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Abstract: In the practical production environment, the complexity and variability of hydroelectric
units often result in a need for more fault data, leading to inadequate accuracy in fault identification
for data-driven intelligent diagnostic models. To address this issue, this paper introduces a novel
fault diagnosis method tailored for unbalanced small-sample states in hydroelectric units based on
the Wasserstein generative adversarial network (W-GAN). Firstly, the fast Fourier transform is used
to convert the signal from the time domain to the frequency domain to obtain the spectral data, and
the W-GAN is trained to generate false spectral data with the same probability distribution as the
real fault data, which are combined with the actual data and inputted into the 1D-CNN for feature
extraction and fault diagnosis. In order to assess the effectiveness of the proposed model, a case
study was conducted using actual data from a domestic hydropower plant, and the experimental
results show that the sample features can be effectively enriched via data enhancement performed on
small-sample data to improve the accuracy of fault diagnosis, which verifies the effectiveness of the
method proposed in this paper.

Keywords: Wasserstein GAN; hydroelectric units; data augmentation; fault diagnosis; small-sample
state

1. Introduction

The study of hydropower unit fault diagnosis is significant in ensuring hydropower
units’ safe and stable operation. Once a hydropower unit fails, this may lead to the
instability and insecurity of the power station and the power grid and even produce
irreversible effects [1]. By carrying out fault diagnosis research, unit faults can be found in
time to ensure the unit’s safe operation and prolong the unit’s service life. In addition, fault
diagnosis research can also improve the reliability and efficiency of unit operations and
reduce the maintenance costs and energy consumption, which is also significant for the
sustainable development and utilization of hydropower energy [2,3].

Research indicates that most of the mechanical failures in hydroelectric units can be
detected via vibration analysis [4,5]. Vibration signals constitute a crucial monitoring indi-
cator for assessing the operational status of hydroelectric units. These signals encapsulate
vital information about the internal functioning and potential faults within the units. By
analyzing and processing vibration signals, it is possible to detect equipment anomalies in
a timely manner, predict potential failures, reduce downtime, and enhance the availability
and operational efficiency of the units. This ensures their safe and stable operation [6,7].
As the failure of rotating machinery, such as hydroelectric units, will lead to changes in the
frequency distribution of the vibration signal, some scholars use the Fourier change as the
core of the frequency domain analysis method, the signal from the time domain into the
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frequency domain, to obtain the spectrum. The spectrum contains the signal amplitude of
the frequency components phase and other information; the method of rotating machinery
in the field of fault feature extraction occupies a vital position [8]. Scholars at home and
abroad have conducted in-depth studies on this. For example, Attoui et al. applied the
theory of discrete wavelet transform (DWT) and fast Fourier transform (FFT) to extract the
amplitude of the primary bearing defect frequency as a fault feature from the vibration sig-
nals of rotating machinery [9]. Zhang et al. proposed an intelligent fault diagnosis method
with rolling bearings based on the short-time Fourier transform and convolutional neural
network [10]. Although these methods can visualize the frequency distribution of vibration
signals to analyze the possible causes of faults, they require complete a priori knowledge of
spectral analysis for fault diagnosis, and thus are inefficient for fault diagnosis.

With the rapid development of machine learning and deep learning, data-driven fault
diagnosis methods represented by convolutional neural networks (CNNs) are widely used
in the field of fault diagnosis [11–14]. These intelligent algorithms do not require too much
expert experience. They can perform adaptive feature dimensionality reduction, feature
extraction, and classification on the data, and the diagnostic efficiency is high. For example,
Kolar et al. use Bayesian optimization to optimize the hyperparameters of convolutional
neural networks; by using the optimized hyperparameters, the CNN model can classify
eight different machine states and two rotational speeds, which effectively improves the
diagnostic accuracy [11]. Wang et al. proposed an intelligent fault diagnosis method based
on Radargram and GoogleNet, improved using depth-separated convolution, to solve
the problems of low recognition accuracy and slow computation speed in the current
hydroelectric generator fault diagnostic model [12].

