Australian context. Therefore, we have chosen and applied the GR4J
rainfall–runoff model to all gauged catchments. The Australian Hydrological Geospatial
Fabric (Geofabric) [24] has a nationally consistent flow direction map. We used Geofabric
to delineate each catchment. We conceptualised a catchment, irrespective of its area, spatial
distribution of rainfall, and potential evapotranspiration, as one unit, and the fundamental
hydrologic model was applied to each catchment; therefore, no routing of the generated
streamflow was required. The model was calibrated for each catchment using the Shuffle
Complex Evolution—University of Arizona (SCE-UA) algorithm [31].

Some of the 405 catchments have regulated structures including dams, weirs, and
water storages. For simplicity, we did not include water balance modelling of water storage
inflow, release, spill, draw, diversion, return flow, and evaporation. These infrastructures
are operated by different water management entities, and most of the data were not publicly
available for model application. As GR4J is a simple model, it has no capacity to represent
the effects of these artificial structures on streamflow.

4.1.1. Input Data Preparation

The model was developed without a priori knowledge of the rainfall–runoff transfor-
mation, with two inputs to the model: (i) areal average daily rainfall; and (ii) daily potential
evapotranspiration (PET), both obtained from the Australian Water Availability Project
(AWAP) [32]. Daily rainfall and potential evapotranspiration data are available at a 5 km
by 5 km grid across Australia. The PET data were estimated using the Priestley–Taylor
evaporation equation [33] as part of the AWAP and were available for model application.
The average areal observed rainfall and PET for each catchment were calculated by aver-
aging the value of grids (5 km by 5 km) within the catchment. The discharge data for all
405 gauging stations were prepared and quality-checked as detailed in Section 3.1.

4.1.2. Objective Function for Model Calibration

The SWIFT modelling suite has inbuilt objective functions that include Nash–Sutcliffe
efficiency (NSE) and Kling–Gupta efficiency (KGE) [34]. In this application, we used NSE
and KGE separately for GR4J model calibration and presented NSE results for brevity.
Additionally, we used diagnostic plots, which provide visual images and empirical under-
standing of calibrated time series [35,36]. All the model parameters were automatically
calibrated using the Shuffle Complex Evolution—University of Arizona (SCE-UA) al-
gorithm [31]. The SCA-UA has been successful in global optimisation based on: (i) a
combination of probabilistic and deterministic approaches; (ii) clustering; and (iii) competi-
tive evolution of points in space and direction of global improvement. First three years of
observed streamflow data were used for the model ‘warm up’ period and were not used
for calibration optimisation.

4.2. Estimation of Ungauged Streamflow

There are plenty of studies on estimating ungauged streamflow. Following decades
of research in ungauged basins [6], a few comprehensive reviews of the procedure of
estimating ungauged streamflow have been completed: (i) the regionalisation of streamflow,
model parameter optimisation, and uncertainty [37]; (ii) rainfall–runoff modelling through
identifying hydrological similarity and transposing parameters from gauged to ungauged
catchments [38]; and (iii) challenges ahead for cold ungauged regions across the globe [39].
These reviews demonstrate that numerous approaches had already been developed for
simulating streamflow time series in ungauged catchments, and rainfall runoff modelling
plays a major role [40]. It has been widely used for predicting streamflow times series
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in ungauged catchments in Europe [40], the USA. [41,42], Australia [43,44], Canada [39],
South America [45], Africa [39,46], and Asia [38,44,47,48].

Various methods have been used in transferring calibrated rainfall–runoff model
parameters obtained from gauged to ungauged catchments. There are many studies
which have used the entire set of calibrated parameter values from a donor catchment to
simulate streamflow of a targeted ungauged catchment. The donor catchment is generally
selected based on (i) physical features, similarities, and/or (ii) spatial proximity to the
targeted ungauged catchment. It has been demonstrated that the geographically closest
catchment (or spatial proximity) to the target ungauged catchment is often the best donor
catchment [6,43,49–52]. The parameter regression method has also been used to transfer
parameters to ungauged catchments, with the presumption that the calibrated parameters
represent catchment attributes (e.g., slope, elevation, drainage density, land use, soil type).
In this method, empirical relationships between catchment attributes are obtained and
are used to estimate model parameters in ungauged catchments [40,51,53]. Comparison
studies show that spatial proximity performs better than the parameter regression method
for regions with dense networks of gauging stations [54–56].

