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Abstract: In this study, we explore the potential of assimilating satellite-derived reservoir storage
data into the global-scale hydrodynamic model CaMa-Flood, focusing on the Yangtze River basin.
We evaluated three data assimilation (DA) methods: direct assimilation (DIR), anomaly based assimi-
lation (ANO), and normalized assimilation (NOM). Our results show that the DIR method achieved
the most significant improvements in reservoir storage and downstream discharge simulations. DIR
reduced the average relative root mean square error (rRMSE) of reservoir storage estimates by 80.5%,
and increased discharge correlation (∆CC) by 78.6% in the 14 validated discharge stations. ANO,
while effective in certain cases, led to mixed results, with 56.4% of the 39 assimilated dams showing
improved storage estimates and a modest 7.8% reduction in average RMSE. NOM had minimal im-
pact, with negligible changes in RMSE or discharge correlation (∆CC). The direct assimilation method
(DIR) consistently outperformed the others, improving both reservoir storage and downstream dis-
charge estimates. However, the magnitude of improvement varied across locations, highlighting the
need for the further refinement of DA techniques and input data, especially for regions with complex
reservoir operations. Our findings enhance reservoir representation in global hydrodynamic models
and improve the predictability of river dynamics and water resource management.

Keywords: data assimilation; satellite data; storage; reservoir; global hydrodynamic model

1. Introduction

Reservoirs are vital components in the global management of water resources, provid-
ing essential services for economic, environmental, and social development. They supply
water for 30–40% of global irrigation and generate 17% of global electricity [1,2]. The
unprecedented surge in reservoir construction has resulted in the damming of many of
the world’s rivers, significantly impacting river flow regimes at local, regional, and global
scales [3,4].

Reservoirs serve multiple functions, including regulating peak flows and hydraulic
residence time to mitigate flooding, providing water for agriculture, electricity production,
and public consumption, and influencing downstream terrestrial and coastal environments
by impeding the flow of essential nutrients [5,6]. However, reservoirs can also emerge as
significant sources of greenhouse gas release, adding complexity to their environmental
impact [7,8].

Understanding “real river hydrodynamics” necessitates the consideration of dam con-
struction and management practices. Reservoir monitoring and modeling are indispensable
prerequisites for advancing our understanding of their impacts on river hydrodynamics
and for effective water resource management [9,10]. A key challenge in this field is the lack
of publicly available data on reservoir operations, which hinders accurate representation in
hydrological models [11,12].

Current approaches to modeling reservoir operations can be broadly categorized into
two main types: data-driven and process-based techniques. Data-driven approaches range
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from simple linear or multilinear regressions to sophisticated artificial intelligence and
machine learning algorithms [11,12]. These methods require specific reservoir attributes
and access to extensive observed data, limiting their applicability in regions with sparse
data. On the other hand, process-based methods conceptualize reservoir response by
relating outflow control to real-world physical processes, such as agricultural growth
cycles and their corresponding water demands [13,14]. These approaches enable the
representation of dam operations without observing actual releases for each reservoir and
are often incorporated in global hydrological and water management models. However,
they may oversimplify complex reservoir operations [15,16].

Model simulations often exhibit large biases, primarily due to limited observations for
calibration and the complex nature of reservoir operations [17,18]. Given these limitations
and the scarcity of accessible in situ data, space-based earth observation has become a
valuable option for observing reservoirs at global scales [19,20].

Recent developments in remote sensing techniques have the potential to revolutionize
reservoir monitoring and modeling. Satellite data can provide water level measurements
using altimeters, estimates of reservoir water area from optical imagery, and derived reser-
voir storage volumes [21,22]. Despite these advancements, satellite data have limitations in
accuracy, spatial coverage, and temporal resolution, with gaps spanning days to months
between consecutive measurements at given sites [23,24]. These sparse observations may
inadequately capture the full scope of reservoir changes.

To address these challenges, data assimilation (DA) offers a solution to integrate remote
sensing with sparse observational data and river hydrodynamic models. DA combines
models with observations, balancing their uncertainties, to enhance model outputs or
replicate the evaluation of real-world systems [25,26]. Previous studies have demonstrated
that DA methods can bridge the gap between ground observations and model simulations
by leveraging remote sensing data in hydrological applications [27,28].

However, the application of DA techniques to reservoir operations in global hydro-
dynamic models remains limited. Most existing studies focus on assimilating river water
levels or discharge [29,30], while few have explored the assimilation of reservoir storage
data derived from satellites. Furthermore, the impact of different DA methods on reser-
voir storage estimation and downstream flow prediction in global models has not been
thoroughly investigated.

In this study, we evaluate the potential of assimilating satellite-based reservoir storage
data into a global river hydrodynamic model to facilitate reservoir simulations. Our
research goals aim to achieve the following:

(1) Develop and implement a DA framework for incorporating satellite-derived reser-
voir storage data into the global river hydrodynamic Catchment-based Macro-scale Flood-
plain model (CaMa-Flood) [31].

(2) Compare the performance of different DA methods, including direct, anomaly, and
normalized value assimilation.

(3) Assess the impact of assimilating satellite-based reservoir storage data on down-
stream streamflow simulations and reservoir storage simulations.

We investigate these objectives using the Yangtze River basin as our study area,
leveraging its extensive network of reservoirs and availability of satellite observations. By
addressing these objectives, we aim to contribute to the improvement of global hydrological
modeling and enhance our understanding of large-scale reservoir impacts on river systems.