However, these data-driven algorithms represented by deep learning need a large
number of data for training [15,16]. In contrast, the number of faults in hydropower units
is relatively small, and due to the complexity and variability of the working environment
of hydropower units, the actual fault data are often limited, which restricts the model’s
accuracy and generalization ability. For fault diagnosis under unbalanced small-sample
conditions, many scholars have utilized generative adversarial networks (GANs) in other
fields to implement data augmentation for a limited number of faulty samples. For example,
Zhang et al. used GAN to enhance the vibration signals in wind turbines to solve the
problem of unbalanced data [17]. Yang et al. extended the sample set by learning the true
distribution of bearing fault samples through conditional generative adversarial networks
(CGANs) and then used a convolutional neural network to improve the accuracy of fault
diagnosis [18]. Chen et al. employed GAN to solve the problem of insufficient data
labeling and then improved the accuracy of wind turbine fault diagnosis by optimizing
long short-term memory (LSTM) networks with Bayesian methods [19]. These scholars
have effectively used GAN to overcome the problem of feature scarcity due to insufficient
samples, providing ample data for fault diagnosis and presenting a viable approach to
improving the accuracy of diagnosing faults in small-sample conditions.

Up until now, the field of fault diagnosis for hydroelectric generating units has faced a
similar issue: fault samples for these units are often scarce and difficult to obtain. This leads
to a situation where normal samples are abundant, while fault samples make up a very
small proportion, which is disadvantageous for fault diagnosis. Additionally, ac-cording to
the author’s understanding, there is still limited research on the imbalanced small-sample
fault diagnosis for hydroelectric generating units. Therefore, it is necessary to conduct fault
diagnosis research for hydroelectric generating units under the condition of small-sample
imbalance to explore how to effectively augment data under limited fault sample conditions,
thereby significantly improving the accuracy of fault diagnosis and filling the research gap
concerning fault diagnosis for hydroelectric units under small-sample conditions.

In this paper, in the proposed W-GAN-based fault diagnosis method for hydroelectric
units in an imbalanced small-sample state, firstly, the signal is converted from the time
domain to the frequency domain using the FFT to obtain the spectral information for
the vibration signal, the samples expand the spectrum through the W-GAN, and the data
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generated by the W-GAN in different epochs are combined with the actual data, respectively.
The combined data are inputted into the one-dimensional convolutional neural network
(1D-CNN) to diagnose the fault, thus improving the fault diagnosis accuracy. The main
innovations are as follows:

(1) Aiming to solve the problem of fewer sample data for hydropower unit faults, we
propose the W-GAN hydropower unit data augmentation approach;

(2) We effectively expand the sample features and improve the accuracy of fault diagnosis;
(3) For cases in which the training data are sufficiently small or the sample features are

single, we make full use of the data generated through the W-GAN training process
Generator in different epochs, combining them with the actual data to enrich the
sample features.

The paper is organized as follows: Section 2 briefly introduces the mathematical
principles of GAN, W-GAN, and 1D-CNN. Section 3 focuses on the implementation process
of the methodology proposed in this paper. Section 4 verifies the validity and superiority
of the methodology of this paper through engineering cases. Finally, Section 5 gives
the conclusion.

2. Theoretical Background
2.1. W-GAN

GAN is an unsupervised deep-learning architecture proposed by Ian Goodfellow and
other scholars in 2014 [20]. As shown in Figure 1, the definitions of specific parameters in
the network are shown in Table 1; GAN mainly comprises a Generator and a Discrimina-
tor. The core idea of this network is to establish an adversarial relationship between the
Generator and the Discriminator. In this case, the Generator generates false data, while the
Discriminator’s task is to distinguish whether the input data originate from a real dataset
or is generated by the Generator. Throughout many epochs, the Generator improves the
veracity of the data, while the Discriminator continuously improves its classification accu-
racy. Theoretically, when the model reaches Nash equilibrium, the data generated by the
Generator will be consistent with the distribution of the actual data, making it impossible
for the Discriminator to differentiate and mark the model as having reached an optimal
training state.
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Figure 1. Generating adversarial network structure.

The Generator usually consists of network layers, such as a fully connected layer,
in-verse convolution layer, pooling layer, batch normalization layer, etc. [21]. Its network
structure is shown in Figure 2. Its primary role is to convert a random, uniformly distributed
vector input into an output similar to the actual data. During the training process, the
Generator’s goal is to deceive the Discriminator so that it cannot determine whether the
generated data are true or false. Therefore, the structure and parameters of the Generator are
adjusted to ensure that the output of the Generator is as close as possible to the distribution
of the actual data.
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Table 1. Constituent elements and their roles in generative adversarial networks (GANs).