In this study, we have used the spatial proximity method in selecting the donor
catchments (where the GR4J model was calibrated) to obtain the parameters of the tar-
geted ungauged catchments. At first, we calibrated and applied the GR4J model at all
405 gauged catchments across Australia. To obtain parameters for the ungauged catch-
ments, we conceptualised them into three different categories, as depicted in Figure 4.
Then, we estimated model parameters sets and applied the GR4J model to each of the
ungauged catchments using each of the parameter sets with estimated sub-areal rainfall
and PET, as detailed in the following section. For Category 2–4 ungauged catchments,
inverse distance-weightings were applied for final streamflow estimate.

A GR4J parameter transfer method was applied to those catchments in Category 1. The
gauged runoff from one or more upstream gauged catchments was routed to the ungauged
point and accumulated with the ungauged estimate at a chosen end of the system coastal
node (Figure 2a) in the ungauged area. A warmup period of 3 years was applied as part of
the modelling procedure. The accumulated output was converted to a discharge time-series,
reported at the coastal node.

For the Category 1 ungauged catchment, discharge is estimated by

UG1
i = Q̂us + ∑N

j=1 Gj (1)

where:

Gj was the gap-filled observed discharge time-series from the gauged locations up-
stream of an ungauged node on the same river or tributary (Figure 2a);
Q̂us was the simulated discharge from the intermediate area using parameters from
the upstream gauge on the same river as the coastal node.

The daily streamflow time-series for ungauged catchments in Category 2 were gener-
ated through the parameter transfer of N neighbouring catchments (Figure 2b). N is the
number of gauged catchments (up to 10) falling inside a maximum Haversine distance [57]
of 50 km from the ungauged catchment in question. The discharges from close-by catch-
ments satisfying the aforementioned conditions were calculated through the application
of the GR4J model. The parameters generated from the gauged catchments are used with
the PET and rainfall climate data to generate the discharges for the ungauged catchments.
Finally, the time-series from this category of catchments was estimated at the coastal node
through the inverse-distance weighting of the N time-series. The ungauged area discharge
is estimated by

UG2
i = ∑N

j=1
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where: 𝑀 = 50 and 𝑝 = 1; 𝟙  was the indicator function, such that if the distance 𝐷  is more than 𝑀 =50 km, then the time-series is not used to estimate the discharge;  𝑊   was an inverse distance weighting of power 𝑝 , such that simulated discharge 
from closer sites receives a larger weighting than those further away. 
For each of the ungauged catchments in Category 3, the two nearest gauged catch-

ments where GR4J models were applied for gap filling were selected, such that gauged 
catchments were within a Haversine distance of 50 km to 250 km of the ungauged area in 
the same Köppen climate region. The generation of the final estimated time-series at the 
coastal node was identical to Category 2. Parameters from the two selected gauged catch-
ments and climate data from the ungauged catchment were used to generate two dis-
charge time-series. Finally, a continuous daily discharge for this category of catchments 
was estimated through inverse-distance-weighting of the two simulated time-series. The 
ungauged area discharge is estimated by 

Dj≤M·Q̂j·Wj (2a)
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Wj =

(
1

Dj

)p

D
, where D = ∑N

j=1

(
1

Dj

)p

(2b)

where:

M = 50 and p = 1;
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, (3)

where:

M = 250 and p = 1;
50 km < (D1, D2) ≤ M = 250 km.

This was a simplified version of Category 2 with N = 2. Where the Haversine distance
between the closest two gauged catchments in the same Köppen climate region (Figure A1
in Appendix A) and the ungauged catchment was greater than 250 km, the ungauged
catchment was placed in Category 4. The same method outlined in Category 3 was used to
estimate discharge from these catchments. The ungauged area discharge is estimated by

UG4
i = Q̂1·
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)p
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1

D1

)p
+
(

1
D2
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+ Q̂2·
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1
D2

)p

(
1

D1

)p
+
(

1
D2

)p

, (4)

where:

p = 1;
50⟨min(D1, D2) ≤ 250 and max(D1, D2)⟩250 km or min(D1, D2) > 250 km.