2. Study Area and Data
2.1. Study Area

We have chosen the Yangtze River basin (Figure 1) as a test area for the data assimila-
tion (DA) experiments. The Yangtze River is the world’s largest river hydrological system,
making it an ideal case study for large-scale hydrodynamic modeling. The Yangtze basin
exhibits a wide range of flow dynamics, from seasonal flooding to complex river hydraulics.
The basin receives a considerable amount of annual precipitation with a high degree of
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spatial heterogeneity. It has distinct wet and dry seasons. The Yangtze River basin contains
numerous large reservoirs, including the world’s largest hydroelectric dam in terms of
generated power: the Three Gorges Dam. This extensive network of reservoirs provides an
excellent opportunity to study the effect of the operations of reservoirs on river systems at
a large scale [32]. The availability of a large number of remote sensing observations is a
major advantage for analyzing the Yangtze basin, which is crucial for our DA experiments.
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Figure 1. Overview of the study area and datasets used in this study.

2.2. Data
2.2.1. Satellite Reservoir Storage Data

We used satellite-derived reservoir storage data as observations for DA experiments.
These data were obtained from Res-CN dataset (https://doi.org/10.5281/zenodo.7664489,
accessed on 14 September 2024) [33,34]. The storage estimates from Res-CN are based on
satellite-derived water levels, surface water areas, and DEMs (digital elevation models).
Satellite-derived water level observations were made using six satellite altimeters: CryoSat-
2, ICESat-2, Jason-3, SARAL/AltiKa, and Sentinel-3 A/B. These altimetry data were used
in conjunction with surface water areas derived from Landsat and Sentinel-2 images or
DEM to generate high-resolution reservoir storage estimates. In situ measurements from
93 reservoirs were used to validate these storage estimates. The comparisons indicate a
relatively high level of accuracy of the monthly reservoir storage estimations, with median
statistics of 0.89 for the correlation coefficient (CC), 11% for the normalized root mean
square error (NRMSE), and 0.021 km3 for the root mean square error (RMSE). Figure 1
illustrates the spatial distribution of the 39 Yangtze reservoirs used in this study.

2.2.2. Validation Data

To evaluate the impact of assimilating satellite reservoir storage on downstream
river dynamics, we collected river discharge data from 14 in situ gauging stations located
downstream of the reservoirs studied in our study (Figure 1). These in situ measurements
serve as independent validation data for our model simulations and DA experiments.

2.2.3. Model Input Data

For the CaMa-Flood model simulations, we used runoff products from the ERA5 to
force the model. This dataset was chosen for its global coverage and its relatively high
resolution in both space and time. The river network and topography data required by
CaMa-Flood were derived from the MERIT Hydro [35]. To allocate reservoirs on the model
map, we collected information on the reservoir locations, capacities, and purpose from the
Global Reservoir and Dam (GRanD) database [36].

https://doi.org/10.5281/zenodo.7664489
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3. Methodology
3.1. Data Assimilation Framework

To incorporate satellite reservoir storages into a global river hydrodynamic model,
we developed the data assimilation framework HydroDA-Res. The framework (Figure 2)
begins with the generation of runoff ensembles through the perturbation of runoff forcing.
These ensembles are then used as the input to the CaMa-Flood simulation, which provides
the ensembles of current water state (e.g., reservoir storage). Each ensemble of current water
state is subsequently corrected through satellite observations in the assimilation scheme.
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The process flow of our framework is as follows: The forecasted water state at time
T + ∆T

(
x f

T+∆T

)
is simulated with the CaMa-Flood using the initial water state at time

T (xa
T) and the runoff. The forecasted water state is then modified to xa

T+∆T through the
DA method, serving as the initial condition for the subsequent calculation step. When
employing anomaly based or normalized assimilation approaches, the predicted water
conditions undergo a transformation. This process utilizes historical averages and vari-
ability measures prior to incorporating adjusted satellite data. Following the assimilation,
the updated water states—expressed as deviations from typical values or in standardized
units—are reconverted to their original scales. These reconverted values represent the
refined estimates of water stored in reservoirs.

3.2. Hydrodynamic Model: CaMa-Flood

We employed the Catchment-based Macro-scale Floodplain model (CaMa-Flood) to
simulate reservoir water dynamics within the data assimilation framework. This model
is tailored for simulating extensive river systems by dividing global river networks into
smaller, manageable units called unit catchments. Its computational efficiency enables
accurate flood diagnosis while simultaneously calculating flow and inundation dynamics
for each unit catchment, which serves as the basic unit of calculation. The model implements
local inertial equations to capture backwater effects and adopts bifurcated channels for the
enhanced accuracy of river flow simulations.

In CaMa-Flood, reservoirs are allocated to individual unit catchments based on their
geographical locations. The model replaces the natural outflow at the outlet of each unit
catchment containing a reservoir by calculating the reservoir outflow based on a reservoir
operation scheme. This scheme implements the storage-based rule, which divides the
reservoir storage into four zones: dead storage, conservative, normal, and flood control.
Each zone has a specific outflow–storage relationship that governs the reservoir’s operation.
Despite the sophistication of this approach, current simulations of reservoir storage often
exhibit large biases when compared to observations. These biases can be attributed to
several factors: uncertainties in input data, particularly in estimating mean annual inflow
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and water demand; simplifications in the reservoir operation rules, which may not capture
site-specific management practices; the challenge of representing diverse reservoir purposes
and their seasonal variations; and limited information on the actual reservoir characteristics
and operations at a global scale.