Term Symbol Definition Function

Noise Vector z
A randomly generated vector

that serves as input to the
generator

Provides an initial point for
the generator to produce data

Generator G
A model, typically a neural

network, that accepts a noise
vector and produces data

Learns to create new data
instances that increasingly

resemble the true data
distribution

Generated Data G(z)
The data produced by the

generator based on the input
noise vector z

Intended to deceive the
discriminator into believing
that the data are authentic

Discriminator D

A model, often a neural
network, that assesses
whether input data are

authentic or fabricated by the
generator

Learns to distinguish between
fake data generated by the

generator and real data,
thereby improving its
accuracy in judgement
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Figure 2. Generator structure.

The primary role of the Discriminator is to distinguish whether the Generator or actual
data generate the input data; the structure is similar to the convolutional neural network,
consisting of a fully connected layer, convolutional layer, pooling layer, batch normalization
layer, and other network layers. When the input data comprise a one-dimensional signal
input, a one-dimensional convolution operation is first performed on the input signal to
extract the feature information for the signal. Then, the extracted feature vector is inputted
into the fully connected layer, which is mapped to a value between 0 and 1 via a nonlinear
transformation, indicating the probability that the input signal is an actual signal.

W-GAN is based on GAN using Wasserstein distance as a loss function, calculated
as shown in Equation (1). Wasserstein distance provides a more meaningful measure of
the difference between two distributions. When the Wasserstein loss value decreases, the
similarity of the generated data increases. Therefore, compared to the traditional loss
function, W-GAN has the advantages of a smoother gradient, more meaningful loss, and a
reduced probability of pattern collapse during the training process.

W(Pr,Ps) = in f
δ∈Π(Pr ,Ps)

E(x,y)∼δ ∥ x − y ∥ (1)

where x and y represent real and generated samples, Π(Pr,Ps) denotes the set of all joint
distributions δ(x, y), where Pr and Ps are the marginal distributions of x and y.

2.2. 1D-CNN

The network 1D-CNN is mainly used to process one-dimensional sequence data, such
as text, time series data, etc. [22], Moreover, its network structure is shown in Figure 3. To
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perform convolution operations on the input data to extract features, 1D-CNN utilizes a
one-dimensional convolution kernel. In 1D-CNN, the convolution kernel moves in one
direction along the sequence and convolves with only a portion of the sequence to extract
local features, which are then compressed into a fixed-length vector via pooling operations.
Generally, the convolutional layer and pooling layer alternate; the feature vector extracted
by the convolutional layer is further condensed and extracted by the pooling layer to obtain
a deeper feature vector, and the fully connected layer performs a nonlinear computation on
the extracted feature vector and ultimately outputs the classification result.
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Usually, 1D-CNN uses cross entropy as the loss function. The mathematical expression
of the loss function is shown in Equation (2).

Loss =
N

∑
i=1

−(di ln(yi)− (1 − di) ln(1 − yi)) (2)

where yi is the predicted value; di is the actual value; and N is the number of input data
samples.

3. Proposed Method

This paper proposes a small-sample fault diagnosis method based on W-GAN to im-
prove the low accuracy of the small-sample fault diagnosis of hydroelectric unit imbalance.
Firstly, FFT converts the vibration signal from the time domain to the frequency domain.
Then, the actual data are expanded via W-GAN to achieve the purpose of enriching the
sample features. The expanded samples are inputted into 1D-CNN to carry out feature
extraction and fault diagnosis to further improve the accuracy of fault diagnosis in the
hydropower unit.