For each of the categories above, the daily discharge was aggregated to annual and
compared between different drainage divisions. It is crucial to mention that the estimated
daily discharge data should be used prudently, given the underlying uncertainty of the
estimated daily data.

4.3. Evaluation Criteria

We have chosen a number of verification metrics and diagnostic plots in evaluating
the GR4J model performance, as detailed in the following sections.

4.3.1. Evaluation Metrics

There are many goodness-of-fit criteria for hydrological model calibration and perfor-
mance assessment [58]. For the performance evaluation of the GR4J model at all observed
streamflow locations, we used Nash–Sutcliffe efficiency [59] and the percent bias (PBias).
as presented in Table 1. We also used the coefficient of determination (R2) between the
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calibrated and observed streamflow time series for gauge locations selected for diagnostic
plots. Moriasi et al. [60] and Chiew and McMahon [61] recommended that model per-
formance is considered good when the NSE is greater than 0.5 and the PBias ranges are
less than ±25% for monthly streamflow. However, NSE values lower than 0.5 for daily
streamflow can still be considered satisfactory. Therefore, some of the constraints for the
recommended statistics [61] can be relaxed for daily streamflow, but in our study, we kept
the performance identical to the monthly streamflow. Keeping the constraints identical to
monthly flow resulted in greater confidence in daily model performance.

Table 1. Metrics used for model performance evaluation.

Metrics Abbreviation Equation Description

Nash-Sutcliffe Efficiency NSE NSE = 1 − ∑n
i=1(Qi,obs−Qi,sim)

2

∑n
i=1(Qi,sim−Qobs)

2

Compares the mean square error against the
observation variable. It varies between −∞ to 1
with a perfect score of 1.

Percent bias PBias PBias = ∑n
i=1(Qi,obs−Qi,sim)

∑n
i=1 Qi,obs

∗ 100

Measures the difference between the
mean/median of forecast variable and
observation. It varies between −∞ to +∞ with a
perfect score of 0.

4.3.2. Evaluation Diagnostic Plots

Diagnostic plots generally provide visual images of the model performance metrics
and also provide empirical understandings of model calibrated time series [35,36]. We
have chosen three popular diagnostic plots, i.e., times series, flow-duration, and correlation
scatter plots, for the evaluation of model performance (Table 2).

Table 2. Diagnostic plots used for model performance evaluation.

Plot X-Axis Y-Axis Description

Time series Time step Simulated and observed streamflow Daily and monthly discharge
Flow-duration Probability of exceedance (%) Simulated and observed streamflow Daily and monthly streamflow
Correlation scatter Observed streamflow Simulated streamflow Daily, monthly, and annual total streamflow

4.3.3. Model Performance Ratings

In this study, we used the model evaluation metrics NSE and PBias statistics for the
daily streamflow for the gauged catchments. These metrics were used by Kalin et al. [62],
Yilmaz and Onoz [47], and Chen et al. [63]. Based on these two metrics, model perfor-
mance on daily streamflow is characterised as ‘Very good’, ‘Good’, ‘Satisfactory’, and
‘Unsatisfactory’ (Table 3).

Table 3. Performance ratings of Nash–Sutcliffe efficiency (NSE) and percent bias (PBias) statistics for
daily streamflow.