These features make CaMa-Flood particularly suitable for our DA framework, as it can
represent complex hydrodynamic processes at a large scale while providing opportunities
for improvement in reservoir storage simulation through data assimilation.

3.3. Data Assimilation Method

The primary goal of DA is to reconcile discrepancies between observed and simulated
data by integrating diverse, uncertain information sources. For our research, we selected
the Local Ensemble Transform Kalman Filter (LETKF) as our DA methodology. LETKF
is a computationally optimized version of the ensemble Kalman filter, which itself is an
advanced iteration of the original Kalman filter. This algorithm is frequently employed
in scenarios involving nonlinear models, which are essential for accurately representing
hydrodynamic processes. The complex nature of hydrodynamic systems necessitates
the use of nonlinear models, which can be expressed in a discrete mathematical format
as follows:

xk+1 = M(xk, uk, ϑ) + qk (1)

where x, u, and ϑ denote the state variable vector, the external model forcing, and the
model parameters, respectively. The nonlinear function M describes the system’s behavior.
The term qk accounts for a range of potential inaccuracies, including errors in the model
forcings, parameters, structures, and antecedent states. Within the vector x, we incorporate
all relevant state variables from the CaMa-Flood model, such as river discharge, reservoir
storage, and river storage. To link these model states to real-world measurements, we
employ the following relationship:

yk = H(xk)+ ∈k (2)

where y and ε denote the observation vector and the vector of errors associated with these
observations, respectively. The linear observation operator H establishes a relationship
between the model state variables (x) and the observed data (y). For this research, the
observations consisted of reservoir storage measurements derived from satellite data.
When implementing anomaly based assimilation, both the observed and forecasted states
underwent a transformation into anomaly values. The LETKF algorithm was employed
to determine the most accurate estimate of the model state vector X, taking into account
both the model and observational uncertainties. Here, the model state vector X comprised
reservoir storage values. LETKF can be mathematically represented as follows [37]:

Xa = X f + E f

[
VD−1VT

(
HE f

)T
(

R
w

)−1(
Yo − HX f

)
+
√

m − 1VD−1/2VT

]
(3)

where Xa and X f are the posterior and prior state estimators, respectively; Yo denotes the
observation (i.e., the satellite-derived reservoir storage value); m represents the number of
ensemble members; Ef signifies the prior state error covariance, which is directly computed
from the perturbations. The uncertainty inherent in the measurements is captured by R,
the observation error covariance matrix. To account for spatial relationships, w serves as
a weighting factor for observation localization, determined through the semi-variogram
analysis of the simulated storage values. VDVT is expressed as follows:

VDVT = (m − 1)I +
(

HE f
)T

R−1HE f (4)

where I denotes the unit matrix with dimensions m × m, corresponding to the number of
perturbations employed. VD−1VT and VD−1/2VT are determined based on eigenvalue
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decomposition of VDVT . The ensemble mean vector is indicated by the presence of an
overbar symbol.

3.4. Experimental Setup

The first step is to prepare runoff ensembles of the CaMa-Flood. We applied a stochastic
modification to each runoff value in the dataset. This modification involved multiplying
the original values by random factors drawn from a normal distribution centered at 1 with
a standard deviation of 0.1. We created 20 distinct perturbations of the ERA5 runoff product
using this method. This approach typically yields a suitable range of runoff forcings for
data assimilation experiments, providing a reasonable representation of the uncertainty in
the input data.

The second step is to prepare observations and their errors. For anomaly DA experi-
ments, we calculated anomalies values from the long-term (2010–2021) mean and standard
deviation of reservoir storage. The statistical parameters for satellite data were computed
when the observational records existed, while reservoir simulation statistics were obtained
using simulations from 2010 to 2021. We introduced an observed error for each reservoir
and used the median of all observed errors as a global value to run the experiments.

Our study encompassed three distinct experimental approaches: direct DA (DIR),
anomaly based DA (ANO), and normalized DA (NOM). For the ANO and NOM exper-
iments, we utilized long-term statistics of reservoir storage, specifically the mean and
standard deviation calculated over the period from 2010 to 2021. These statistics were used
to compute anomalies and normalized values, respectively. In the case of satellite data,
we derived the statistical parameters (mean and standard deviation) using the available
observational period. Our simulation timeframe extended from 1 January 2010, to 31
December 2021, with the entire year of 2009 serving as a model initialization period to
establish stable initial conditions.

3.5. Evaluation

To assess the effectiveness of our assimilation methods, we employed several statistical
metrics. These included the Nash–Sutcliffe Efficiency (NSE), the correlation coefficient
(CC), the Kling–Gupta Efficiency (KGE), and root mean square error (RMSE). The CC
metric was utilized to gauge how well the estimated reservoir storage patterns aligned
with seasonal variations. For a comprehensive evaluation of both reservoir storage and
flow estimation accuracy, we relied on the NSE and KGE indicators. The RMSE served as
our measure of overall discrepancy between the estimated storage/flow values and the
observed data. To quantify the benefits of data assimilation, we compared these metrics
between the assimilated simulations and the open-loop (non-assimilated) simulations. This
comparison allowed us to determine the extent of improvement in both reservoir storage
estimates and downstream flow predictions.