In addition, to address the problem of the low fault diagnosis rate due to fewer features
in the un-balanced small-sample state of the hydropower unit, this paper also explores
the combination of the data generated by the W-GAN generator under different epochs
with the actual data in order to improve the accuracy of fault diagnosis. In this paper,
the flowchart for the unbalanced small-sample fault diagnosis method based on W-GAN
hydroelectric units is shown in Figure 4, and the specific steps are as follows:

1. The collection of vibration waveform data from mechanical vibrations associated with
hydroelectric units using sensors;

2. The zero-mean preprocessing of collected data on different fault types in hydroelectric
units;

3. The preprocessed waveform data are converted to frequency domain via FFT, and the
spectrum is obtained;
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4. The spectral dataset is divided into a training set and a test set according to the
proportion of unbalanced small-sample states, where the training set is used to train
W-GAN and the test set is used to validate the model for fault diagnosis;

5. We train W-GAN using the training set, obtain the data generated via W-GAN in
different epochs, and expand the dataset for the training set;

6. The expanded dataset trains 1D-CNN, and the test set is inputted to 1D-CNN for
fault diagnosis.
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4. Experimental Verification
4.1. Introduction of Experimental Data

On 28 August 2015, Unit 3 of a power station in China suffered a hydraulic imbalance
failure when the annular steel plate of the unit’s rotor chamber fell off. The failure is shown
in Figure 5. Based on the status of the unit before and after the failure and the on-site
maintenance report, experts determined that the unit operated normally until 26 August
2015. On 26 August 2015, the X-direction swing amplitude of the unit’s hydraulic conductor



Water 2024, 16, 454 7 of 17

showed significant variation. On 28 August 2015, the X-direction swing channel of the
unit’s hydraulic conductor was alarmed. The turbine model of the unit is ZZA315-LJ-800
with a rated speed of 107.1 rpm, a rated power of 200 MW, and a rated head of 47 m. In
conclusion, the operation process of the above mentioned unit was classified into three
states. Before 26 August 2015, it was in the normal state; between 26 August 2015 and 28
August 2015, it was in the fault warning state; and after 28 August 2015, it was in the fault
state. During this operation, the X-direction swing channel of the water guide is sensitive
to the change of the unit’s operating state. Therefore, the data for the X-direction waveform
signal of the water guide oscillations in the three states were collected from the historical
database for analysis.
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4.2. Data Preprocessing

In this study, a total of 40 samples of normal operation states (hereinafter referred to
as Class 1), 30 fault warning states (hereinafter referred to as Class 2), and 30 fault states
(hereinafter referred to as Class 3) were collected. Each waveform contains 16 key phases
and a total of 4096 points, and the sampling frequency is 458 Hz.

(a) Zero-mean normalization

In the data preprocessing step, this paper adopts the zero-mean normalization method,
which is a widely recognized and applied technique in the fields of signal processing, image
processing, and machine learning. The reasons for choosing this method are as follows:
it effectively removes the overall bias from the dataset, making the data more stable and
easier to process, and secondly, zero-mean normalization provides a consistent distribution
and a concentrated range for the data [23].

For GAN, data normalization is a more critical preprocessing step. Because the GAN
model training process depends on the distribution and range of the data, an uneven data
distribution or large data range may lead to poor training results. Data normalization can
make the data distribution more uniform and the range more concentrated, which makes it
easier to train a stable Generator and Discriminator. Typically, the normalization method
used in GANs is to zero-mean the data, i.e., subtract the data from its mean and divide by
the standard deviation. This means that the data have a mean of 0 and a standard deviation
of 1, making the model easier to train. The zero-mean treatment is shown in Equation (3):

Y =
X − µ

σ
(3)

where X represents the waveform data, µ is the mean of the data, and σ is the standard
deviation of the data.
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The time-domain waveforms of each type of data after zero-mean normalization are
shown in Figure 6, and the normalized amplitudes are unitless normalized values.
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(b) Fourier Transform

The FFT allows the hydroelectric unit vibration signal to be transferred from the time
domain to the frequency domain, thus visualizing the intensity of the individual frequency
components. This is particularly important for fault diagnosis, as different failure modes
or mechanical problems produce specific frequency components. Many features can be
presented in the frequency domain regarding the characteristics of the vibration signal,
such as the dominant frequency, energy distribution, etc. These features are valuable in
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applications such as fault diagnosis, health monitoring, and predictive maintenance. After
the FFT transform, the actual data with a sampling point count of 4096 and a sampling
frequency of 458 Hz are converted to the frequency domain, where the window size of the
FFT is set to 1 s to match the sampling frequency and to ensure the integrity of the signal.
The time domain waveforms of the four types of vibration data and the frequency spectra
obtained via FFT variation are shown in Figure 7.
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Figure 7. Spectrum in different states. (a) Spectrum of Class 1 data. (b) Spectrum of Class 2 data.
(c) Spectrum of Class 3 data.

