
Citation: Ma, J.; Yang, Q.; Zhang, M.;

Chen, Y.; Zhao, W.; Ouyang, C.; Ming,

D. Data-Driven Deformation

Prediction of Accumulation

Landslides in the Middle

Qinling-Bashan Mountains Area.

Water 2024, 16, 464. https://doi.org/

10.3390/w16030464

Academic Editor: Yijun Xu

Received: 25 December 2023

Revised: 22 January 2024

Accepted: 22 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Data-Driven Deformation Prediction of Accumulation
Landslides in the Middle Qinling-Bashan Mountains Area
Juan Ma 1,2,†, Qiang Yang 2,*,†, Mingzhi Zhang 2,3,*, Yao Chen 4, Wenyi Zhao 1,2, Chengyu Ouyang 5

and Dongping Ming 6,7

1 School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China;
majuan@mail.cgs.gov.cn (J.M.)

2 China Institute of Geo-Environment Monitoring, Beijing 100081, China
3 Department of Engineering Physics, Tsinghua University, Beijing 100084, China
4 Institute of Geological Survey, China University of Geosciences (Wuhan), Wuhan 430074, China
5 Wuhan Infoearth Information Engineering Co., Ltd, Wuhan 430074, China
6 School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China
7 Frontiers Science Center for Deep-Time Digital Earth, China University of Geosciences (Beijing),

Beijing 100083, China
* Correspondence: yang5359535@126.com (Q.Y.); zhangmz@cigem.cn (M.Z.); Tel.: +86-177-1002-8388 (Q.Y.);

+86-138-1009-3685 (M.Z.)
† These authors contributed equally to this work.

Abstract: Accurately predicting landslide deformation based on monitoring data is key to successful
early warning of landslide disasters. Landslide displacement–time curves offer an intuitive reflection
of the landslide motion process and deformation predictions often reference the Saito curve for corre-
lational analysis with cumulative deformation curves. Many scholars have applied machine learning
techniques to individual landslide deformation predictions with considerable success. However,
most landslide monitoring data lack a full lifecycle, making it challenging to predict unexperienced
evolutionary stages. Cross-learning between similar landslide datasets provides a potential solution
to issues of data scarcity and accurate prediction. First, this paper proposes a landslide classifica-
tion and displacement machine learning method, along with predictive performance evaluation
metrics. Further, it details a study of 13 landslides with evident deformation signs in the middle
Qinling–Bashan Mountains area, conducting refined landslide classification. Based on a data-driven
approach, this study conducts an analysis of the importance of characteristics influencing landslide
deformation and establishes predictive models for similar-type landslide deformation, mixed-type
landslide deformation, and individual landslide deformation using machine learning algorithms.
The models trained on the dataset are used to predict the deformation of the West of Yinpo Yard
landslide at different periods, with the predictive performance evaluated using two indices. The
results indicate that the models trained on similar-type landslide data and those based on individual
landslide data yielded comparable predictive performances, substantially addressing challenges such
as insufficient early-stage monitoring data and low prediction accuracy.

Keywords: Qinling–Bashan Mountains; landslide; data-driven; machine learning; deformation prediction

1. Introduction

Due to the movements of the Pacific Plate, the Indian Ocean Plate and the Asian–
European Plate, China is characterized by strong tectonic and seismic activities, and com-
plex topography and geological conditions, coupled with a variety of climatic types and
intense human engineering activities, which make geologic hazards prone to occurring,
prolific, and frequent. The middle Qinling–Bashan Mountains area is an area highly prone
to geologic hazards, and is located in the key prevention and control area of landslides,
avalanches, and mudslides in the Qinling-Bashan Mountains of China. The geological dis-
asters in the region are characterized as cluster, regional, and chain-born. The distribution
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density of geologic hazard sites is three times higher than the average density in China. The
study area is characterized by strong internal and external dynamics, active earthquakes,
strong development of active fractures, deep ravines and valleys, large relative height
difference in topography, relatively high rainfall, frequent human engineering activities,
and frequent occurrence of geologic hazards such as avalanches, landslides, mudslides, and
other geologic hazards, especially the stacked layer landslide disasters, which are extremely
common, accounting for about 89.6% of the total [1,2].

Understanding how to effectively carry out the prediction of landslide deformation in
the middle accumulation layer of the Qinling–Bashan Mountains area can help in grasping
the deformation and destabilization process of landslides in this area, and reduce the risk of
landslides to the safety of people’s lives and property, and the safety of major projects. Many
experts and scholars have carried out qualitative and quantitative studies on landslide
displacement prediction with different methods, using empirical models, mathematical
statistical models, nonlinear models, etc. for landslide prediction [3–7]. For example, Yin
Shunde et al. [8] used the evolutionary neural network GA-NN model to make an accurate
prediction of the evolutionary development of landslide displacements under rainfall condi-
tions. Wang Chaoyang et al. [9] established a Grey System Metabolic GM(1,1) landslide pre-
diction model to predict the displacement and deformation of the Xiangjiapo landslide and
the GA monitoring point of the chain cliff hazardous rock body. Deng Dongmei et al. [10]
proposed, for the displacement prediction work of reservoir level landslide fluctuation
term in the Three Gorges reservoir area, the particle swarm optimization-support vector
machine regression (PSO-SVR) displacement prediction method based on time-series en-
semble empirical modal decomposition and reconstruction with the Baishui River landslide
as the research object.