Performance Rating NSE Catchment (%) Abs (PBias) % Catchment (%)

Very Good NSE ≥ 0.70 57 Abs(PBias) ≤ 25 88
Good 0.5 ≤ NSE < 0.7 23 25 < Abs(PBias) ≤ 50 6
Satisfactory 0.3 ≤ NSE < 0.5 8 50 < Abs(PBias) ≤ 70% 3
Unsatisfactory NSE < 0.3 12 Abs(PBias) > 70% 3

5. Results
5.1. Gauged and Ungauged Catchments

The total gauged catchment area comprises 405 stations across the coastal regions
of Australia and has an area of 2,549,000 km2 (Table 4). A number of catchments where
gauged streamflow data presented water balancing issues, mainly due to return flows and
diversions, were excluded from the estimation. There was a total of 771 ungauged catch-
ments, categorised as follows: Category 1 (183 catchments); Category 2 (212 catchments);
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Category 3 (228 catchments); and Category 4 (148 catchments). The number of ungauged
catchments and their areas of different categories varied from one drainage division to
another (Table 4). The CC drainage division has the largest ungauged catchment area. The
total ungauged catchments have an area of 835,000 km2 and represent 24.7% of the total
drainage division areas. The TTS and CC drainage divisions have the largest ungauged
area. Maps of gauged and ungauged catchments in each of the drainage divisions are
shown in Figure 1 and detailed in Figure A3 in the Appendix A.

Table 4. List of gauged and ungauged catchments and areas (1000 km2) in each of the drainage divisions.

Drainage Division
Gauged Stations Ungauged Area

No. Area 1 2 3 4 Total

Northeast Coast (NEC) 83 366 35 13 10 0 58
Southeast Coast NSW (SEN) 60 75 44 4 2 0 50
Southeast Coast VIC (SEV) 60 75 11 4 1 0 16
Tasmania (TAS) 53 38 21 1 0 0 22
Murray–Darling Basin (MDB) 7 882 9 0 0 0 9
South Australian Gulf (SAG) 23 9 5 5 8 6 24
Southwest Coast (SWC) 55 159 8 8 4 0 21
Pilbara–Gascoyne (PG) 17 276 11 19 18 3 52
Tanami–Timor Sea Coast (TTS) 33 312 91 21 95 26 233
Carpentaria Coast (CC) 13 304 141 21 81 73 315
Northwestern Plateau (NWP) 1 53 0 6 3 7 17
Southwestern Plateau (SWP) 0 0 2 1 4 11 18

Total 405 2549 378 106 231 128 835

5.2. Model Calibration and Validation

We calibrated and validated the daily G4R4J model to all gauged catchments for
the period 1993 onwards. The daily discharge from one drainage division to another
varies significantly due to catchment landscape attributes, within year distribution of
rainfall, and PET [23,30]. The calibrated model parameters varied from one catchment to
another but were within the range of previous application in Australia [30] and around
the world [64,65]. We present observed and simulated daily streamflow hydrographs and
flow–duration curves of three catchments, located in the TAS, SWC, and SAG drainage
divisions (Figure 5). In some instances, simulated high flows were earlier or later compared
to the observed streamflow. These catchments present a balanced view of the model
performance as defined in Table 2. The simulated daily streamflow, high and medium
range, generally matched well with the observed streamflow. However, the low flow was
generally overpredicted, as is evident in the flow–duration curves (Figure 5). This may be
explained by (i) oversimplification of process representation by conceptualising it as one
system irrespective of the catchment area; (ii) inability to represent spatial variability of
rainfall, PET, and catchment attributes; and (iii) absence of channel routing.

We also present the scatter plots of simulated and observed daily streamflow—one
from each of the drainage divisions (Figure 6). As with the daily hydrographs (Figure 5),
these catchments present a balanced view of the model performance. In some cases, the
simulated high flows were lower than the observed, or the timing was earlier or later, which
resulted in ‘Unsatisfactory’ NSE (Table 3).

The model calibration results, NSE and PBias, for all gauged catchments in each of
the drainage divisions are presented in Figure 7. The model calibration was rated as ‘Very
good’ for 57% and 88% of the catchments based on NSE and PBias, respectively (Table 3).
However, the range of these two metrics varied significantly for different catchments within
and between the drainage divisions (Figure 7). The MDB, SAG, and PG drainage divisions
had the highest range of NSE—from 0.05 to 0.95—but the PBias was lower. The NEC
drainage division had a higher range of NSE and PBias distribution (Figure 7).
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We also investigated the model calibration and performance metrics, NSE and PBias,
and their relationship with catchment physical attributes in particular catchment areas. Our
results show that no strong relationship exists between catchment areas and both metrics,
i.e., NSE and PBias (Figure 8).
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5.3. Performance Evaluation—Gauged Catchments