4.3. Data Augmentation Based on W-GAN

The method proposed in this paper takes the vibration signal spectrum of the hy-
dropower unit as the dataset, so before training the W-GAN, it is necessary to divide the
four classes of spectral signal dataset first. The purpose of the training set is to train W-GAN
to generate data, while the test set is used for fault diagnosis accuracy testing. In order
to achieve the purpose of unbalancing the small size of the dataset, the number of Class
2 data and Class 3 data in the training set is lower than the number of Class 1 data; the
specific number is shown in Table 2

Table 2. Experimental data dataset.

Training Set Test Set

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Number of samples 20 10 10 20 20 20
Percentage 50 25 25 33.33 33.33 33.33

Total number of samples 40 60
Overall percentage 40 60

This experiment is based on the deep learning framework Pytorch, and the detailed
parameters of the Generator and Discriminator network architecture are shown in Table 3.
The network learning rate is 0.001, the number of training epochs is 300, and the batch
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size is 2. During training, a Gaussian distribution generates a random noise vector z as
the input to the Generator. The size of vector z is 1 × 200. After processing by several
linear layers inside the Generator, the final false spectrum data are obtained with a length
of 1 × 2048. The generated false spectrum data and actual data are jointly inputted into
the Discriminator, and a convolution layer is added to the Discriminator to increase the
Discriminator’s ability to discriminate. The convolutional layer alternates with the pooling
layer, and the feature vectors extracted by the convolutional layer are further condensed
and extracted by the pooling layer. The deeper feature vectors are inputted into the
linear layer for discrimination. The Generator and Discriminator learn against each other.
Eventually, the Discriminator establishes the best decision boundary between the actual
and generated data distribution, and the data generated by the Generator tend to the
probability distribution of the actual data.

Table 3. W-GAN network structure parameter.

# Network Layer Input Size Output Size Activation Layer

Generator:
1 Linear layer 1 200 500 LeakyRelu
2 Linear layer 2 500 1000 LeakyRelu
3 Linear layer 3 1000 2048 LeakyRelu

Discriminator:
4 Convolutional layer 1 [1, 2048] [4, 2048] LeakyRelu
5 Pooling layer [1, 2048] [4, 1024]
6 Convolutional layer 2 [4, 1024] [4, 1024] LeakyRelu
7 Pooling layer [4, 1024] [4, 512]
8 Fully connected layer 1 [1, 2048] [1, 256] LeakyRelu
9 Fully connected layer 2 [1, 256] [1, 1] Sigmoid

However, due to the small size of the original dataset or lack of diversity or the
training process W-GAN in the incomplete convergence, the Generator-generated data
distribution is more random, perhaps increasing the diversity of the distribution of sample
features, which can help to achieve the purpose of expanding the samples. Therefore, this
experiment was performed with three types of fault spectrum data, training 300 rounds of
storage WGAN for 50, 100, 200, or 300 epochs when the Generator generates the spectrum
of the data, as shown in Figure 8.

Comparing Figures 7 and 8, it can be seen that as the epoch increases, the generated
data are gradually similar to the original data, indicating that the generator in the model
learns the probability distribution of the original data through the Westminster distance
from the discriminator, and the model is able to capture the latent structure in the original
data without overfitting or introducing unnecessary noise during the learning process, and
accurately reproduces the intrinsic structure of the data in the multidimensional data space.

4.4. Evaluation of the Data Generated

Pearson’s correlation coefficient (PCC) and cosine similarity (CS) are commonly used
to quantify the degree of similarity between two variables. Therefore, in order to assess the
similarity between the probability distribution of the generated spectral data and the actual
data, this paper quantitatively describes the similarity of the generated data by calculating
the mean square error between the generated data and the actual data with the PCC and CS.

(a) PCC

PCC is a statistic used to measure the strength and direction of the linear relationship
between two variables, and its value ranges between -1 and 1. The larger the value of PCC,
the higher the similarity between the two variables, and its mathematical formula is shown
in Equation (4).