Researchers have implemented some advanced machine learning methods to predict
landslide displacement, achieving high precision in forecasting and providing technical
support for landslide risk assessment and early warning. However, shortcomings remain.
Currently, most predictions of landslide displacement integrate inducing factors such as
rainfall and reservoir water levels, along with long-term displacement data series. The accu-
racy of the predictions is closely related to the quality of historical data; predictions are more
precise when historical data fully reflect the coupling relationship between the landslide
evolution process and multiple influencing factors, and less precise otherwise [11–19]. Pre-
vious studies have not conducted comparative research on displacement datasets of similar
landslides; they typically lack long-term, high-temporal-resolution complete deformation
data. Furthermore, these studies usually apply machine learning models to individual
landslides without extending the trained models to other sites, leading to inadequate
validation of the models’ generalizability.

This paper proposes a method for predicting similar-type landslide deformation and
establishes a data-driven model, aiming to address challenges such as insufficient early-
stage monitoring data and low prediction accuracy. The study selects 13 landslides in the
middle Qinling–Bashan Mountains area, which exhibit significant deformation signs in
the accumulation layer, as research subjects. Utilizing machine learning algorithms and
combining rainfall and deformation monitoring data, the study conducts a comparative
analysis of three types of predictive models: those for similar-type landslide deformation,
mixed-type landslide deformation, and individual landslide prediction. Models trained
on data from similar-type landslides are then applied to predict deformation in other
landslides to evaluate the generalizability and applicability of the similar-type landslide
deformation prediction model.

2. Methods
2.1. Classification of Landslides Method

Landslides are formed in different geological environments, and manifested in differ-
ent forms and features; all types of landslides have their own development and evolution
process and law, and there are significant differences in the sliding law presented by differ-
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ent influencing factors. There are many existing classification standards for landslides and
many scholars have studied the classification of landslides over the years. Classification of
landslides according to material composition is one of the most commonly used means of
classification at home and abroad, classifying landslides into rocky and soil landslides, of
which soil landslides include stockpiled soil landslides, loess landslides, clayey soil land-
slides, and landfill landslides, etc. Varnes (1978) [20] categorized slope movements based
on rock and soil movement characteristics into falls, topples, slides, lateral spreads, flows,
and complex movements. Liu Guangrun (1992) [21], in his study on major geological and
seismic issues in the Three Gorges of the Yangtze River, classified slope structures based on
the relationship between structural planes and the slope surface into dip-slope normal, dip-
slope reverse, and inverse slope types. Liu Guangrun and Xu Kaixiang (1993) divided slope
deformations into natural and anthropogenic dynamics based on different causative fac-
tors. Wang Lansheng, Zhang Zhuoyuan, et al. (1994) [22] proposed five basic combination
models for the deformation mechanism of slopes composed of layered or layer-containing
rock bodies: creep-shear, slip-induced tension cracking, bending-tension cracking, plastic
flow-tension cracking, and slip-bending. Yan Tongzhen et al. (1994, 2000) [23] summarized
nine types of sliding mechanisms based on the initial conditions, fundamental causes, and
apparent sliding modes of landslides: rheological overturning landslide, stress release
translational landslide, vibration collapse or liquefaction landslide, subsidence landslide
due to erosion, geochemical suspension-sinking landslide, high potential energy leapfrog
landslide, pore water pressure floatation landslide, erosion-loading landslide, and giant
high-speed long-runout landslide. Liu Guangrun et al. (2002) [24,25] proposed a com-
prehensive and systematic landslide classification system for the first time, based on the
characteristics of the landslide body, deformation dynamics, and activity features, offering
a detailed classification of landslides.

In recent years, the landslide classification system has continually evolved and devel-
oped, gradually forming a comprehensive classification system based on “category, size,
type, mode, and stage”. The type of landslide mass (material structural composition) is clas-
sified by “category”, which includes rock landslides, soil landslides, and accumulation layer
landslides, further subdivided based on material composition and the relationship between
structural planes and slope surfaces. Rock landslides include rock layer-conformable, rock
layer-nonconformable, and rock cross-layer landslides. Soil landslides include loess, clayey
soil, and man-made fill landslides. Accumulation layer landslides include colluvium and
talus landslides. The scale of the landslide is categorized by “size”, dividing landslides into
nine types based on landslide volume and landslide mass thickness, ranging from small
to gigantic, and shallow to super-deep. The causative forces are classified by “type”, with
nine types of causative forces divided into natural and anthropogenic. The deformation
movement characteristics and failure modes are sorted by “mode”, classifying landslides
based on kinematic features, dynamic characteristics, and deformation failure modes. The
development stage of the landslide is classified by “stage”, distinguishing between new
and reactivated landslides in terms of their evolutionary stages. The research group based
on the aforementioned geological model carries out a refined classification of accumulation
layer landslides in the middle Qinling–Bashan Mountains (Figure 1).