We evaluated the performance of the GR4J model based on the evaluation criteria
presented in Section 4.3.1. Visual inspection of diagnostic plots, including daily hydro-
graphs, flow–duration curves, and scatter plots were completed in evaluating each of the
models. A general visual agreement between the observed and simulated streamflow
indicates adequate calibration and validation, which represent catchment processes and the
model’s ability to reproduce hydrological behaviors [58]. Most of the models represented
the catchment process well, but some were ‘Unsatisfactory’, as evident through NSE and
PBias metrics. Based on NSE only, 57% of the model performance was rated ‘Very good’,
23% ‘Good’, 8% ‘Satisfactory’, and 12% ‘Unsatisfactory’, respectively. However, according
to the PBias metric, 88% of the models were rated as ‘Very good’, 6% ‘Good’, and only
3% ‘Unsatisfactory’ (Table 4). For some catchments, conflicting performance ratings were
found—one may be rated ‘Very good’ or ‘Satisfactory’ based on the NSE and PBias criteria,
respectively. At the drainage division scale, as is evident in Figure 7, for example, the NSE
of different catchments within the PG drainage divisions ranged from 0.03 to 0.95, while
PBias was only ±5%.

5.4. Performance Evaluation—Ungauged Catchments

We assessed the performance of the model in simulating streamflow from ungauged
catchments by comparing runoff ratios as the catchment area, flow generation process, PET,
and rainfall vary significantly across Australia. For a Category 1 ungauged catchment,
there was only a gauged catchment upstream (Figure 2a). The proportion of the gauged
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and ungauged catchment areas varied from one catchment to another due to the unique
stream network of the ungauged areas. The proportion of ungauged catchment areas
ranged from 1% to 95% among all gauged catchments, respectively (Figure 9). However,
estimated proportional discharge from ungauged areas was not always similar to the
proportion of gauged catchment discharge, mainly due to higher rainfall and lower PET
(Figure A2 in Appendix A) in the coastal regions compared to inland gauged areas. This
feature was also evident in the runoff coefficients (proportion of runoff and amount of
rainfall of a catchment) of Category 1 catchments across all drainage divisions. Compared
to the gauged catchments, estimated runoff coefficient distributions from all categories
of ungauged catchments within a drainage division were generally greater (Figure 10).
This feature was evident across most of the drainage divisions, with the exception of SEV
and SWC.
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5.5. Estimated Coastal Discharge

We estimated the mean annual discharge to Australian coastal regions through the
application of the GR4J daily model to the gauged and ungauged catchments. The esti-
mated mean annual streamflow varied significantly from one drainage division to another
(Table 5). The mean annual discharge from all drainage divisions, including the gauged
and ungauged catchments, was 419,950 gigalitres (GL), with an ungagged catchment con-
tribution of 232,200 GL, representing 55% of the total. Our findings compare well with the
National Land and Water Resources Audit [66] estimate of 387,184 GL. The Murray–Darling
Basin, Australia’s food bowl, has only about 1% catchment area ungauged (Table 3). It is
also a very highly managed system, represents 55% of Australia’s water use (http://www.
bom.gov.au/water/nwa/2020/mdb/regiondescription/geographicinformation.shtml, ac-
cessed on 12 November 2023), and only a small proportion of the streamflow reaches the
ocean. Estimated discharge from the ungauged catchments was not significant (Table 5).
The mean annual streamflow from the NEC drainage division was estimated at 58,470 GL,
with an ungauged area contribution of 22,800 GL. This finding compares well with the
CSIRO [67] runoff estimates. Estimated streamflow from ungauged areas of SAG and
SWC were not significant compared to that of gauged areas. There are no gauging stations,
and very limited rainfall gauges exist within SWP. In this drainage division, stream net-
works are also not well-formed; therefore, estimates of streamflow are very preliminary.
The estimated average annual streamflow from gauged and ungauged areas of SWC was
3480 GL (Table 5), which compares fairly with gauged streamflow estimates of 4700 GL [68].
The difference could be due to different periods of data and recent below-average rainfall
in Western Australia [69]. The ungauged areas in the PG and NWP were 16% and 24%,
respectively. However, there is only one streamflow gauging station in NWP (Figure 1).
Estimates of mean annual runoff from gauged catchments within these two drainage di-
visions range from 2% to 9% (Figure 10). Thius compares well with the Pilbara water
resources assessment study covering part of these two drainage divisions [70]. The TTS and
CC drainage divisions have the largest proportion of ungauged areas—43% and 51%, re-
spectively (Figure 1, Table 3). Mean annual runoff from the TTS drainage division spatially