4. Results

Our analysis of the three data assimilation (DA) approaches—direct (DIR), anomaly
(ANO), and normalized (NOM)—is structured into two main parts: relative performance
evaluation and absolute performance evaluation.

4.1. Relative Performance Evaluation

The effectiveness of each data assimilation technique was evaluated by comparing its
results to those of the non-assimilated (open-loop) simulation. We use two key metrics:
∆CC for reservoir storage and ∆RMSE for river discharge. ∆R presents the relative change
in correlation coefficient between the DA simulations and the open-loop results. ∆RMSE
shows the relative change in root mean square error, comparing the DA results to the open-
loop simulation. These metrics allow us to quantify the improvement (or degradation)
in model performance achieved by each DA method compared to the baseline open-
loop simulation.
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4.1.1. Direct Assimilation of Satellite Storage Data

We directly incorporated satellite-derived reservoir storage data into the CaMa-Flood
river model. Figure 3a illustrates the change in correlation coefficient (∆CC) for flow at
14 downstream stations, while Figure 3b shows the relative root mean square error (rRMSE)
for reservoir storage at 39 dam locations.

Water 2024, 16, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 3. (a) Change in the correlation coefficient (ΔCC) of river flow and (b) the relative root mean 
square error (rRMSE) in reservoir storage using the DIR method. Hydrographs recorded at Yichang 
discharge station, Hukou discharge station, Three Gorges dam, and Wujiangdu dam are shown in 
panels (c–f), respectively. Blue dots in (e,f) represent the satellite-derived reservoir storage values. 

4.1.2. Anomaly Assimilation of Satellite Storage Data 
We assimilated the anomalies of satellite-derived reservoir storage into the CaMa-

Flood river model for the ANO approach. Figure 4a illustrates the change in correlation 
coefficient (ΔCC) for flow at 14 downstream stations, while Figure 4b shows the rRMSE 
for reservoir storage at 39 dam locations. 

For river discharge, we observed improvements in correlation coefficient at 9 out of 
14 stations (64.3%). The most notable improvements were seen at Datong (ΔCC = 0.043), 
Xiangyang (ΔCC = 0.044), and Huangzhuang (ΔCC = 0.03). However, five stations showed 
slight degradations, with Yichang experiencing the largest decrease (ΔCC = −0.0601). This 
suggests that ANO generally enhanced the representation of flow dynamics, but not as 
consistently as the DIR method. 

Regarding reservoir storage, 22 out of 39 dams (56.4%) showed reductions in RMSE, 
indicating an improvement in storage estimates for the majority of locations. The improve-
ments ranged from slight (Weishui dam, rRMSE = −0.0001) to substantial (Wujiangdu 
dam, rRMSE = −0.47). However, 17 dams showed increased RMSE, with Niuchehe dam 
experiencing the largest increase (rRMSE = 0.10). On average, we observed a 7.8% reduc-
tion in RMSE across all dams, demonstrating a modest overall improvement in reservoir 
storage simulations with the ANO method. 

Figure 4c,d present hydrographs for two representative discharge stations: Yichang 
and Hukou. At Yichang, we see a degradation in correlation (ΔCC = −0.06), with the as-
similated simulation (orange line) deviating from the observed discharge (black line) more 
than the open-loop simulation (blue line) in some periods. However, the Hukou station 
shows an improvement in correlation (ΔCC = 0.02), with the assimilated results better cap-
turing the overall discharge patterns, particularly during low flow periods. 

Figure 4e,f illustrate the storage dynamics at two key dams: Three Gorges and 
Wujiangdu. The Three Gorges dam shows a notable improvement (rRMSE = −0.24), with 
the assimilated storage (orange line) better capturing the seasonal variations compared to 
the open-loop simulation (blue line), especially during drawdown periods. The 
Wujiangdu dam demonstrates an even more significant improvement (rRMSE = −0.4711), 
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square error (rRMSE) in reservoir storage using the DIR method. Hydrographs recorded at Yichang
discharge station, Hukou discharge station, Three Gorges dam, and Wujiangdu dam are shown in
panels (c–f), respectively. Blue dots in (e,f) represent the satellite-derived reservoir storage values.

For river discharge, we observed improvements in the correlation coefficient at 11
out of 14 stations (78.6%). The most significant improvements were seen at Xiangyang
(∆CC = 0.13), Huangzhuang (∆CC = 0.13), and Xiantao (∆CC = 0.11). Only three stations
showed slight degradations, with Hukou experiencing the largest decrease (∆CC = −0.005).
This suggests that DIR generally enhanced the representation of flow dynamics in the model.

Regarding reservoir storage, all 39 dams showed reductions in RMSE, indicating a
consistent improvement in storage estimates. The improvements ranged from moderate
(Wujiangdu dam, rRMSE = −0.48) to substantial (Dahongshan dam, rRMSE = −0.96). On
average, we observed an 80.5% reduction in RMSE across all dams, demonstrating the
effectiveness of DIR in improving reservoir storage simulations.

Figure 3c,d present hydrographs for two representative discharge stations: Yichang
and Hukou. At Yichang, we see a slight improvement in correlation (∆CC = 0.0047), with
the assimilated simulation (orange line) more closely matching the observed discharge
(black line) compared to the open-loop simulation (blue line). The Hukou station, despite
showing a minor decrease in correlation (∆CC = −0.005), still demonstrates an improved
representation of peak flows in the assimilated results.