ρ(x, y) =
∑m

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(4)
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where xi and yi are the ith values of the vectors x, y, x, y are vector x, y mean values, m, n
is the number of observations in the dataset.
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(b) Cosine similarity

CS is a similarity measure commonly used in machine learning and data mining,
especially in text mining. It measures the cosine of the angle between two vectors. Its value
ranges from −1 to 1. When two vectors have a high cosine similarity, it means that these
two vectors are very similar in distribution.

similarity =
A · B

∥ A ∥ ∥ B ∥ (5)

where A · B is the inner product of vectors A and B, and ∥ A ∥ and ∥ B ∥ are the Euclidean
norms of vectors A and B.

We calculated the PCC and CS for the generated and actual data; the results are shown
in Table 4. As the number of epochs increases, the PCC and CS of the generated data
and actual data gradually increase, indicating that the Generator gradually learns the
probability distribution of the actual data so that the generated data becomes gradually
similar to the actual data, which is consistent with the observation in Figure 8. In order to
evaluate the quality of the generated data, it is necessary to further utilize the generated
data for feature extraction fault diagnosis through 1D-CNN.

Table 4. Calculation of PCC and CS for generated data and real data with different numbers of epochs.

Epoch PCC CS

50 100 200 300 50 100 200 300

Class 2 0.742 0.875 0.915 0.988 0.675 0.919 0.914 0.969
Class 3 0.693 0.781 0.937 0.977 0.713 0.827 0.912 0.939

The enhanced fault dataset is shown in Table 5. Group 1 includes the data before
enhancement, and the remaining groups comprise the enhanced dataset. Since it can be
seen from Figure 8 that at an epoch of 50, the generated data are more different from the
original data, the generated data at an epoch of 50 are discarded to go, and we merge the
rest of the generated data with the data in the actual training set in Table 3 to form three
groups of data: group 2, group 3, and group 4. The number of samples in each group in the
training set is shown in Table 5, and 10 groups of data are added for each fault type, so that
each type of data has the same proportion of samples in the training set, and there are a
total of 60 samples in each group in the training set, in which the proportion of samples of
each type is equal.

Table 5. Dataset after data augmentation.

Epoch Training Set Test Set

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
Group 1 / 20 10 10 20 20 20
Group 2 100 20 20 20 20 20 20
Group 3 200 20 20 20 20 20 20
Group 4 300 20 20 20 20 20 20

4.5. Fault Diagnosis and Result Analysis

With the rapid development of big data and deep learning, intelligent algorithms such
as CNN are widely used in fault diagnosis to perform adaptive feature dimensionality
reduction and feature extraction on data. In this paper, the structure of the 1D-CNN
network built using the deep learning framework Pytorch is shown in Table 6. Since CNN
training is performed in batches, the training set is randomly divided to ensure eight
sets of sample data are included in each batch. Stochastic gradient descent (SGD) is the
optimization function in the model’s training process. In order to measure the difference
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between the predictive accuracy of the model and the actual labels, the cross-entropy loss
(CEL) function is used. The initial learning rate was set to 0.005 to balance the model’s
convergence speed and training stability.

Table 6. The 1D-CNN network structure.

# Network Layer Parameters Output Size

1 Input layer / [1, 2048]

2 Convolutional layer Input Channels: 1; Output Channels: 32
Kernel Size: 3 × 1; Stride: 1 [32, 2048]

3 Batch normalization layer / [32, 2048]
4 Pooling layer Kernel Size: 2 × 1; Stride: 2 [32, 1024]

5 Convolutional layer Input Channels: 32; Output Channels: 4;
Kernel Size: 3 × 1; [4, 1024]

6 Batch normalization layer / [4, 1024]
7 Pooling layer Kernel Size: 2 × 1; Stride: 2 [4, 512]
8 Flatten layer / [1, 2048]
9 Fully connected layer 1 Input Channels: 2048, Output Channels: 512 [1, 512]
10 Fully connected layer 2 Input Channels: 512, Output Channels: 32 [1, 32]
11 Fully connected layer 3 Input Channels: 32, Output Channels: 3 [1, 3]