2.2. Model Construction Method

For on-site landslide monitoring data, processing such as data partitioning is per-
formed. According to the characteristics of time variables, data can be divided into time-
series and non-time-series data, and preprocessing is conducted based on the unique
attributes of the two datasets. The landslide basic survey table records non-time-series
data, including landslide scale, thickness, volume, quantity, and basic information on
deformation movement characteristics. On the other hand, landslide monitoring data, such
as surface displacement, rainfall, and tilt, constitute time-series data. The model needs
to be capable of processing time-series data while also possessing good interpretability
to assist professional technical personnel in monitoring and early warning of geological
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disasters, and understanding the influencing factors in landslide deformation [26]. Deep
learning models have difficulty interpreting the relationship between prediction results
and input features.
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with stacked layers.

Predictive methods based on individual slopes are closely related to historical data
and struggle to reveal the characteristics of landslide movement over the complete lifecycle.
Similar-type landslide prediction models consider the interpretability of the model, the
landslide’s primary influencing factors, and the characteristics of landslide movement
throughout the lifecycle of similar landslides to construct a predictive model based on the
concept of similar-type landslides. This predictive model mainly consists of two steps: the
first step uses the XGBoost machine learning model for feature importance analysis, with
the analyzed results serving as feature input for subsequent deformation prediction. The
second step employs the LSTM deep learning model to output predictions.

The XGBoost decision tree algorithm [27] can calculate the importance of each input
feature to the final prediction result. The greater the weight of feature importance, the
more significant its impact on the prediction outcome. Thus, this model is selected for
feature importance analysis. Additionally, XGBoost is known for its efficiency, flexibility,
and robustness: it employs parallel processing to rapidly train large datasets, it can handle
both numerical and categorical features, and it is capable of managing missing values.

The XGBoost objective function is shown in Equation (1):

L(ϕ) = ∑i l(yi, ŷi) + ∑k Ω( fk) (1)

where Ω(fk) as shown in Equation (2):

Ω( fk) = γT +
1
2

λ∥ω∥2 (2)
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contains the regularization term, ŷi is the output of the model, yi is the true label, fk denotes
the kth base classifier, T is the number of leaves in the tree, ω denotes the score in the
corresponding leaves, and γ is the penalty term.

Expanding Equation (1) using Taylor’s formula yields Equation (3):

L(t) = ∑n
i=1

[
gi ft(xi) +

1
2

ht ft
2(xi)

]
+ Ω( ft) (3)

The formula gi is the same as ht and Ω(ft). The expression equations are Equations (4)–(6),
respectively, as follows:

gi = ∂ŷi(t−1)l
(

yi, ŷ(t−1)
i

)
(4)

hi = ∂2
ŷ(t−1)

i
l
(

yi, ŷ(t−1)
i

)
(5)

Ω( ft) = γT +
1
2

λ∑T
j=1 ω2

j (6)

Substituting Equations (4)–(6) into Equation (3) yields the leaf node weight formula
shown in Equation (7):

ω∗
j = −

Gj

Hj + λ
(7)

Gj and Hj denote the values of first-order gradient and second-order gradient at the leaf
nodes, respectively; the optimal solution of the objective function is obtained by bringing
Equation (7) into Equation (3) as shown in Equation (8):

L̂∗ = −1
2∑T

j=1

G2
j

Hj + λ
+ γT (8)

Landslide deformation prediction primarily focuses on forecasting time-series data
for surface displacement [28]. The Long Short-Term Memory (LSTM) network algorithm,
compared to traditional Recurrent Neural Networks (RNNs), is more adept at addressing
gradient vanishing problems in long sequences. It can handle longer sequence data and
better capture long-term dependencies within sequential data. Its time sensitivity enables
more effective learning of the features in time-series data [29]. The plan is to apply a hybrid
XGBoost and LSTM model to landslide deformation prediction to enhance the accuracy of
predictions while also achieving model interpretability [30–32].

LSTM [33] introduces a memory cell that stores and accesses information and controls
the flow of information through a gating mechanism. The key parts of LSTM include input
gate, forget gate, and output gate (Figure 2).
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• Forget gate

The first step in LSTM is to decide what information we need to throw away from the
cell state. This decision is made by a sigmoid layer called the forget gate. With the inputs
ht−1 and xt it outputs a number between 0 and 1. An output of 1 means “keep this value
completely” and 0 means “throw this value away completely”.