Figure 3e,f illustrate the storage dynamics at two key dams: Three Gorges and Wu-
jiangdu. The Three Gorges dam shows a significant improvement (rRMSE = −0.81), with
the assimilated storage (orange line) capturing the seasonal variations much more accu-
rately than the open-loop simulation (blue line). The Wujiangdu dam, while showing a
more moderate improvement (rRMSE = −0.48), still demonstrates better alignment with
observed storage patterns after assimilation.

In summary, DIR consistently improved reservoir storage estimates across all studied
dams, with an average RMSE reduction of 80.5%. This improvement in storage representa-
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tion translated to enhanced discharge simulations at most downstream stations, with 78.6%
of stations showing increased correlation coefficients. The method proved particularly
effective in capturing seasonal variations and improving the representation of peak flows.
However, the magnitude of improvement varied across locations, suggesting that local
factors such as dam operation rules and basin characteristics play a role in the effectiveness
of the assimilation process.

4.1.2. Anomaly Assimilation of Satellite Storage Data

We assimilated the anomalies of satellite-derived reservoir storage into the CaMa-
Flood river model for the ANO approach. Figure 4a illustrates the change in correlation
coefficient (∆CC) for flow at 14 downstream stations, while Figure 4b shows the rRMSE for
reservoir storage at 39 dam locations.
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Figure 4. (a) Change in the correlation coefficient (∆CC) of river flow and (b) the relative root mean
square error (rRMSE) in reservoir storage for the ANO method. Hydrographs recorded at Yichang
discharge station, Hukou discharge station, Three Gorges dam, and Wujiangdu dam are shown in
panels (c–f), respectively.

For river discharge, we observed improvements in correlation coefficient at 9 out of
14 stations (64.3%). The most notable improvements were seen at Datong (∆CC = 0.043),
Xiangyang (∆CC = 0.044), and Huangzhuang (∆CC = 0.03). However, five stations showed
slight degradations, with Yichang experiencing the largest decrease (∆CC = −0.0601). This
suggests that ANO generally enhanced the representation of flow dynamics, but not as
consistently as the DIR method.

Regarding reservoir storage, 22 out of 39 dams (56.4%) showed reductions in RMSE,
indicating an improvement in storage estimates for the majority of locations. The improve-
ments ranged from slight (Weishui dam, rRMSE = −0.0001) to substantial (Wujiangdu
dam, rRMSE = −0.47). However, 17 dams showed increased RMSE, with Niuchehe dam
experiencing the largest increase (rRMSE = 0.10). On average, we observed a 7.8% reduction
in RMSE across all dams, demonstrating a modest overall improvement in reservoir storage
simulations with the ANO method.

Figure 4c,d present hydrographs for two representative discharge stations: Yichang
and Hukou. At Yichang, we see a degradation in correlation (∆CC = −0.06), with the
assimilated simulation (orange line) deviating from the observed discharge (black line)
more than the open-loop simulation (blue line) in some periods. However, the Hukou
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station shows an improvement in correlation (∆CC = 0.02), with the assimilated results
better capturing the overall discharge patterns, particularly during low flow periods.

Figure 4e,f illustrate the storage dynamics at two key dams: Three Gorges and Wu-
jiangdu. The Three Gorges dam shows a notable improvement (rRMSE = −0.24), with
the assimilated storage (orange line) better capturing the seasonal variations compared
to the open-loop simulation (blue line), especially during drawdown periods. The Wu-
jiangdu dam demonstrates an even more significant improvement (rRMSE = −0.4711),
with the assimilated results closely aligning with observed storage patterns throughout the
simulation period.

In summary, the ANO method showed mixed results, with improvements in 64.3% of
discharge stations and 56.4% of dam storage simulations. The average RMSE reduction of
7.8% for reservoir storage, while positive, is less substantial than that achieved by the DIR
method. The ANO approach proved particularly effective in improving storage estimates
for some large dams like Three Gorges and Wujiangdu, and in enhancing discharge simula-
tions at stations like Datong and Xiangyang. However, the variability in results suggests
that the effectiveness of the ANO method may be more sensitive to local conditions and
the specific characteristics of each reservoir and river reach. The method’s performance in
capturing seasonal variations and improving low flow representations was notable in some
cases, but it also led to degradations in others, highlighting the complexity of applying
anomaly based assimilation in diverse hydrological settings.

4.1.3. Normalized Assimilation of Satellite Storage Data

We assimilated normalized satellite-derived reservoir storage data into the CaMa-
Flood river model for the NOM method. Figure 5a illustrates the change in correlation
coefficient (∆CC) for flow at 14 downstream stations, while Figure 5b shows the rRMSE for
reservoir storage at 39 dam locations.
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Figure 5. (a) Change in the correlation coefficient (∆CC) of river flow and (b) the relative root mean
square error (rRMSE) in reservoir storage for the NOM method. Hydrographs recorded at Yichang
discharge station, Hukou discharge station, Three Gorges dam, and Wujiangdu dam are shown in
panels (c–f), respectively.

For river discharge, we observed minimal changes in correlation coefficients across
all 14 stations. The largest improvements were seen at Huangzhuang (∆CC = 0.006) and
Xiangyang (∆CC = 0.005), while the largest degradation was at Yichang (∆CC = −0.00002).
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These changes are extremely small, indicating that the NOM method had very little impact
on the temporal patterns of discharge simulations.