http://www.bom.gov.au/water/nwa/2020/mdb/regiondescription/geographicinformation.shtml
http://www.bom.gov.au/water/nwa/2020/mdb/regiondescription/geographicinformation.shtml
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varies significantly from 2% to approximately 45% (Figure 10), which compares well with
CSIRO [71] finding of 3–40% of all gauged catchments. In the CC drainage division, mean
annual runoff was slightly lower than that of TTS and ranged between 3–60%. However,
estimates of runoff from ungauged areas seemed to be high compared to their gauged coun-
terparts, ranging from 15 to 45% (Figure 10), probably due to an oversimplified application
of the GR4J model. The mean annual streamflow from CC drainage division of 109,440 GL
compared well with the CSIRO [71] of 90,000 GL.

Table 5. Mean annual discharge (1000 GL) from each of the drainage divisions including gauged and
ungauged catchments.

Drainage Division Overall Total Gauged
Ungauged

1 2 3 4 Total

Northeast Coast (NEC) 58.47 35.67 11.73 7.34 3.73 22.80
Southeast Coast NSW (SEN) 20.4 11.23 8.04 1.07 0.06 9.18
Southeast Coast VIC (SEV) 11.95 10.87 0.92 0.11 0.05 1.07
Tasmania (TAS) 39.07 25.12 13.10 0.85 13.95
Murray–Darling Basin (MDB) 4.38 4.38 0.00 0.00
South Australian Gulf (SAG) 0.23 0.04 0.02 0.11 0.02 0.04 0.19
Southwest Coast (SWC) 3.48 2.57 0.73 0.15 0.03 0.91
Pilbara–Gascoyne (PG) 6.15 4.52 0.34 0.70 0.50 0.09 1.63
Tanami–Timor Sea Coast (TTS) 146.15 61.72 27.16 9.69 38.12 9.46 84.43
Carpentaria Coast (CC) 109.44 30.25 25.00 8.99 26.52 18.68 79.19
Northwestern Plateau (NWP) 9.41 1.48 7.38 0.03 0.28 0.24 7.93
Southwestern Plateau (SWP) 10.91 0.00 10.83 0.01 0.02 0.05 10.90

Total 419.95 187.85 105.3 29.0 69.3 28.5 232.2

6. Discussion and Future Research
6.1. Model Calibration and Performance

We generated the continuous daily streamflow time series for gauged and ungauged
catchments across the entire Australia from 1993 onwards through the application of GR4J
model. For simplicity, we conceptualised each catchment as one unit and did not subdivide
it into sub-catchments and sub-areas to represent the spatial distribution of rainfall, PET,
and catchment physical attributes. The performance of the models was analysed based on
the performance metrics (Table 1) and visual inspection of daily hydrographs, flow duration
curves, and scatter plots. Based on the NSE and PBias performance scores, 12% and 3%
of the models, respectively, were categorised as unsatisfactory (Table 3). One explanation
could be the model’s inability to represent spatial variability of rainfall, evaporation,
catchment attributes, and channel routing, and another cause could be the strong influence
of high flows on NSE values. Recent application of the GR4J model over 100 catchments
across Australia [30,72] demonstrates better performance, including high and low flows,
when spatial variabilities and proper channel routing were adopted. Similar results were
also found by Viney et al. [73], Zhang and Chiew [43], and Oudin et al. [74] for estimating
streamflow from ungauged catchments and selecting donor catchments. Further research
may reveal the fundamental causes of these conflicting performance ratings.