The forgetting gate is calculated as in Equation (9).

ft = σ
(
W f ·[ht−1, xt]

)
+ b f (9)

• Input gate

The second step is to decide what kind of information we need to store in the cell state.
There are two parts to this problem. First, the sigmoid layer calls an “input gate” to decide

what data needs to be updated. Then, a tan h layer creates a vector
∼
Ct as new candidate

value that can be added to the state. In the next step, we want to merge these two parts to
create an update to the state.

The input gate is calculated as in Equations (10) and (11):

it = σ(Wi·[ht−1, xt]) + bi (10)

∼
Ct = tan h(Wc·[ht−1, xt]) + bc (11)

The forgetting gate and input gate are combined as in Equation (12):

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (12)

• Output gate

Finally, we need to decide what we want to output. This output is based on our cell
state but will be a filtered value.

The output gate is calculated as in Equations (13) and (14):

ot = σ(Wo·[ht−1, xt]) + bo (13)

ht = ot ∗ tan h(Ct) (14)

2.3. Selection of Evaluation Indicators

In order to analyze and study the prediction ability of the displacement monitoring
data model, the model test uses two assessment indicators, MSE and MAPE, to measure
the model prediction effect.

MSE squares the difference between the predicted and actual values for each time
period, and then averages the squares of the differences over multiple time periods to
obtain the average mean square error. The MSE metric has the advantage of being able to
highlight extreme errors, as in Equation (15).

MSE =
1
n∑n

i=1

(
Yi − Ŷi

)2 (15)

MAPE denotes the mean percentage of direct relative error between predicted and
measured values in the range [0, +∞); the smaller it is the more accurate the prediction
model is, as in Equation (16).

MAPE =
100%

n ∑n
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (16)
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3. Research Case

The middle Qinling–Bashan Mountains is located in the Qinling Mountains and
Bashan Mountain Range in southern Shaanxi, ranges from 31◦42′ N to 34◦33′ N and from
105◦29′ E to 111◦15′ E (Figure 3), and is mainly located in the cities of Hanzhong, Ankang,
and Shangluo in southern Shaanxi (Figure 3). The average annual temperature in the study
area is 11–14 ◦C and the annual precipitation is 750–1000 mm, which is mostly concentrated
in July–September each year, accounting for about 50% of the annual precipitation, during
which torrential rains and continuous rainy weather are predominant.
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Figure 3. Location of the middle Qinling–Bashan Mountains Area and basic information on landslide
monitoring. (a) Balipo landslide. (b) Chengouwan landslide. (c) Hujiawan landslide. (d) Koujiayuanzi
landslide. (e) Leijiapo landslide. (f) Liujiazhuang landslide. (g) Lvjiawan landslide. (h) Mapoling
Group 6 landslide. (i) MeiJiayuanzi landslide. (j) Wangjialaowuchang Group 4 landslide. (k) Wuxuecun
Group 5 landslide. (l) Xiajiapo landslide. (m) West of Yinpoyuanzi landslide.

The geomorphology of the Qinling–Bashan Mountains area belongs to low, middle,
and high mountains and wide valley basin landforms, with altitudes ranging from 170 to
3000 m above sea level, and a series of subsidence basins have been formed by the fracture
and subsidence action of the landmass. The middle Qinling–Bashan Mountains area is a
multiplate convergence zone; the plates squeeze each other, the ground stress is extremely
complex, the rock deformation is strong, faults and folds are extremely developed, and the
peak acceleration of the ground vibration is generally 0.05 g. The region is subject to intense
tectonic movement, resulting in the stacking and interweaving of tectonic plates, which
leads to an extremely complex distribution of rock types. The predominant lithologies
in the area are Quaternary unconsolidated deposits, slate, and phyllite. Groundwater in
the area primarily forms through the vertical infiltration of atmospheric precipitation.
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Its movement and storage vary with depth, with shallow layers typically containing
unconsolidated sediment pore water and deeper layers hosting bedrock fracture water.
Human engineering activities in the area are mainly focused on housing construction, road
building, and mining. The region is characterized by high mountains, deep valleys, and
steep slopes, and is rife with geological structures such as faults. Additionally, concentrated
rainfall and high cumulative precipitation volumes make this region highly susceptible
to geological hazards. Rock types such as slate, schist, and phyllite, which are prone to
slipping, as well as Quaternary slope debris accumulations and expansive soils, are widely
distributed. Investigation and analysis show that geological hazards in the region exhibit
interannual and monthly patterns, with more incidents occurring in wet years and fewer
during dry years. The vast majority of landslides, collapses, and unstable slope failures
are concentrated in the rainy season, with statistical data indicating that about 80% occur
between July and September [34–37].