Regarding reservoir storage, 24 out of 39 dams (61.5%) showed reductions in RMSE,
indicating a slight improvement in storage estimates for the majority of locations. The
improvements were generally minor, with the largest reduction seen at Longhekou dam
(rRMSE = −0.02). Conversely, some dams showed increased RMSE, with Xionghe dam
experiencing the largest increase (rRMSE = 0.32). On average, we observed a 0.3% reduction
in RMSE across all dams, demonstrating a very modest overall improvement in reservoir
storage simulations with the NOM method.

Figure 5c,d present hydrographs for two representative discharge stations: Yichang
and Hukou. At both stations, the assimilated simulation (orange line) is nearly indistin-
guishable from the open-loop simulation (blue line), confirming the minimal impact of the
NOM method on discharge simulations. This is reflected in the ∆CC values of −0.00002 for
Yichang and 0.00018 for Hukou.

Figure 5e,f illustrate the storage dynamics at two key dams: Three Gorges and Wu-
jiangdu. The Three Gorges dam shows a very slight improvement (rRMSE = −0.002), with
the assimilated storage (orange line) barely differing from the open-loop simulation (blue
line). The Wujiangdu dam demonstrates an even smaller change (rRMSE = 0.00035), with
the assimilated results closely mirroring those of the non-assimilated model across the
entire simulated period.

In summary, the NOM method showed minimal impact on both discharge and reser-
voir storage simulations. The average RMSE reduction of 0.3% for reservoir storage is
negligible, and the changes in discharge correlation coefficients are extremely small. While
the method did lead to slight improvements in more than half of the dam storage simula-
tions, these improvements were not substantial enough to significantly alter the overall
model performance.

4.1.4. Comparison of Assimilation Experiments

In our assessment of the effectiveness of various DA techniques, we examined two key
performance indicators across three experimental setups: DIR, ANO, and NOM. For reser-
voir storage, we quantified improvements using the relative change in root mean square
error (rRMSE). Concurrently, we gauged enhancements in downstream flow predictions by
measuring shifts in correlation coefficients (∆CC).

Figure 6a displays boxplots of the rRMSE for reservoir storage across the 39 dams
for each experiment. The DIR experiment showed the most significant improvement,
with a median rRMSE of approximately −0.8, indicating a substantial reduction in RMSE
compared to the open-loop simulation. The interquartile range for DIR is also the largest,
suggesting variability in the degree of improvement across different reservoirs. The ANO
experiment showed moderate improvement, with a median rRMSE around −0.1, while the
NOM experiment demonstrated minimal change, with its median rRMSE close to zero.
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For downstream discharge, Figure 6b illustrates the ∆CC across the 14 discharge
stations. The DIR experiment again showed the largest improvement, with a median ∆CC
of about 0.02, indicating a slight increase in correlation between the simulated and observed
discharge. The ANO experiment showed a smaller but still positive median ∆CC, while
the NOM experiment resulted in minimal changes, with its median ∆CC very close to zero.

The DIR experiment consistently outperformed the other methods in both reservoir
storage and discharge simulations. It led to substantial improvements in reservoir storage
estimates and modest enhancements in discharge correlations. The ANO experiment
showed moderate benefits, particularly in reservoir storage, but its improvements were
less pronounced than DIR. The NOM experiment, while maintaining model stability, did
not significantly alter the model’s performance relative to the open-loop results.

These results suggest that the direct assimilation of satellite-derived reservoir storage
data is the most effective approach for improving both reservoir operation representations
and downstream discharge simulations in the CaMa-Flood for the Yangtze River basin. DIR
method’s superior performance may be attributed to its ability to make more substantial
adjustments to the model states, leveraging the satellite observations more effectively than
the other methods.

However, it is important to note that while DIR showed the largest improvements, it
also exhibited the greatest variability in results, as evidenced by the wider interquartile
ranges in both rRMSE and ∆CC. This suggests that the effectiveness of direct assimilation
may vary significantly across different reservoirs and discharge stations, possibly due to
factors such as reservoir size, operation complexity, or data quality.

In conclusion, based on the rRMSE for reservoir storage and ∆CC for discharge, the
direct assimilation method (DIR) emerges as the most effective approach for improving the
CaMa-Flood model’s performance in the Yangtze River basin, followed by the anomaly
method (ANO), while the normalized method (NOM) offers minimal improvements but
maintains model stability.

4.2. Absolute Performance Evaluation

Our analysis now shifts to evaluating the absolute accuracy of our model’s predictions
for river flow and reservoir water volumes. To quantify river discharge performance, we
utilize a trio of statistical indicators: CC, NSE, and KGE. For assessing reservoir storage
precision, we rely on the RMSE metric.

4.2.1. Estimation of Downstream Discharge

Figure 7 illustrates the spatial distribution of these metrics for each experiment. In the
DIR experiment (Figure 7, top row), we observed generally good performance across the
basin. The correlation coefficients were consistently high, with 11 out of 14 stations (78.6%)
showing a CC > 0.8 and a median CC of 0.89. The highest CC was observed at Waizhou
(0.91) and Luoshan (0.89). NSE values showed more variability, with a median of 0.45.
The best NSE performance was seen at Waizhou (0.77) and Luoshan (0.75), while some
stations like Xiantao (0.14) and Xiangyang (0.05) showed lower efficiency. KGE values were
generally good, with a median of 0.62. The highest KGE was observed at Chenglingji (0.82)
and Baihe (0.71).