We also did not find any relationship between the catchment area and model perfor-
mance score. Similar results were also found by Silberstein et al. [75] when applying a
set of lumped catchment models in southwestern Western Australia. However, Sleziak
et al. [76] found a positive correlation between increasing NSE and catchment area when
assessing the effectiveness of calibrating conceptual hydrological model in relation to
catchment characteristics in Austria. Further research and investigations may reveal the
definitive relationship between model performance metrics and catchment areas, particu-
larly in Australia.
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6.2. Discharge Estimates from Ungauged Catchments

The mean annual discharge from all drainage divisions was 419,950 GL, with an
ungagged catchment contribution of 232,200 GL. Our estimates compare well with the
National Land and Water Resources Audit [66] finding of 387,184 GL. However, estimates
of streamflow from ungauged catchments vary from one drainage division to another
(Figure 10, Table 5). But in general, this compare well with various studies accomplished
by CSIRO [67,68,70,71].

In this study, we used a maximum of 10 donors for the Category 2 ungauged catch-
ments. But for the other two categories, only two nearest neighbours were considered.
Streamflow averaging from multiple-donor catchments consistently gives better estimates
of ungauged streamflow than the use of single-donor catchments. However, enhancement
of ungauged streamflow estimates generally diminishes as the number of donor catchments
increases [77]. It was found that in Australia, up to five donor catchments significantly
increase ungauged catchment streamflow estimates [44]. In a study using different types of
catchments across the world, it was found that the use of up to 10 similar donor catchments
enhanced simulated discharge at the ungauged catchments; even substantial improvements
were evident if the donor catchments were from similar climate zones greater than 5000 km
away [78]. In a comprehensive study using 671 catchments with diverse hydroclimatology,
it was found that a ‘perfect’ donor catchment exists, but that it is not necessarily the nearest
neighbour [51].

The catchment physical similarity approach is another well-known technique used in
estimating ungauged streamflow. The application of this approach in Australian catchments
may give better outcomes than the nearest neighbour approach [43]. Similar results were
also found in Europe and the USA [51,54]. An in-depth novel similarity approach was used
by Narbondo, et al. [45], where relationships between GR4J parameters and catchment
physical attributes were found and then exported to ungauged catchments to estimate
streamflow. This approach consistently provided very satisfactory results and could be
adopted for estimating ungauged streamflow with highly variable hydroclimatology. In
this study, our scope was limited to using nearest neighbour catchments in estimating
GR4J model parameters and thereby estimating ungauged streamflow. In the future,
other approaches should be explored [51], including linking GR4J model parameters with
catchment physical properties.

There are several other sources of errors that may shape the estimation of streamflow
from ungauged catchments. These include errors in the observed datasets, model structural
errors and uncertainty in the regionalisation of model parameter sets. Despite these
limitations, hydrological modelling is regarded as the most reliable approach to estimating
streamflow from ungauged catchments [6,40].

6.3. Future Research

In this study, our scope was limited to conceptualising a catchment, irrespective of its
area, as one unit, without dividing it into smaller subareas, to represent spatial variabilities
including rainfall, PET, and catchment physical attributes. Operational application of the
GR4J model in high-value water resource catchments across Australia [30,72] demonstrates
that better model calibration performance could be achieved through the spatial representa-
tion of catchment variabilities and the adopting of proper channel routing of the streamflow
volume generated. Further development could include reservoir water balance, diversion,
and return flow. Due to this simplified conceptualisation of a catchment, we did not test the
model performance of estimating ungauged discharge, assuming gauged donor catchments
as ungauged for each of the categories. Recent research shows that relationships between
GR4J parameters and catchment physical attributes exist and could be exported to better
estimate ungauged streamflow [45]. In future, this approach should be explored further,
including other novel ideas proposed by Pool et al. [51].
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7. Summary and Conclusions

There are 405 gauged catchments in the coastal regions across Australia that cover
2,549,000 km2 across all 12 drainage divisions, and 771 ungauged catchments that cover an
additional area of 835,000 km2. The distribution of ungauged catchments varies from one
drainage division to another, with the largest proportion of 51% in the Carpentaria Coast
(CC). The total area draining to the Australian coastal region is estimated at 3,384,000 km2.
The annual rainfall and PET and their spatial and temporal distribution vary significantly
from one drainage division to another.