By the end of 2022, the region had a total of 6084 registered geologic hazard sites,
posing a potential threat to the safety of 165,636 people and about CNY 1.4 billion worth of
property. Among these hazards, landslides accounted for the highest proportion at 89.6%,
followed by collapses at 4.9%, debris flows at 4.7%, and other types at 0.7%.

Landslides in the middle Qinling–Bashan Mountains are predominantly medium- and
small-scale accumulation layer landslides. The material of these landslide masses mainly
consists of clay, silt, silty clay, and gravel of various sizes. The sliding surfaces are generally
at the contact between bedrock and accumulation layer material, or along interfaces of
bedrock with different degrees of weathering. The landslides are significantly influenced
by heavy summer rainfall and human engineering activities. The main disaster evolution
pattern of landslides in this central section is creep-shear, with the primary evolutionary
process detailed in Table 1. These types of accumulation layer landslides have a relatively
long deformation evolution process, allowing for the collection of long-term time-series
displacement monitoring data, making them suitable for machine learning applications.

Table 1. Creep–slip–pull-type evolutionary model of landslides in the middle portion of the accumu-
lation layer in the Qinling–Bashan Mountains area.
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The research objects for this study in the middle Qinling–Bashan Mountains are ac-
cumulation layer landslides selected from automated geological hazard monitoring sites
within the region. After analyzing and comparing data, 13 landslides equipped with rain
gauges and surface displacement devices, and showing clear deformation trends were cho-
sen to construct the dataset. These include the Balipo landslide, Chengouwan landslide, Hu-
jiawan landslide, Koujiayuanzi landslide, Leijiapo landslide, Liujiazhuang landslide, Lvji-
awan landslide, Mapoling Group 6 landslide, MeiJiayuanzi landslide, Wangjialaowuchang
Group 4 landslide, Wuxuecun Group 5 landslide, Xiajiapo landslide, and West of Yin-
poyuanzi landslide (Figures 4–7). The 13 landslides were classified according to the geolog-
ical model established in Figure 1 (Table 2) and can be subdivided into seven types: new
traction type colluvial landslide, new traction type talus landslide, new translational type
colluvial landslide, reactivated translational type talus landslide, reactivated translational
type broken accumulation landslide, reactivated traction type colluvial landslide, and
reactivated traction type talus landslide. The classification codes are as shown in Table 3.

Water 2024, 16, x FOR PEER REVIEW 9 of 23 
 

 

Wangjialaowuchang Group 4 landslide, Wuxuecun Group 5 landslide, Xiajiapo landslide, 
and West of Yinpoyuanzi landslide (Figures 4–7). The 13 landslides were classified accord-
ing to the geological model established in Figure 1 (Table 2) and can be subdivided into 
seven types: new traction type colluvial landslide, new traction type talus landslide, new 
translational type colluvial landslide, reactivated translational type talus landslide, reac-
tivated translational type broken accumulation landslide, reactivated traction type collu-
vial landslide, and reactivated traction type talus landslide. The classification codes are as 
shown in Table 3. 

Table 1. Creep–slip–pull-type evolutionary model of landslides in the middle portion of the accu-
mulation layer in the Qinling–Bashan Mountains area. 

State of 
Affairs 

Schematic Diagram of the Evolution of 
the Pattern of Disasters  Characterization 

Natural 
state  

  

The original slope is in its natural 
state, with the surface of the slope 
exposed, and the strongly weath-
ered and moderately weathered 
surfaces of the slope are potential 
sliding surfaces. 

Accelerated 
weathering 

Accelerated weathering of slopes 
from surface to depth  

Stress 
concentra-

tion  
     

Concentration of stresses at the 
foot of slopes and gradual de-
crease in stability  

Landslide  
formation  

  

Sliding surface penetrates, slide 
falls, landslide forms.  

01May2021 01July2021 01September2021 01November2021 01January2022
0

10

20

30

40

50

60

70

80

90  Rainfall intensity
 Cumulative rainfall
 05GP01
 06GP01

Ra
in

fa
ll 

in
te

ns
ity

 (m
m

/d
)

Date

0

250

500

750

1000

1250

1500

Cu
m

ul
at

iv
e 

ra
in

fa
ll 

(m
m

)

0

200

400

600

800

1000

di
sp

la
ce

m
en

t (
m

m
)

 
Figure 4. Rainfall-displacement monitoring data of Balipo landslide. 
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Figure 6. Rainfall-displacement monitoring data for the Chengouwan landslide. 
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Table 2. Refined classification of landslides in the middle Qinling–Bashan Mountains region of the
accumulation layer.