The ANO experiment (Figure 7, middle row) showed similar performance to DIR in
terms of correlation, but with some improvements in NSE and KGE for certain stations.
The median CC remained high at 0.88, with 11 stations (78.6%) showing a CC > 0.8. The
NSE values improved for some stations, with a median of 0.49. Notable improvements
were seen at Datong (NSE increased from 0.39 to 0.45) and Hankou (from 0.35 to 0.4). The
KGE values were comparable to DIR, with a median of 0.61.

The NOM experiment (Figure 7, bottom row) showed slight decreases in performance
compared to DIR and ANO, but still maintained good overall results. The median CC was
0.89, with 11 stations (78.6%) having a CC > 0.8, similar to the other experiments. NSE
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values showed a slight decrease, with a median of 0.43. KGE values also showed a minor
decrease, with a median of 0.60.
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Figure 7. Evaluation of daily river flow accuracy using three statistical metrics: Nash–Sutcliffe
efficiency (NSE), correlation coefficient (CC), and Kling–Gupta efficiency (KGE) across three DA
methods: (a) DIR, (b) ANO, and (c) NOM.

Across all experiments, certain stations consistently performed well. Waizhou and
Luoshan maintained high performance across all metrics and experiments. Conversely,
stations like Xiantao and Xiangyang showed lower performance across all experiments,
suggesting local factors may be affecting model performance in these areas.

In summary, all three DA methods demonstrated good performance in estimating
river discharge, with DIR and ANO showing slightly better results than NOM. The high
correlation coefficients across all experiments demonstrate that the temporal dynamics
of flow are well captured. The variability in NSE and KGE values suggests that while
the overall patterns are well represented, there is room for improvement in capturing
the magnitude and variability of discharge at some stations. The spatial distribution of
performance metrics highlights the complexity of the Yangtze River basin, with varying
levels of DA effectiveness across different regions.

4.2.2. Estimation of Daily Reservoir Storage

We accessed the performance of daily reservoir storage estimates across the DIR, ANO,
and NOM data assimilation experiments for 39 Yangtze dams. Figure 8 illustrates the
geographic distribution of RMSE for each experiment.
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and (c) NOM.

In the DIR experiment (Figure 8a), we observed generally lower RMSE values com-
pared to the other methods, indicating better performance. The RMSE values ranged from
3.06 × 106 m3 (Dahongshan dam) to 2.35 × 109 m3 (Three Gorges Dam). The median RMSE
was approximately 2.50 × 107 m3. Notably, smaller dams like Huohe (5.96 × 106 m3) and
Niuchehe (9.20 × 106 m3) showed very low RMSE, while larger reservoirs like Danjiangkou
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(1.60 × 109 m3) and Three Gorges Dam (2.35 × 109 m3) had higher absolute RMSE values,
which is expected given their larger storage capacities.

The ANO experiment (Figure 8b) showed mixed results compared to DIR. Some dams
saw improvements, while others experienced an increased RMSE. The RMSE values ranged
from 1.76 × 107 m3 (Sanhulianjiang dam) to 9.55 × 109 m3 (Three Gorges Dam). The
median RMSE was around 3.75 × 108 m3, higher than in the DIR experiment. Notably, the
Three Gorges Dam showed a significant increase in RMSE (9.55 × 109 m3) compared to
DIR, suggesting that the anomaly method may struggle with very large reservoirs.

The NOM experiment (Figure 8c) generally showed higher RMSE values compared
to DIR but performed better than ANO for some dams. RMSE values ranged from
4.20 × 107 m3 (Niuchehe dam) to 1.74 × 1010 m3 (Danjiangkou dam). The median RMSE
was approximately 4.35 × 108 m3. Interestingly, while the Three Gorges Dam showed
improvement compared to ANO (1.26 × 1010 m3), it still had higher RMSE than in the
DIR experiment.

Across all of the three methods, we observed that DIR generally performed best,
with lower RMSE values for most dams. ANO showed mixed results, with some dams
improving and others degrading compared to DIR. NOM typically had higher RMSE values
than DIR but showed improvements over ANO for several dams. The performance varied
significantly across different dam sizes. Smaller dams often had lower absolute RMSE
values, while larger dams like Three Gorges and Danjiangkou consistently showed higher
RMSE across all methods due to their larger storage capacities.

In conclusion, the direct assimilation method appears to be the most effective for
estimating the daily storage of the Yangtze’s reservoirs. However, the performance of each
method varies across different dam sizes and locations, suggesting that local factors and
reservoir characteristics play a significant role in the effectiveness of these data assimilation
techniques. Future work could focus on understanding these local factors to improve
estimation accuracy, particularly for larger reservoirs.

5. Discussion
5.1. Effectiveness of Different DA Methods for Reservoir Storage Assimilation

Our study compared three data assimilation (DA) methods—Direct (DIR), Anomaly
(ANO), and Normalized (NOM)—for integrating satellite-derived reservoir storage obser-
vations into the CaMa-Flood river model. The results highlight the superior performance
of the DIR method, which generally outperformed both ANO and NOM in improving
reservoir storage estimates. The DIR method’s advantage is primarily due to its direct
integration of observed values without data transformation, making it more effective in
matching the model’s storage predictions with satellite-derived observations.