We generated the continuous daily streamflow time series for gauged and ungauged
catchments across all of Australia from 1993 onwards. We applied the GR4J model and
assessed its performance using NSE and PBias metrics. Based on these two metrics, the
performance ratings of 80% and 96% of the models were classified as good, and only 12%
and 3% of the models were unsatisfactory, respectively. We found no relationship between
catchment area and model performance, particularly with respect to NSE and PBias.

We categorised ungauged coastal catchments into four categories based on distance
and Köppen climate zone: (i) downstream of a gauged catchment; (ii) gauged catchments
within a radius up to 50 km; (iii) at least two gauged catchments within a 50 km to
250 km radius and in the same Köppen climate zone; and (iv) one or no neighbouring
gauged catchments beyond a 250 km radius but within the same climate zone. The total
ungauged catchments have an area of 835,000 km2 and represent 24.7% of the total drainage
division areas.

We estimated streamflow for ungauged catchments based on the parameters of
their donor catchments. Overall, runoff ratios from ungauged catchments were gener-
ally higher compared to their donor-gauged catchments due to higher rainfall and less
PET in the coastal areas. In particular, this tendency was evident in the CC and Tanami–
Timor Sea Coast (TTS) drainage divisions, where ungauged areas comprised 51% and
43%, respectively.

We estimated the mean annual streamflow from each of the drainage divisions based
on the application of the GR4J model and its extension to ungauged catchments. The
mean annual gauged streamflow varied significantly across different drainage divisions—
from 230 GL in the South Australian Gulf (SAG) to 109,440 GL in CC. The estimated
mean annual streamflow from all ungauged catchments was 232,170 GL, slightly higher
than other estimates, likely due to different methodologies used, including the simplified
application of the GR4J model. Overall, the mean annual streamflow from all drainage
divisions, including gauged and ungauged areas, across the coastal regions of Australia was
estimated at 419,950 GL and compared well with the National Land and Water Resources
Audit estimate. The comprehensive streamflow estimates will be helpful in furthering our
understanding of coastal processes, models, and tools.
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Figure A1. The Köppen classification map showing six major groups of climate zones across Australia.
These climate zones are defined with the climatic limits of native vegetation in mind. This method
of classification is based on the concept that native vegetation is the best expression of climate in
an area. The six major classes are identified predominantly on native vegetation type (Bureau of
Meteorology: http://www.bom.gov.au/climate/maps/averages/climate-classification/, accessed
on 24 May 2023).
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Figure A2. The spatial distribution of annual rainfall and evaporation across Australia: (a) mean
annual rainfall; (b) mean annual potential evapotranspiration (PET). The annual mean is calculated
using 30 years of gridded data between 1981 and 2010 for rainfall and 1975 and 2005 data for pan
evaporation (Bureau of Meteorology: http://www.bom.gov.au/climate/maps/averages/, accessed
on 24 May 2023).
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Figure A3. Ungauged catchments and nodes: (a) Northeast Coast; (b) Southeast Coast NSW; (c) 
Southeast Coast Vic; (d) Tasmania; (e) Murray–Darling Basin; (f) South Australian Gulf; (g) South-
western Plateau; (h) Southwest Coast; (i) Pilbara–Gascoyne; (j) Northwestern Plateau; (k) Tanami–
Timor Sea Coast; and (l) Carpentaria Coast. 

Figure A3. Ungauged catchments and nodes: (a) Northeast Coast; (b) Southeast Coast NSW;
(c) Southeast Coast Vic; (d) Tasmania; (e) Murray–Darling Basin; (f) South Australian Gulf;
(g) Southwestern Plateau; (h) Southwest Coast; (i) Pilbara–Gascoyne; (j) Northwestern Plateau;
(k) Tanami–Timor Sea Coast; and (l) Carpentaria Coast.
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