Name of the
Landslide

Structural
Composition of

Matter

Landslide Size
(Large, Medium,

Small)

Predisposing
Factors

(Kinetic Causes)

Kinematic
Characteristics

(Gradual, Abrupt,
Intermittent)

Kinetic
Characterization
(Traction, Nudge,

Composite)

Developmental
Stages
(New,

Resurrection)

Balipo
landslide

Remnant slope
product Medium-sized Rainfall Abrupt Traction New

Chengouwan
landslide Landslide Minor works Rainfall Abrupt Traction New

Hujiawan
landslide Slope failure Minor works Rainfall Abrupt Nudge Resurrection

Koujiayuanzi
landslide

Remnant slope
product Medium-sized Rainfall Abrupt Traction Resurrection

Lei Jiapo
landslide Slope failure Minor works Rainfall Abrupt Traction Resurrection

Liujiazhuang
landslide

Remnant slope
product Minor works Rainfall Abrupt Nudge New
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Table 2. Cont.

Name of the
Landslide

Structural
Composition of

Matter

Landslide Size
(Large, Medium,

Small)

Predisposing
Factors

(Kinetic Causes)

Kinematic
Characteristics

(Gradual, Abrupt,
Intermittent)

Kinetic
Characterization
(Traction, Nudge,

Composite)

Developmental
Stages
(New,

Resurrection)

Lvjiawan
landslide Landslide Medium-sized Rainfall Abrupt Nudge Resurrection

Mapoling
Group 6
landslide

Remnant slope
product Medium-sized Rainfall Abrupt Traction New

Meijiayuanzi
landslide Landslide Medium-sized Rainfall Abrupt Traction Resurrection

Wangjialao-
wuchang
Group 4
landslide

Landslide Medium-sized Rainfall Abrupt Nudge Resurrection

Wuxuecun
Group 5
landslide

Landslide Minor works Rainfall Abrupt Traction Resurrection

Xiajiapo
landslide Landslide Minor works Rainfall Abrupt Traction Resurrection

West of Yinpo
Yuanzi

landslide
Landslide Minor works Rainfall Abrupt Traction Resurrection

Table 3. Refined classification codes for landslides in the middle Qinling–Bashan mountains area.

Classification Code Type of Landslide Name of the Landslide

1 Emerging traction residual landslides Balipo landslide, Mapoling Group 6 landslide

2 Emerging traction avalanche landslides Chengouwan landslide

3 Emergent nudge-type residual landslides Liujiazhuang landslide

4 Resurrection of a nudging
avalanche-accumulated landslide

Hujiawan landslide, Wangjialaowuchang
Group 4 landslide

5 Resurrection of a nudging debris slide Lvjiawan landslide

6 Resurrection of traction residual landslides Koujiayuanzi landslide

7 Resurrection of a traction avalanche landslide
Leijapo landslide, Meijiayuanzi landslide,

Wuxuecun Group 5 landslide, Xiajiapo landslide,
West of Yinpo Yuanzi landslide

4. Comparative Experiments on Group Prediction
4.1. Experimental Process

The research team conducted machine learning experiments based on the 13 landslide
accumulation layers selected from in the middle Qinling-Bashan mountains area mentioned
earlier, carrying out comparative analysis work on deformation prediction for similar-
type landslides and mixed-type landslides. In the first group of experiments (Table 4),
the training dataset for similar-type landslides consisted entirely of Type 7 landslides,
which also represented the most numerous type in this dataset. The training dataset for
mixed-type landslides included landslides of types other than 7. In the second group of
experiments (Table 5), the training dataset for similar-type landslides was entirely composed
of Type 7 (including historical monitoring data of West of Yinpo Yuanzi landslide), while
the training dataset for individual slope landslides was based on historical monitoring data
of the landslide on the west of the Yinpo yard. The prediction set for all experiments used
the data from West of Yinpo Yuanzi landslide.
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Table 4. First group of experiments.

Experiments
Prediction of Similar Landslides Mixed Category Landslide Prediction

Name of the Landslide Classification Code Name of the Landslide Classification Code

Training set

Leijiapo landslide 7 Ba Lipo landslide 1

Meijiayuanzi landslide 7 Chengouwan landslide 2

Wuxuecun Group 5 landslide 7 Liujiazhuang landslide 3

Xiajiapo landslide 7 Hujiawan landslide 4

Prediction set West of Yinpoyuanzi
landslide 7 West of Yinpoyuanzi

landslide 7

Table 5. Second group of experiments.

Experiments
Prediction of Similar Landslides Single-Slope Landslide Prediction

Name of the Landslide Classification Code Name of the Landslide Classification Code

Training
set

Leijiapo landslide 7

West of Yinpoyuanzi
landslide

7

MeiJiayuanzi landslide 7

Wuxuecun Group 5 landslide 7

Xiajiapo landslide 7

West of Yinpoyuanzi
landslide 7

Prediction
set

West of Yinpoyuanzi
landslide 7 West of Yinpoyuanzi

landslide 7

4.2. Key Feature Selection

Due to the abnormal power supply of equipment in the field, the failure of the equip-
ment itself, or the weak communication signal causing the monitoring data to jump or be
missing, the first step is to carry out the cleaning of landslide deformation monitoring data,
including the filling of missing data and correction of abnormal data [38–42]. Due to the
diversity of geohazard monitoring data, it is difficult to completely identify abnormal data
with the same algorithm [43,44]. In order to identify the anomalous data, the long time
series of monitoring data is processed using the method of region segmentation and the
specific algorithm for different morphology data is used to identify the anomalies. For
data with smooth morphology, the 3σ criterion and isolated forest are used to eliminate
the anomalous data. For data segments characterized by a clear trend, a least squares
polynomial curve is used to fit the trend line.