However, the ANO and NOM methods rely on transforming the data before assim-
ilation, such as by calculating anomalies or normalizing values, which can introduce
inaccuracies when the temporal resolution of the satellite observations is sparse. This
transformation might struggle to account for the temporal variability inherent in reservoir
operations, particularly in regions where reservoir inflows and outflows vary due to both
natural hydrological processes and human intervention. For instance, reservoirs with
nonlinear or unpredictable operational behavior pose a significant challenge to anomaly
based or normalized DA methods.

Furthermore, in some cases, the ANO and NOM methods led to a degraded per-
formance, underscoring that not all transformation-based DA techniques are universally
suitable. The discrepancy between the transformed dataset and actual reservoir manage-
ment practices indicates a need for further investigation. Future studies should prioritize
the development of more flexible data assimilation methods. These advanced techniques
should be capable of reconciling the limitations in satellite data frequency with the complex
operational dynamics of reservoir systems.



Water 2024, 16, 2927 14 of 17

5.2. Limitations of Current Hydrodynamic Models in Reservoir Representation

While improvements were observed in reservoir storage estimates through DA, down-
stream discharge simulations showed limited enhancement. This result exposes a crucial
limitation of global hydrodynamic models like CaMa-Flood: their inability to accurately cap-
ture reservoir dynamics and their effects on river systems. Reservoirs play a complex role
in modifying downstream flow regimes by buffering inflows, regulating discharge patterns,
and storing water for operational purposes such as power generation and flood control.

One primary limitation of hydrodynamic models is the simplification of reservoir
operation rules. Most large-scale models rely on generalized assumptions that may fail to
reflect the diverse strategies employed by water managers, who adjust reservoir operations
based on seasonal variations, downstream needs, and socio-economic factors. Consequently,
the mismatch between modeled and real-world reservoir behavior leads to discrepancies
in simulated downstream discharges.

Additionally, models often lack detailed information about reservoir characteris-
tics such as depth–area–volume relationships, spillway configurations, and operational
rules [38,39]. Without these details, models cannot accurately simulate how reservoirs re-
spond to incoming flows, particularly during extreme events like floods or droughts. More-
over, the interaction between reservoirs and surrounding hydrological systems, such as
feedback mechanisms with groundwater or regional climate patterns, is typically oversim-
plified. These gaps highlight the need for enhanced modeling approaches that incorporate
dynamic and real-world reservoir management strategies.

5.3. Influence of Model and Data Quality on DA Performance

Our findings reveal that the success of DA methods is closely tied to the quality of
both the model inputs and the assimilated satellite data. In particular, we identified three
critical factors influencing DA performance: the accuracy of runoff data, river bathymetry,
and satellite observation characteristics.

First, biased runoff data can severely impact DA outcomes. When the input runoff
to the hydrodynamic model is inaccurate or contains biases, even the most effective DA
method may fail to correct the model’s errors. For instance, inflow patterns that are
incorrectly timed or overestimated can lead to suboptimal reservoir storage estimates,
regardless of the DA technique used. Therefore, improving the accuracy of hydrological
inputs, particularly runoff, is essential for optimizing DA methods.

Second, errors in river bathymetry, especially inaccuracies in cross-sectional profiles,
can undermine the ability of DA to improve discharge simulations. Since the geometry
of a river channel determines its flow characteristics, inaccuracies in channel depth or
width can cause the model to misestimate the flow velocity and water storage. Severe
bathymetry errors may even render DA efforts ineffective, as the model will struggle to
simulate realistic river hydraulics.

Finally, the temporal and spatial resolution of satellite observations is pivotal. Higher
resolution data allow DA methods to better capture short-term variations in reservoir
storage, which is particularly important for regions with high hydrological variability or
rapidly changing storage conditions. However, when satellite data are sparse or have low
temporal resolution, DA methods struggle to make meaningful adjustments, especially for
reservoirs with complex operational patterns. Addressing these data quality issues will be
essential to maximize the effectiveness of DA in large-scale hydrodynamic models.

6. Conclusions

This study demonstrates the potential for assimilating satellite-derived reservoir
storage data into hydrodynamic models to improve the representation of reservoir behavior
in large river systems. Among the three DA methods tested, the direct assimilation (DIR)
method showed the most promise, outperforming the anomaly (ANO) and normalized
(NOM) approaches. The DIR method’s ability to directly integrate observed storage data
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without the need for transformation allowed it to more effectively align with the model’s
predictions, resulting in better reservoir storage estimates.

However, our results also highlight ongoing challenges, particularly in simulating
downstream discharge influenced by reservoirs. The limited improvement in discharge
simulations underscores the need for more sophisticated reservoir representation in hydro-
dynamic models. Future work should focus on developing dynamic reservoir operation
schemes that better reflect real-world management practices, improving the quality and
resolution of model inputs (e.g., runoff, bathymetry), and refining satellite observations.

Moreover, exploring advanced DA techniques that can account for the unique charac-
teristics of reservoir systems, such as their varying operational strategies and interactions
with broader hydrological processes, will be crucial. Investigating how improvements
in reservoir storage estimates propagate downstream, influencing river discharge and
flood risk, is another essential area for future research. By addressing these challenges,
we can enhance our ability to model large river systems, leading to better water resource
management and flood prediction in reservoir-influenced basins.
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