To explore the differences in the data features generated by the generator at 100, 200,
and 300 epochs in Section 4.3. The data in Table 6 are fed into 1D-CNN for classification,
respectively, and the performance of 1D-CNN in the test set is recorded, and the accuracy
curve is shown in Figure 9, where the X-axis represents the number of epochs during
training and the Y-axis represents the test set in 1D-CNN accuracy, and the curve corre-
sponding to group 1 represents the accuracy of 1D-CNN on the test set without extended
samples. In contrast, the curves corresponding to the rest of the groups are the accuracies
of 1D-CNN on the test set after being trained with extended samples, so the extended
sample approach improves the accuracy of fault diagnosis relative to the accuracy of the
unexpanded samples. The improved fault diagnosis accuracy relative to the accuracy of
the unexpanded samples verifies the effectiveness of the method proposed in this paper.
With the increase in W-GAN training epochs, the generator gradually learns the probability
distribution of the actual data, and the extended sample features are increased, so the
accuracy of 1D-CNN in the test set is gradually improved.
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Figure 9. Accuracy of different group data in the test set in 1D-CNN.
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The confusion matrix, a tool commonly used to evaluate the performance of classifica-
tion models, provides an intuitive way of understanding model performance by comparing
the model’s predictions with actual results. The confusion matrix shows the performance
of the classification model in various categories, including correct and incorrect predictions.
Figure 10 shows the results of the confusion matrix, demonstrating the accuracy of the test
set in the model as the 1D-CNN converges in Figure 9.
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Figure 10. Confusion matrix of 1D-CNN performance on different group test sets. (a) Group 1.
(b) Group 2. (c) Group 3. (d) Group 4.

Figure 11 shows the feature visualization of Group 2 and Group 4 data after the dimen-
sionality reduction process in the fully connected layer of 1D-CNN; from Figure 11a, we can
see that the features of a few generated data from Group 2 show a large difference from the
features of the actual data, from Figure 11b, we can see that the distribution of the generated
data and the distribution of the actual data gradually overlap with the distribution of the
actual data. The features are more similar when the W-GAN is fully converged.
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Figure 11. Visualization of T-sne downscaling of generated data with real data. (a) Group 2 data
visualization results of dimensionality reduction before network classification. (b) Group 4 data
visualization results of dimensionality reduction before network classification.

In order to further validate the superiority of the method proposed in this paper,
comparative experiments are also conducted. Group 1 in Table 6 represents the actual data
without data augmentation, and Group 4 represents the data after inputting Group 1 into
W-GAN for data augmentation. So, in order to highlight the effectiveness of the proposed
method in small-sample fault diagnosis, Group 1 in Table 6 is inputted into SVM, 1D-CNN,
and BPNN, and Group 4 data are inputted into BPNN and 1D-CNN for classification
testing, respectively. BPNN and 1D-CNN are used for the classification test. The above
experiment was repeated 10 times, the average accuracy was calculated, and the results are
shown in Table 7.

Table 7. Results of comparative analysis of different methods.

Model Datasets Used
Number of Samples in the

Training Set after Data
Augmentation

Average
Accuracy

Proposed method
(GAN-1D-CNN) Group 4 60 89.12

GAN-BPNN Group 4 60 84.42
SVM Group 1 40 67.12

1D-CNN Group 1 40 81.36
BPNN Group 1 40 75.28

The results in Table 7 show that after the same data augmentation, the recognition
accuracy of spectral data input into 1D-CNN is higher than the input into BPNN, which
indicates the powerful function of CNN in feature extraction; on the other hand, the ac-
curacy of both methods is higher than that of the method without data augmentation,
which indicates that it is feasible for this paper to use W-GAN for data augmentation. This
enriches the sample features effectively, resulting in the accuracy of the input into 1D-CNN
being higher than that of the other methods.

5. Conclusions

In this paper, an intelligent fault diagnosis scheme for hydroelectric units based on
small-sample imbalance is proposed. The effectiveness of the proposed scheme and its
superiority over existing fault diagnosis methods are verified through actual data. Several
conclusions can be summarized as follows:
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1. The small-sample fault diagnosis method based on W-GAN proposed in this pa-
per realizes the augmentation of small-sample hydropower unit imbalance data by
combining the fault data of the No. 3 hydropower unit of a power station in China.
The results show that the features of the enhanced samples are more abundant. The
accuracy of fault diagnosis has been improved by 7% on average compared with that
of the unenhanced fault diagnosis;

2. By combining the data generated by W-GAN in different iterations with the actual
data, it was found that the more iterations of the model, the richer the sample features,
and the higher the accuracy in CNN troubleshooting identification.
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