Landslide deformation is a complex multidimensional nonlinear movement, which
is the result of a variety of factors, and it is necessary to deeply explore the features of
landslide deformation and the triggering factors affecting the deformation, such as rainfall
on the same day, effective rainfall, slope, volume type, thickness type, structural type,
deformation movement characteristics, and development stage. Due to the large amount of
feature data, if all of them are used as input items of the model, the problem of dimensional
catastrophe will occur, which will weaken the accuracy and generalization ability of the
model, and lead to a decrease in the accuracy of the model. Our research group selects
the random forest XGBoost machine learning algorithm in the embedding method to
screen all the features (Table 6) and screens out the features in the feature data that have
higher correlation with the stage of landslide displacement change, so as to get the subset
of features for the input of the prediction and early warning model, which reduces the
dimensionality of the input features of the landslide prediction and early warning model,
and improves the model precision and generalizability.
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The machine learning results are as follows: rainfall contributes about 55%, volume
contributes about 13%, thickness contributes about 12%, slope contributes about 11%,
material structure contributes about 9%, and other features are negligible. From there, the
above features were selected as influencing factors for the inputs to the late deformation
prediction model (Figures 8 and 9).

Table 6. Selected feature terms.

Data Item Name Data Type Note

Timing Timestamp Sampling frequency in hours

R Continuous data Rainfall for the day

R1 Continuous data Rainfall for the previous 1 day

R2 Continuous data Rainfall for the first 2 days

R3 Continuous data Rainfall for the first 3 days

Volume String class data Small, medium, large

Thicknesses String class data Shallow, medium, deep

Structural of matter String class data Slope failure, slope remnants

Elevation String class data

Class I (slope ≤ 15◦),
Class II (15◦ ≤ slope ≤ 30◦),
Class III (35◦ ≤ slope ≤ 60◦),

Class IV (slope ≥ 60◦)

Kinetic
characteristics String class data Towed, pushed

Developmental stage String class data New, resurrection

Fissures Discrete ordered data No, yes
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4.3. Analysis of Results and Discussion

In order to keep the experiments comparable, the structure, hyperparameters, and
amount of training data are the same for the three sets of models, which predict landslide
displacements after 12 h, 24 h, and 48 h, respectively. The number of past data referenced
for prediction is 18 (6 h unit), learning rate is 0.0002, and number of epochs is 300. The size
of hidden size of the LSTM model is 512 and the number of training data in a single batch
is 24. The optimal hyperparameters of the model are selected by using the grid search
method in the experiments. The evaluation indexes of the two sets of experimental results
are shown in the table, and some of the prediction effects are shown in Tables 7 and 8 and
Figures 10–12.
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Figure 9. Characteristic contribution percentage.

The first experiment’s similar-type landslide prediction model showed optimal perfor-
mance in predicting the next 12 h on the test set, with an MSE of 5.036 and a MAPE of 0.01.
Under the same training conditions and predicting the same duration, the joint training of
similar-type landslides yielded better results than the joint training of mixed-type landslides.

In the second experiment, the similar-type landslide prediction model exhibited the
best performance in predicting the next 12 h on the test set, with an MSE of 5.099 and a
MAPE of 0.01. However, for predicting the next 24 and 48 h, the individual slope landslide
prediction model outperformed the similar-type landslide prediction model.
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Figure 10. Subgroups predicting effects over the next 12 h. (a) First set of similar slopes projected for
the next 12 h. (b) First set of mixed slopes projected for the next 12 h. (c) Second set of similar slopes
projections for the next 12 h. (d) Second set of single-slope projected for the next 12 h.
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Figure 11. Subgroups predicting effects over the next 24 h. (a) First set of similar slopes projected for
the next 24 h. (b) First set of mixed slopes projected for the next 24 h. (c) Second set of similar slopes
projections for the next 24 h. (d) Second set of single-slope projected for the next 24 h.

A comparison of the two sets of experiments reveals that (1) under the same amount
of training data, in most cases, the shorter the prediction duration of the same model, the
higher the accuracy; (2) for a 12 h prediction, the similar-type landslide prediction model
performs best, followed by the individual slope landslide model, and then the mixed-type
landslide model; (3) for 24 h and 48 h predictions, the individual slope landslide prediction
model performs best, followed by the similar-type landslide model and then the mixed-type
landslide model; (4) both the similar-type landslide prediction model and the individual
slope landslide prediction model perform relatively well. Especially in terms of the MAPE
metric, the prediction accuracy of the similar-type landslide model is consistent with that
of the individual slope landslide model.
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Analyzing the different results for predicting 12 h versus 24 and 48 h in the second
group, the reason may be that the individual slope landslide has already gone through
three stages: initial deformation, uniform deformation, and accelerated deformation. With
a sufficient amount of training sample data, the individual slope landslide prediction
model has learned the characteristics of different evolutionary stages, hence the better
prediction performance, not fully demonstrating the advantage of joint training of similar-
type landslides.

Table 7. Evaluation indicators of the results of the first group of experiments.

Group I
Homogeneous Slopes MSE MAPE A Set of Mixed Slopes MSE MAPE

Next 12 h 5.036 0.010 Next 12 h 7.616 0.024
Next 24 h 7.333 0.0142 The next 24 h 11.085 0.027
Next 48 h 15.232 0.022 The next 48 h 20.670 0.033

Table 8. Evaluation indicators of the results of the second group of experiments.

Group II
Homogeneous Slopes MSE MAPE Group II Single Slope MSE MAPE

Next 12 h 5.099 0.010 Next 12 h 6.069 0.017
Next 24 h 7.242 0.0141 Next 24 h 6.397 0.018
Next 48 h 14.928 0.0212 Next 48 h 6.110 0.018

5. Discussion

This paper presents a study on the displacement prediction of similar-type landslides
in the middle Qinling–Bashan Mountains, focusing on accumulation layer landslides. The
enhancement of prediction accuracy necessitates the use of prolonged and continuous
monitoring data for model refinement. The methods employed for landslide classification,
model construction, and prediction provide a reference for displacement prediction of land-
slides in other regions and of different types. The use of similar-type landslide prediction
models to supplement data enables the acquisition of sliding characteristics at different
evolutionary stages of landslides, offering a scientific basis for early landslide prediction
and warning.

The study proposes a machine-learning-based method for constructing similar-type
landslide deformation prediction models, based on the premise that similar landslides
exhibit analogous movement characteristics. This approach includes key steps such as
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landslide classification methods, feature importance analysis and selection, construction of
training sample sets, and sample learning training with optimization and model tuning.
A monitoring and early warning geological model based on landslide classification is
proposed, encompassing the structure, scale, inducing factors, deformation movement
characteristics, failure modes, and development cycles of the landslide body. This refined
classification provides a basis of expert knowledge and experience for machine learning.
Furthermore, the study introduces a method combining XGBoost and LSTM models for
landslide deformation prediction, enhancing the accuracy of the predictions while achieving
model interpretability. The XGBoost model is used to analyze the main features of landslide
deformation, which are then incorporated as input features in the training of the samples.
The contribution of rainfall is approximately 55%, volume around 13%, thickness 12%, slope
gradient about 11%, and material structure around 9%, with other features being negligible.

The refined classification of landslides requires manual intervention and is closely
related to the experience of the researchers, leading to variability in results among dif-
ferent researchers, which can influence the final landslide displacement predictions. The
predictive results for different landslides are closely related to the developmental stage of
the landslides and are significantly correlated with the developmental stage and quality
of monitoring data of similar landslides in the study area. Regions with high landslide
susceptibility and widespread displacement monitoring tend to have better predictive
outcomes, suggesting the potential for adoption and wider application of these methods.
The predictive method proposed in this paper requires a substantial amount of long-term
continuous observational data as samples for machine learning. The requirements for
deformation prediction are relatively high and the applicability of these methods is some-
what limited. The predictive results are highly correlated with the duration and quality
of the monitoring data, and the predictive models require continuous refinement to be
truly effective.

6. Conclusions

This paper presents a method and process for constructing a prediction model for
deformation in similar-type landslides. Taking the landslide accumulation layers in the
middle Qinling–Bashan Mountains area as an example, a training sample set for these
landslides was constructed. A data-driven deformation prediction model for the middle
section of the Qinling–Bashan Mountains area’s accumulation layers was developed, utiliz-
ing historical monitoring data and key feature parameters of similar-type landslides for
predicting future 12 h, 24 h, and 48 h deformations. The model’s predictive performance
was also evaluated. The main conclusions of this study are as follows:

1. The displacement prediction model for similar-type landslides performs better in
displacement prediction than the mixed-type landslide prediction model.

2. The displacement prediction models for similar-type landslides and individual slope
landslides tend to converge in performance. For predicting displacement in the next
12 h, the similar-type landslide model outperforms the individual slope model. The
effectiveness of longer-duration predictions is closely related to the developmental
stage of the predicted landslide.

3. The similar-type landslide displacement prediction model can learn the sliding charac-
teristics of landslides at different evolutionary stages, providing a scientific basis for
early prediction and warning of landslides. It effectively addresses the issues of insuf-
ficient early monitoring data and low prediction accuracy in landslide monitoring.
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